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Abstract: The aim of this study was to investigate the effects of two commercial phenolic phyto-
genic feed additives (PFAs) on sows under heat stress conditions of high summer temperatures for
seven days before and seven days after the farrowing. The PFA-1 product was a mixture based on the
plants Emblica officinalis, Foeniculum vulgare, Citrus sinensis and nut fiber, while the PFA-2 product was
a mixture based on plants Andrographis paniculata, Glycyrrhizia glabra, Tinospora cordifolia and nut fiber.
A total of 48 primiparous sows were divided into three groups: T1-control group: regular gestation
(GF) and lactation feed (LF); T2 group: regular GF and LF supplemented with PFA-1; T3 group:
regular GF and LF supplemented with PFA-2. Each sow in the T2 and T3 groups received 5 g daily of
the PFA-1 and PFA-2 product, respectively, for seven days before and seven days after the farrowing.
Blood samples were collected from all groups 24 h after farrowing. Thiobarbituric acid—reactive
substances (TBARS) and protein carbonyl (CARB) concentrations were determined in the sow plasma.
The body condition scoring (BCS) and the backfat of sows on the farrowing and weaning days
along with reproductive parameters and litter characteristics were recorded. The highest number
of stillborn piglets and the largest interval from weaning to estrus were observed in the T1 group.
The lowest number of alive 24 h after birth and weaning piglets and the lowest BCS and backfat
at weaning were also recorded in the T1 group. TBARS and CARB concentrations were significant
higher in the T1 group compared to all other groups. In conclusion, the use of phenolic PFAs seems
to reduce oxidative damage caused by heat stress and ameliorate performance in primiparous sows.

Keywords: phenolic; PFAs; heat stress; TBARS; protein carbonyls; pig

1. Introduction

Nowadays, climate change is denoted by extremely hot summers, which are charac-
terized by rising temperatures above the thermoneutral range of pigs; as a result, they are
exposed to heat stress. One of the most harmful consequences of perpetual heat stress is
oxidative damage derived from the increasing level of reactive oxygen species (ROS) [1].
Heat is an important environmental stress factor that may affect to the reproductive per-
formance of animals, in particular during summer months both in temperate [2,3] and
tropical [4,5] environments. Gestation and lactation are both critical periods in which sows
are more susceptible to heat stress. Several studies have reported reproductive problems in
sows under high summer ambient temperature conditions, including impaired embryonic
development [6]; reduced farrowing rate [7,8]; decreased litter size and increased interval
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between weaning to estrus [5,9,10]; and reduced feed intake and milk yield in sows [6,11].
These reproductive problems cause a decline in the productivity of pigs, which results in
economic losses [12].

The oxidative damage can be evidenced by increased plasma concentration of thio-
barbituric acid-reactive substances (TBARS) and protein carbonyls (CARB) [13]. Phenolic
compounds are products of plant secondary metabolism, having a benzene ring with one
(phenol) or more (polyphenol) hydroxyl group as esters, methyl esters etc. [14,15]. Most
of the phytogenic feed additives (PFAs) based on plant extracts have beneficial antimi-
crobial, antioxidative, and growth-promoting effects in swine, including sows, weaning
piglets, and finishers [16–20]. The use of PFAs substances (spices, herbs, or extracts) as
feed supplements has been reported to improve certain growth and health parameters
in pigs [21]. The basic mode of action of phenolic compounds as anti-oxidative agents is
related to the reduction of hydrogen or electron donation that makes these compounds
free-radical scavengers (antioxidants) [22]. Although the beneficial effects of PFAs have
been previously reported, their effect on heat stress has been assessed in a limited number
of cases [1].

The aim of this study was to evaluate the effects of PFAs on the concentration of
TBARS and the protein carbonyls as biomarkers of oxidative damage, as well as on the
performance of sows exposed to heat stress under field conditions.

2. Materials and Methods
2.1. Trial Farm

This study was conducted in a farrow-to-finish pig farm, with a genetic background
of commercial hybrids of Large White x Landrace (DanBred). The capacity of the farm was
550 sows under production, located in Larissa (39◦31′39.6” N 22◦30′41.3” E Thessaly, Cen-
tral Greece) in July 2021. The location is selected because Larissa is a region in Greece where
some of the warmest temperatures in the country are usually encountered. This is trans-
lated into more days with high temperatures (maximum > 35 ◦C) and night temperatures
exceeding 20 ◦C (more than 20 hot days per year) [23].

All gilts/sows had individual ear-tags and were housed in a separate mating-pregnancy
building. The first service of the gilts was applied during their second estrus. The farm
applied artificial insemination, using purchased semen doses from a boar stub (Duroc
breed). One week prior to farrowing, the sows were moved from the mating-pregnancy
building to the farrowing building in groups (16 sows per group) in order to fill one far-
rowing room. All farrowing rooms included pens with commercial farrowing crates, that
were equipped with nipple drinkers and separate removable feeders for the sows and the
piglets. No enrichment material (e.g., straw) was used in sows before and after parturition.
After the weaning, sows were moved to the mating-pregnancy building and were penned
separately in individual cages with slatted floors until artificial insemination (weaning to
estrus interval).

All sows received a different type of feed during gestation and lactation (Table 1). The
feed was home-mixed, and meal-based (depending on the environmental conditions of
each season) on corn/barley/wheat–soybean. For example, during lactation period, the
feed amounting to 6 kg was provided in three meals during the summer months. The diet
of suckling piglets included part commercial creep feed and part liquid milk supplement.
The analysis of creep feed was the following: crude protein 16.5%; crude fat 7.0%; crude
ashes 5.5%; crude fiber 0.2%; lactose 8.5%; Ca 0.6%; P 0.5%; lysine 1.41%; methionine 0.48%;
ileal digestible lysine 1.28%; ileal digestible methionine + cystine 0.74%; ileal digestible
threonine 0.90%; Vit. A 15.500 IU/kg; Vit. D3 2.100 IU/kg; Vit. E 200 mg/kg. The synthesis
of the milk replacement included crude protein 21.5%; crude fat 12.5%; crude fibre 0.05%;
crude ash 7.50%; calcium 0.82%; phosphorous 0.73%; Vit. A 25.000 IU; Vit. D3 5.000 IU; Vit.
E 225 mg; pucoferm (lactic acid bacteria) 1.00 × 109 KBE; BioPlus 2B 1.28 × 109 KBE; lysine
1.80%, methionine 0.58%; methionine + cysteine 1%; threonine 1%; tryptophane 0.34%.
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Table 1. Composition (kg) and calculated analysis (%) of gestation feed (GF) and lactation feed (LF)
of sows’ diet.

Composition (Ingredients) (kg) GF LF *

Corn 300 353
Barley 280 200

Wheat bran 240 200
Soybean 120 170

Soybean oil 10 20
Protein concentrate ** 12.50 25

Premix of vitamins/minerals *** 30 40
Inactive yeast **** 5 5
Toxin binder ***** 3 3

Powdered cellulose ******
Total

5
1005.5

5
1021

Analysis (%) GF LF *

Crude protein 16.50 18.40
Crude fat 3.70 4.65

Crude fiber 5.00 4.70
Lysine 0.80 0.96

Methionine 0.29 0.33
Methionine + Cystine 0.60 0.63

Calcium 0.65 0.86
Total phosphorus 0.76 0.78

Available phosphorus 0.40 0.46
Sodium 0.24 0.24

* 1st day of farrowing until weaning. ** Apsaprotein F68 (Andres Pintaluba SA, Reus, Spain). *** The source and
composition of the vitamin and mineral premix is analytically presented in the Supplementary File S1. **** Prosol
Expert (Prosol SPA, Madone BG, Italy). ***** Apsa Quimitox (Andres Pintaluba SA, Reus, Spain; bentonites,
sepiolitic clay, dried yeast-Sacharomyces cerevisiae, purified diatomaceous earth). ****** Arbocel® (J. Rettenmaier
and Söhne GmbH, Rosenberg, Germany).

In the farrowing crates there was a nipple per sow and a nipple for piglets, while
the drinking water was provided automatically. An everyday check for the flow of the
nipples and a monthly monitoring of the water for chemical and microbiological properties
were applied.

Housing facilities had a fully automated feeding system and a climate monitoring
system (Argos S, Microfan B.V., Nederweert, The Netherlands). This climate monitoring
system, especially for farrowing rooms, is a standalone management system per room,
recording the temperature and humidity values.

The vaccination scheme of breeding stock included vaccinations against porcine
reproductive and respiratory syndrome; porcine circovirus 2; Aujeszky’s disease; swine
influenza; parvovirus; Erysipelothrix rhusiopathiae; atrophic rhinitis; Escherichia coli; and
Clostridium perfringens. All breeding females were treated with a single Ivermectin injection
14 days prior to farrowing.

2.2. Experimental Material

The following two commercial phenolic PFAs (Life Circle Nutrition AG, Hämmerli 2d,
8855, Wangen SZ, Switzerland) were tested:

(a) commercial phenolic PFA-1 (Herb-All Heat-A): a mix of pure plants mainly composed
by Emblica officinalis; Foeniculum vulgare; Citrus sinensis; and nut fiber (part of hickory
nuts). Composition: crude fiber 14.0%; crude protein 7.1%; crude fat 2.8%; crude ash
8.2%; sodium 0.02%; lysine 0.2%; methionine 0.1%;

(b) commercial phenolic PFA-2 (Herb-All Heat-D): a mix of pure plants mainly composed
by Andrographis paniculate; Glycyrrhizia glabra; Tinospora cordifolia; and nut fiber (part
of hickory nuts). Composition: crude fiber 13.5%; crude protein 6.5%; crude fat 2.5%;
crude ash 8.5%; sodium 0.02%; lysine 0.2%; methionine 0.1%.
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The content of polyphenols in the above feed additives is 7.8% of GAE (gallic acid
equivalents) and the ORAC (Oxygen Radical Absorbance Capacity) value is around
80,000 (umol TE/100 g). These two natural feed additives are completely based on pure
plants only (no extracts) and were distributed as top-dressing (5 g per sow, once per day in
the morning meals per sow).

2.3. Experimental Design

A total of forty-eight (48) primiparous sows of a single batch were randomly allocated
to one of three groups, as shown in Figure 1:

(a) T1 group-control group (16 sows): regular gestation (GF) and lactation feed (LF);
(b) T2 group (16 sows): regular GF and LF supplemented with top-dress of the commercial

phenolic PFA-1 (Herb-All Heat-A) (5 g/day) for 7 days before farrowing until 7th day
of lactation;

(c) T3 group (16 sows): regular GF and LF supplemented with top-dress of the commercial
phenolic PFA-2 (Herb-All Heat-D) (5 g/day) for 7 days before farrowing until 7th day
of lactation.
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Figure 1. An overview of experimental design, records, samplings, and tests performed.

At admission, the ear tags of the sows were recorded, and no cross fostering was
allowed. Sows of all groups were housed in the same room or in identical rooms. All
primiparous sows (n = 48) received a single injection of D-cloprostenol (1 mL per animal,
equivalent to 75 µg of D-cloprostenol per animal/Gestavet Prost®, Hipra, Amer, Girona,
Spain) at 14.00–16.00 on gestation day 114. Sows that had not farrowed by 05:30 the
following day received 10 IU oxytocin. The above scheme was performed to ensure the
same farrowing day for all sows of the trial, to increase the likelihood of piglet delivery
during working hours as well as to allow a closer management of trial.

2.4. Blood Sampling

Blood samples were collected via jugular venipuncture from five primiparous sows
per group, restrained by snout snare, 24 h after the farrowing. The selected primiparous
sows for blood sampling delivered mummies and stillborn piglets in their litters. Blood
was collected 1–3 h after their first meal, using S-Monovette® 9 mL, Lithium-Heparin
(Sarstedt AG & Co. KG, Nümbrecht, Germany) and disposable 14Gx3-1/414, 2.1 × 80 mm
needles (Jørgen Kruuse A/S, Langeskov, Denmark). Plasma samples were obtained by
centrifugation (5810 R, Eppendorf AG, Hamburg, Germany) at 3000× g for 15 min, at 4
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◦C, then the supernatant was transferred into 1.5 mL microcentrifuge tubes and stored at
−80 ◦C pending laboratory analysis.

2.5. Laboratory Examinations
2.5.1. TBARS

For the TBARS determination, a slightly modified assay of Keles et al. [24] was em-
ployed. Briefly, 100 µL of plasma was mixed with 500 µL of 35% TCA and 500 µL of
Tris–HCl (200 mmol/L; pH 7.4) and incubated for 10 min at about 20 ◦C.

One milliliter of 2 mol/L Na2SO4 and 55 mmol/L thiobarbituric acid solution was
added, and the samples were incubated at 95 ◦C for 45 min. The samples were cooled on
ice for 5 min and were vortexed after 1 mL of 70% TCA was added. Consequently, the
mixtures were centrifuged at 15,000× g for 3 min, and the absorbance of the supernatant
was read at 530 nm. A baseline shift in absorbance was considered by running a blank
along with all samples during the measurement. Calculation of the TBARS concentration
was based on the molar extinction coefficient of malondialdehyde (MDA).

2.5.2. CARBs

CARBs were determined based on a previously described method [25]. Briefly, 50 µL
of 20% TCA were added to 50 µL of plasma and this mixture was incubated in an ice bath
for 15 min and centrifuged at 15,000× g for 5 min at 4 ◦C. The supernatant was discarded
and 500 µL of 10 mmol/L 2, 4-dinitrophenylhydrazine (DNPH) in 2.5 N HCL for the sample
(500 µL of 2.5 N HCL for the blank) was added in the pellet. The samples were incubated
in the dark at about 20 ◦C. for 1 h, with intermittent vortexing every 15 min and were
centrifuged at 15,000× g for 5 min at 4 ◦C. The supernatant was discarded and 1 mL of 10%
TCA was added vortexed, and centrifuged at 15,000× g for 5 min at 4 ◦C.

The supernatant was discarded and 1 mL of ethanol-ethyl acetate (1:1 v/v) was added,
vortexed and centrifuged at 15,000× g for 5 min at 4 ◦C. This washing step was repeated
twice. The supernatant was discarded and 1 mL of 5 mol/L urea (pH 2.3) was added,
vortexed and incubated at 37 ◦C for 15 min. The samples were centrifuged at 15,000× g for
3 min at 4 ◦C and the absorbance was read at 375 nm. Calculation of CARB concentration
was based on the molar extinction coefficient of DNPH.

2.6. Recorded Parameters
2.6.1. Sow Body Condition Parameters

The body condition of the primiparous sows was assessed both visually and by means
of backfat measurements on farrowing and weaning days. Before application the backfat
measurements, the sow’s body condition score (BCS) was assessed by the same person
visually with a score scale of 1 to 5 [26]. Score 1 was recorded for extremely thin sows and
score 5 for extremely fat ones. Backfat measurements were performed at the P2 position
that is located at left side of the 10th rib and in a distance of 6 cm from the spine using pulse
ultrasound (Lean-Meater® Series 12, serial number 63597, Renco Corporation, Minneapolis,
MN, USA). The point of measurement was marked on each sow to guarantee that the same
spot was assessed during the subsequent measurements.

2.6.2. Reproductive Parameters and Litter Characteristics

Reproductive parameters (weaning to estrus interval in days) and litter characteristics
(number of totally born; liveborn; stillborn; mummies; alive piglets 24 h after their birth-
alive >24 h; and weaning piglets), as well as BW of weaning piglets were recorded for
each group.

2.6.3. Thermal Comfort Indices

The indoor thermal environment was monitored hourly using data loggers (Argos S,
Microfan B.V., Nederweert, The Netherlands) to measure temperature and relative humidity.
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The temperature and humidity index (THI) were estimated using the hourly findings of
the climate control system of each farrowing room according to the following models:

(a) THI-1 = 0.8 × T + ((RH (T − 14.4)/100)) + 46.4. The threshold zone of the index THI-1
is: THI-1 < 74 for suitable environmental; 74 ≤ THI-1 < 78 means for heat stress;
78 ≤ THI2 < 82 for moderate heat stress; THI-1 > 82 for severe heat stress [22,27,28];

(b) THI-2 = (1.8× T + 32)− (0.55× (RH/100))× (1.8× T + 32)− 58 [29–31]. The threshold
zone of the index THI-2 is: THI-2 ≤ 74 for suitable environmental; 74 < THI-2 ≤ 78
for mild heat stress; 78 < THI-2 ≤ 84 for moderate heat stress; THI-2 > 84 for severe
heat stress [30,31].

2.7. Statistical Analysis

The results were statistically analyzed using MedCalc Statistical Software version
14.8.1 (MedCalc Software bvba, Ostend, Belgium). The normality of the data was evaluated
with Shapiro–Wilk test and the homogeneity of variances was evaluated with Levene’s
test. The results of the reproductive indicators, TBARS and CARB in plasma, as well as the
THI indexes, were analyzed using Kruskal–Wallis test. If the Kruskal–Wallis test is positive
(P less than the selected significance level) then MedCalc performs a test for pairwise
comparison of subgroups, according to Conover, 1999 [32–38]. The correlation between the
two indices of THI-1 and THI-2 was determined using Rank correlation. All comparisons
were performed at a significance level of p < 0.05.

3. Results
3.1. Thermal Comfort Indices

The mean values of the two indices of each day, for 7 days before and 7 days after
farrowing, are presented in Figure 2 (the data are available Table S1). The graphical
presentation shows that both daily mean THI- indices were over 74, which is the cut off
value indicative of heat stress.

3.2. Reproductive Parameters and Litter Characteristics

A significant difference was observed in the number of stillborn piglets among the
control group and the other two groups, while the highest median was found in the control
group (Figure 3a). Moreover, a significant difference in the number of the piglets that
remained alive after the first 24 h of their life (p = 0.04), as well as in the number of the
weaning piglets (p < 0.01) was observed among the groups, while the median of the control
group was found to be the lowest (Figure 3b,c). A significant difference was also observed
between the control group (T1) and the T3 group, when the interval from weaning to estrus
was compared between the groups (p = 0.03), with the control group having the highest
median (Figure 3d). The data are available in S3 of the Supplementary File.

3.3. Sow Body Condition Parameters

A significant difference was observed in the BCS (p = 0.02) and the backfat (p = 0.04)
at the weaning among the groups, while the lowest medians of the two parameters
were observed in the control group one (Figure 4). The data are available in S4 of the
Supplementary File.
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3.4. Laboratory Examinations

As is shown in Figure 5, there is a significant difference between control group and the
other two groups, in the TBARS and CARB concentrations, while the highest medians were
observed in the control group. The data are available in S5 of the Supplementary File.
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4. Discussion

During our trial, the pregnant sows suffered from severe heat stress, as is shown in
Figure 2. In the present study the most common indices have been used in order to better
verify heat stress. Moreover, the strength of correlation was tested to determine if the
two indices can be used interchangeably, in future studies. Heat stress is an important
environmental stress factor on the reproductive performance of animals, especially during
the summer period [2–5]. In particular, heat stress has negative effects on the overall
reproductive performance of sows, such as embryonic development [6]; farrowing rate [7,8];
litter size (mainly number of live born piglets per litter); interval between weaning and
the next litter [5,9,39–41]; as well as feed intake and milk yield in sows [6,11]. In our
study, the use of phenolic PFAs in sow gestation and lactation diets had beneficial effects
on their reproductive performance and litter characteristics, evidenced by the decreased
number of stillborn piglets and the increased number of alive piglets 24 h after their birth.
Previous studies reported a reduction of about one piglet per litter due to summer heat
stress [39–41], as well as the beneficial effects of PFAs use in sows before farrowing to
reduce the number of stillborn piglets [42]. Moreover, for piglets that are born from sows
that suffered from heat stress during pregnancy, this can lead to alterations of metabolism,
resulting in decreased skeletal muscle [43] and weaning BW [44]. The increased number
of weaning piglets in groups of our study that received phenolic PFAs was possibly due
to the improvement of feed intake and milk production of sows, and not only on the
increased number of alive piglets 24 h after their birth. Heat stress has a significant negative
impact on the reproductive performance of sows including reduced feed intake and milk
production in sows, which result in productivity losses [6,11,45]. Sows under a high thermal
environment had increased oxidative stress during late gestation, indicating that increased
oxidative damage to lipid, protein, and DNA could be one of the contributing factors for
the reduced reproductive performance of sows in this environment [46]. Previous studies
reported that the use of PFAs in sows during the seven days before farrowing is efficient
in reducing oxidative stress (e.g., the reduction of TBARS in sow serum after farrowing),
improving feed intake during lactation, as well as the quality and quantity of colostrum
and milk [42,47–49].

Highly prolific sows are characterized by a high reproductive trait, resulting in
an increased metabolic heat production, which renders them more susceptible to heat
stress [50,51]. Previous studies reported severe catabolic status and increased oxidative
stress levels in sows during late gestation and lactation [52,53]. Based on our results, the
increased BCS and backfat at weaning and the decreased weaning to estrus interval, are
indications that the use of commercial phenolic PFAs could lead to an improved body
condition and reproductive parameters which needs further investigation, such as feed
intake measurements during lactation that are not provided in the present study.

Recent studies have shown that higher backfat thickness in sows is associated with
enhanced oxidative stress, increased expression of pro-inflammatory cytokines and inhibi-
tion of a healthy placenta development observed in sows with moderate backfat thickness.
Levels of ROS and MDA, a lipid peroxidation marker, were increased in the placenta of the
sows with increased backfat thickness [54]. This may also affect fetal development, as lipid
oxidation can influence placental development, lipid metabolism and transport. The above
stresses the importance of closely controlling body condition in sows.

Heat stress has been reported to induce oxidative stress during the summer in livestock
animals [55,56]. Previous studies have reported that heat stress enhances ROS production
and induces oxidative stress, which can lead to cytotoxic damages [57,58]. Oxidative stress
resulting from increased production of ROS, and/or a decrease in antioxidant defense, leads
to damage of biological macromolecules and disruption of the normal metabolism and
physiology [55,59]. Accumulation of ROS results in oxidative damage to lipids, proteins
and DNA in cells and consequently tissue damage. Moreover, the oxidative stress could
be one of the stress responses caused by a high thermal environment [46] and it can lead
to an increase in TBARS [13], resulting in cytotoxic effects [60]. In addition, the plasma
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CARB concentration increases during late gestation in sows under heat stress conditions,
indicating that sows suffer severe oxidative damage [46]. The results of the current study
indicated that the tested phenolic PFAs have strong natural antioxidant activity in sows
during the late gestation, as they exhibited decreased oxidative stress-induced damage
to lipids and proteins, as evidenced by the decreases in TBARS and CARB, respectively,
in groups that received phenolic PFAs. Previous studies reported that phenolic PFAs
enhanced the resistance of weaning pigs to stress [61] as well as the growth performance
and oxidative stability of meat in farm animals [62]. Similar results of decreased TBARS
and CARB after the use of a polyphenolic byproduct from olive mill wastewater were
noticed in piglets, broiler chickens, and lambs [63–65].

The Mediterranean region suffers from climate change particularly due to its sensi-
tivity to drought and increased temperatures [66–68]. These changes may adversely affect
agriculture and livestock production. In Greece, climate change is expected to result in
warmer temperatures, with more days with an increased temperature > 35 ◦C and night
temperatures up to 20 ◦C (> 50 days annually in most areas) [69]. For instance, regions
in Thessaly (where the current trial was carried out) are expected to experience up to 20
more hot days, and almost an additional month with night-time temperatures higher than
20 ◦C [23]. According to recent reports, by the end of the 21st century the temperature
in Greece will increase significantly, expecting heat wave days (temperatures > 35 ◦C) to
increase by 15–20 annually by 2050 [68,70,71]. A variety of PFAs were tested for their
antimicrobial and growth-promoting effects in swine [16–18,20]. Therefore, especially
in Mediterranean countries, future studies with PFAs in swine are required, not only as
growth promoters or alternatives to antibiotics, but also as an efficient tool to manage the
negative consequences of heat stress due to the climate change.

5. Conclusions

In conclusion, the use of phenolic PFAs derived from pure plants of current study has
beneficial effects on primiparous sows under field heat stress conditions including:

(a) antioxidative effects (decrease of TBARS and CARB in plasma) (a) TBARS: 15.09%
lower in T2 than T1; 14.70% lower in T3 than T1; (b) CARB (nmol/mL): 19.25% lower
in T2 than T1; 23.00% lower in T3 than T1; (c) CARB (nmol/mg protein): 20.58% lower
in T2 than T1; 23.52% lower in T3 than T1;

(b) improved reproductive parameters and litter characteristics e.g., a decrease of the
interval from weaning to estrus (5 days in T3 group in comparison to control group
T1), decrease of stillborn piglets;

(c) improved body condition parameters.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox11030593/s1, S1 (Footnote): Premix of vitamins/minerals;
Table S1: Data of THI-1 and THI-2 indexes; Table S2: Mean, standard error (SE), median, interquartile
range (IQR) and p value of the reproductive parameters and litter characteristics and comparison
between the groups; Table S3: Mean, standard error (SE), median, interquartile range (IQR) and
p value of sow body condition parameters and comparison between the groups; Table S4: Mean,
standard error (SE), median, interquartile range (IQR) and p value of TBARS and CARB values and
comparison between the groups.
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