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Abstract

Background: Processing and analysis of DNA sequences obtained from next-
generation sequencing (NGS) face some difficulties in terms of the correct prediction
of DNA sequencing outcomes without the implementation of bioinformatics
approaches. However, algorithms based on NGS perform inefficiently due to the
generation of long DNA fragments, the difficulty of assembling them and the
complexity of the used genomes. On the other hand, the Sanger DNA sequencing
method is still considered to be the most reliable; it is a reliable choice for virtual
modeling to build all possible consensus sequences from smaller DNA fragments.

Results: In silico and in vitro experiments were conducted: (1) to implement and
test our novel sequencing algorithm, using the standard cloning vectors of different
length and (2) to validate experimentally virtual shotgun sequencing using the PCR
technique with the number of cycles from 1 to 9 for each reaction.

Conclusions: We applied a novel algorithm based on Sanger methodology to
correctly predict and emphasize the performance of DNA sequencing techniques as
well as in de novo DNA sequencing and its further application in synthetic biology.
We demonstrate the statistical significance of our results.

Keywords: Shotgun method, Sanger sequencing, Virtual sequencing, Polymerase
chain reaction, Gene expression vectors, Synthetic biology

Background
Optimization in the processing of DNA sequence data may impose a serious challenge

regarding the correct prediction of DNA sequencing outcomes without the application

of bioinformatics approaches [1]. These approaches play an important role in novel se-

quencing pipelines, termed Next-Generation Sequencing (NGS) technologies, and they

have transformed the sequencing landscape in the past few years [2, 3]. Despite signifi-

cant scientific achievements in DNA sequencing, there is still a shortage of efficient

bioinformatics tools for virtual NGS simulations due to the generation of long DNA

fragments and difficulty assembling them [4, 5]. Although some computational algo-

rithms have already been developed and tested for the construction of a realistic data
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set, such as the MetaSim simulator to model Roche’s 454 and Illumina technologies,

they still lack thorough experimental validation of the generated results [6]. Moreover,

these algorithms deal with NGS, which might be error-prone [7]. Thus, they may lead

to artificial mutations and sequencing bias [7]. In particular, a study of NGS biases de-

fined that introns are less covered with reads than exons due to the much higher com-

plexity of the latter structures [8].

On the other hand, the Sanger method is a termination sequencing technology for

determining a nucleotide sequence of DNA molecules that can only be used for short

DNA strands of 100 to 1000 base pairs [9], which is suitable for the sequencing of small

DNA plasmids. For example, Sentchilo et al. used both Sanger sequencing and 454- se-

quencing combined with classic CsCl density gradient centrifugation, to characterize a

wastewater metagenome of plasmids to determine some larger circular genetic ele-

ments [10]. The conventional Sanger method is still considered the “gold standard,” it

is the most reliable sequencing methodology, but it might be also laborious and time-

consuming [11, 12].

Some attempts have been made to develop open-source bioinformatics tools, simulat-

ing shotgun (genomic, metagenomic, transcriptomic, and metatranscriptomic) datasets

from reference sequencing platforms, such as the Grinder and Tracembler programs

[13, 14]. However, the virtual shotgun sequencing mimicking the Sanger method of the

standard cloning vectors with different length sizes has yet to be tested and validated

experimentally, using polymerase chain reaction. Therefore, we implemented the virtual

sequencing algorithm based on the Sanger methodology to correctly predict and

emphasize the performance of this DNA sequencing technique, using the average se-

quence length for the adjustment of coverage values in experimental settings.

Implementation

Plasmid selection

The sequencing data for the pCR™4-TOPO® plasmid containing 125 bp insertion

(Thermo Scientific, Germany), pQE-30-UA-mCHERRY-GFP (in-house modified vector

pQE-30 UA, Qiagen, USA) and pLEXSY-Ig-1 vector for in vitro translation of Ig-like

C2-type 1 protein (Jena Biosciences, Germany, [15]) were obtained in a FASTA format

from our previous sequencing experiments.

In silico sequencing and fragment assembly

The Sequencer algorithm developed by Bernhard Haubold (Max Planck Institute for

Evolutionary Biology) was used to simulate the in silico shotgun sequencing technique

for determining the nucleotide sequence of DNA molecules that are no more than a

few kilobases (http://guanine.evolbio.mpg.de/sequencer). The TIGR (The Institute for

Genomic Research) Assembler, a classic open-access assembly tool developed by the

Institute for Genomic Research [16], was applied to build all possible consensus se-

quences (contigs) from smaller sequence fragments, coming from the virtual shotgun

sequencing. The Dotter software, a graphical dot plot program [17], was utilized to pro-

vide the complete and detailed comparison of two analyzed sequences and to calculate

the Karlin-Altschul statistics [18]. For this, the program has the ability to adjust the

stringency cutoffs interactively so that the dot-matrix only needs to be calculated once
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[17]. The CLUSTALW 2.1 program was used for the DNA sequence alignment [19].

The DNA analysis was performed by using the BioEdit 7.0.5.3 software to calculate

guanine-cytosine (GC) and adenine-thymine (AT) contents together with identity

matrices between the analyzed sequences in the alignment [20].

PCR validation

Primers (Table 1), targeting 100, 400 and 800 bp regions of the analyzed plasmids, were

designed by the Geneious PRO software (Biomatters, New Zealand). The gene-

expression vectors were used as templates for PCR, containing Thermo Scientific

DreamTaq Green PCR Master Mix (2x), 0.1 μM of each forward and reverse primers

and 10 ng of template DNA. All reactions were performed according to the manufac-

turer’s instructions, with the number of cycles 1, 3, 5, 7, and 9 for each reaction. The

amplicons were purified using the NucleoSpin Gel and PCR clean-up kits (Macherey-

Nagel, Germany) and quantified by using the Infinite 200 PRO plate reader (Infinite®

200 PRO NanoQuant, Tecan, Switzerland). Statistical analyses were performed using

linear and nonlinear regression modeling by the GraphPad Prism v.7 software for

Windows (GraphPad Software, San Diego, CA). The differences were considered statis-

tically significant at a p-value of < 0.05. All the necessary files (tested in Linux environ-

ment) required for the virtual sequencing, including executable programs, bash scripts,

FASTA format files, and program outputs can be found in Additional file 1. All in silico

experiments were performed at least three times.

Results
The simulation of the sequencing process was used in order to optimize the DNA se-

quencing output for sequence assembly (Fig. 1). According to this, the resulting DNA

fragments were assembled into the sought template sequence using the TIGR

Assembler computer program [16]. To test this program’s performance, it is useful to

simulate random DNA fragments in association with the Sequencer algorithm. In par-

ticular, the algorithm takes a template DNA sequence as input and outputs random

reads until the number of sequenced nucleotides, divided by the length of the template

molecule, has reached a threshold known as the coverage value.

Table 1 List of primers used in PCR

Vector Size (nt) Forward Reverse

TOPO* 100 AATGCAGCTGGCACGACAG AGGCACCCCAGGCTTTACA

TOPO 400 CAGCTGTGCTCGACGTTGT GGATTCATCGACTGTGGCCG

TOPO 800 GCAGCAGATTACGCGCAGA AATGGGCTGACCGCTTCCT

QE** 100 ACCGCCAAGCTGAAGGTGA CAAGGCCTACGTGAAGCACC

QE 400 AGGTCGTTCGCTCCAAGCT TCTACGGGGTCTGACGCTCA

QE 800 GCAGCAGATTACGCGCAGA TAGTGTATGCGGCGACCGA

LEXSY*** 100 TGTCTCATGAGCGGATACA GTCTCATGAGCGGATACAT

LEXSY 400 GTCTCATGAGCGGATACAT AGTTCGTCTTTCATCCAGTT

LEXSY 800 CTGGCGCCTCTCTAGACACA CCGACAAGCAGAAGAACGGC
*-pCR™4-TOPO®; **- pQE-30-UA-mCHERRY-GFP; ***- pLEXSY-Ig-1

Shityakov et al. BMC Bioinformatics          (2020) 21:132 Page 3 of 13



For this purpose, we simulated this sequencing process of pCR™4-TOPO® (4079 bp),

pQE-30-UA-mCHERRY-GFP (4886 bp) and pLEXSY-Ig-1 (2319 bp) cloning vectors via

the Sequencer algorithm using 100, 400, and 800 bp lengths of the sequences to deter-

mine the coverage rate. In the past, most of the gene expression plasmids were being

sequenced using Sanger sequencing of ~ 3 kb clone libraries, but presently it has been

switched to the Roche/454 platform with GS FLX Titanium sequencing chemistry and

Illumina sequencing technology [21, 22]. Therefore, the plasmid sequencing can be

done by NGS, allowing us to analyze samples in a high-throughput manner with small

reads of approximately 200–500 bp, but this also might be expensive and time-

consuming [23]. The coverage parameter was tested in the range of 1 to 9, representing

the rate at which every nucleotide in DNA should be sequenced on average. In fact, the

Sanger sequencing delivers reads of up to 800 bp; however, the critical limitation is the

volume of the analyzed sample and its low scalability in comparison to modern tech-

niques [24]. Therefore, the maximal average length of the sequences was chosen to be

800 nt, which is a realistic assumption for the Sanger sequencing [25].

Next, we implemented the TIGR Assembler algorithm in order to recover the original

cloning vectors and calculate the number of the assembled sequence fragments as con-

tiguous sequences. Optimally, the program was designed to generate a single contigu-

ous string from the various overlapping DNA fragments [16]. In order to test the

quality of sequencing, we used different sequence lengths and coverage parameters to

Fig. 1 Flowchart describing the methodology used to model shotgun sequencing of DNA plasmids with
experimental and theoretical approaches

Shityakov et al. BMC Bioinformatics          (2020) 21:132 Page 4 of 13



produce one contiguous sequence, which was then observed for all the analyzed vectors

(Fig. 2 [a-c]), starting from the coverage number of 4 and higher sequence lengths (400

nt). Notably, the number of contigs at low sequence length (100 nt) fits a Gaussian dis-

tribution with reliable statistics (r2 = 0.83–0.86), whereas this parameter is linearly

Fig. 2 The relation between coverage, sequence length (nt), and the number of the assembled sequences
(contigs) for the pCR™4-TOPO® (a), pQE-30-UA-mCHERRY-GFP (b), and pLEXSY-Ig-1 (c) cloning vectors using
the Sequencer algorithm. The Gaussian distribution function was used for a curve fitting
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distributed at higher sequence lengths. Similar patterns had been previously inspected

as multivariate distributions of tetranucleotide frequencies of artificial DNA fragments,

where these distributions can be approximated by a single Gaussian function [26]. On

the other hand, the results corresponding to 800 nt also correlate with the number of

sequences for all the analyzed plasmids (Fig. 3 [a-c]) produced by the Sequencer

Fig. 3 The relation between coverage, sequence length (nt), and the number of the generated sequences
for the pCR™4-TOPO® (a), pQE-30-UA-mCHERRY-GFP (b), and pLEXSY-Ig-1 (c) cloning vectors using the
Sequencer algorithm
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algorithm, which is minimal at maximal sequence length. Consequently, the relation-

ship between coverage and the number of sequences for the analyzed cloning vectors

was estimated by the linear regression analysis with reliable statistics (r2 = 0.99) and a

p-value of < 0.0001. The diagonal lines in Fig. 4 [a-c], indicating the DNA molecules

generated and assembled by the Sequencer and TIGR Assembler algorithm, are corre-

sponded to the template DNA as negative slopes (m < 0) of the lines from the reverse

DNA strand. Furthermore, the pairwise sequence alignments using the CLUSTALW

and BioEdit programs at the maximal value of sequence length and coverage indicated

the exact match between the reference cloning vectors and the assembled DNA. How-

ever, the virtual DNA fragments were assembled in the manner (“impaired topology”),

where the uncovered DNA located at the beginning of the reference DNA was comple-

mentary to the uncovered DNA located at the end of the assembled sequence (Fig. 4).

This “impaired topology” outcome might be associated with the development of TIGR

Assembler based on the data derived from more than 20 sequencing projects, leading,

however, to a sequence assembler that produces some misassemblies [27]. Despite

this drawback, the algorithm has been successfully implemented in whole-genome

shotgun sequencing of prokaryotic and eukaryotic organisms, bacterial artificial

chromosome-based sequencing of eukaryotic organisms, and expressed sequence tag

assembly [16, 28, 29].

To access the local sequence alignment, the expectation value (E-value) as the ex-

pected number of local alignments with a given score (S) was calculated according to

the Karlin-Altschul statistics (Table 2), using the following equation [18]:

E ¼ K�mne−λS

where m is the MSP sequence length; n is the size of the database (n = 1 as no database

was used); e is the exponential function; and K and λ are the search-space related and

normalizing constants, respectively.

For the local alignments, the E-values were found to be the same (0.002) for all the

analyzed vectors, indicating the statistically significant (E-value < 0.05) data produced

by the Karlin-Altschul approach. Nonetheless, it has been shown previously that E-

values might be dependent on the query sequence length, which might generate some

“false positive” hits, previously observed, analyzing short primer regions and small do-

main regions [30, 31]. On the other hand, the DNA composition and identity analysis

Fig. 4 Dot plots of the pCR™4-TOPO® (a), pQE-30-UA-mCHERRY-GFP (b), and pLEXSY-Ig-1 (c) cloning
vectors (x-axis, nt) versus the assembled DNA molecules with the maximal sequence length and coverage
(y-axis, nt) using the Sequencer and TIGR Assembler algorithms

Shityakov et al. BMC Bioinformatics          (2020) 21:132 Page 7 of 13



(Table 3) for the reference and assembled DNA revealed that their GC and AT

contents were almost identical at the minimum vector size (pLEXSY-Ig-1) and the

highest identity value (0.78). From the previous DNA sequence alignments (Fig. 5), it is

clear that the identity values depend on the vector size and the “impaired topology” of

the assembled DNA generated by the virtual sequencing algorithm. It has also been

reported for NGS that extreme base compositions could lead to uneven coverage of

reads, hindering genome assembly [32]. However, our experiments were conducted

using the balanced GC and AT biases (~ 40–60%), which prevents the results from

sequencing errors related to GC-poor sequences with a mean GC content of less than

25% [33].

To validate the in silico output, the PCR methodology was applied to calculate the

number of DNA copies (n) produced by amplifying the different sequence lengths (100,

400, and 800 nt) of the analyzed vectors (Additional file 2), using the following equation

[34]:

n ¼ a� NAð Þ
l � 650� 109

where a is the amount of DNA; NA is the Avogadro constant; l is the sequence length

(nt). The PCR technique largely depends on several factors, such as a polymerase, num-

ber of cycles, probe degradation, template volume and size of the reaction mixture [35,

36]. In contrast, virtual sequencing is a fully independent system, mimicking the se-

quencing strategy and identifying novel features of genomes, namely the satellite re-

peats, variations, and single-nucleotide polymorphism. Whereas our primers designed

to amplify the specific DNA parts, the virtual sequencing allows targeting the random

areas, which enables it to be used for de novo sequencing of random DNA fragments.

For the experimental generation of truly novel plasmids in their native host, where the

genetic material requires a correct assembly, it might be necessary to enrich and purify

the plasmid DNA [37]. This can be achieved by closing the sequence gaps between

Table 2 Karlin-Altschul statistics for the analyzed DNA sequences

Vector K λ MSP score MSP length (nt) Number of dots (*106)

TOPO* 0.17 0.19 39.03 21 39.48

QE** 0.17 0.19 39.06 21 56.85

LEXSY*** 0.16 0.18 41.55 24 13.85
*-pCR™4-TOPO®; **- pQE-30-UA-mCHERRY-GFP; ***- pLEXSY-Ig-1; MSP-maximal-scoring segment pairs

Table 3 DNA composition and identity analysis for the reference (Ref) and assembled (Ass) DNA
molecules

Parameter DNA

TOPO** QE** LEXSY***

Ref Ass Ref Ass Ref Ass

GC, % 51.7 52.44 48.32 46.96 58.3 58.51

AT, % 48.3 47.56 51.68 53.04 41.7 41.49

MW, kDa 1239.67 1470.74 1485.06 1767.37 710.69 915.77

Identity 0.54 0.62 0.78
*-pCR™4-TOPO®; **- pQE-30-UA-mCHERRY-GFP; ***- pLEXSY-Ig-1; MW- molecular weight calculated for a single
stranded DNA
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contigs by PCR-amplification and subsequent Sanger sequencing of the PCR-product

[37]. In our case, to provide consistent results, we used the same conditions for each

experiment, including the design of primers with the same melting temperature, reac-

tion time, and amount of reaction mixture. In addition, we used the fixed number of

DNA copies (10 ng), contributing to the sequencing accuracy in our experiments.

As an outcome, the numerical and experimental data corroborated reasonably for the

number of DNA copies, which was minimal at 800 nt of sequence length, representing

a relationship with average r2 and p-values of 0.92 and 0.012 for all the analyzed genetic

elements (Fig. 6 [a-c]). This demonstrates that the number of amplicons in the PCR ex-

periments and virtual sequencing correlate with the numbers of cycles of coverage rate

consistently. Therefore, this technique can be applied (i) as an inexpensive quality con-

trol technique for sequencing analysis and (ii) as a support for the user with a reduced

sequencing budget to emphasize sequencing data in silico. Currently, several sequen-

cing strategies are available to determine the correct DNA sequence [38, 39]. Further

applications of in silico sequencing algorithms might include the single-molecule se-

quencing method, able to analyze short-length segments in a large volume, which does

not require the amplification of a DNA template [40] together with old-fashioned but

very precise methods, such as the Sanger sequencing [41, 42].

Conclusion
We tested and validated a novel virtual sequencing algorithm able to simulate shotgun se-

quencing. In reality, these simulations are challenging and require the implementation of

multi-step protocols, including data production, assembly, and validation. Despite all the

Fig. 5 DNA sequence alignments of the analyzed cloning vectors as reference versus the assembled DNA
molecules (output_1) produced by the Sequencer algorithm at the maximal value of sequence length and
coverage, using the CLUSTALW and BioEdit programs. The starting and ending parts of the sequences are
shown to enhance overall clarity
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recent sequencing improvements, the Sanger method is still considered the “gold stand-

ard” in DNA sequencing due to its high accuracy. Therefore, in this study, we applied a

novel algorithm to simulate shotgun sequencing and to build all possible consensus se-

quences from small DNA fragments for the gene-expression vectors. Therefore, the vir-

tual sequencing approach was validated experimentally using the PCR technique with the

Fig. 6 The relationship between sequence length (nt), the number of DNA copies (× 1011), and PCR cycles
for the pCR™4-TOPO® (a), pQE-30-UA-mCHERRY-GFP (b), and pLEXSY-Ig-1 (c) cloning vectors using PCR
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number of cycles from 1 to 9 for each reaction. Overall, the obtained results can be used

to correctly predict and emphasize the performance of this DNA sequencing technique

based on the average sequence length to adjust the coverage values in experimental

settings.
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Additional file 1. Input and output data for modeling of shotgun sequencing of DNA plasmids. All the necessary
files (tested in Linux environment) required for the virtual sequencing, including executable programs, bash scripts,
FASTA format files, and program outputs.

Additional file 2. PCR results for plasmid vectors. To validate the in silico of DNA plasmids, the PCR methodology
was applied to calculate the number of DNA copies produced by amplifying the different lengths (100, 400, and
800 nt) sequences of the plasmid vectors.
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