organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-[2-(2-Oxo-1,3-oxazolidin-3-yl)ethyl]-4phenyl-1H-1,5-benzodiazepin-2(3H)-one

Daouda Ballo,^a Noureddine Hamou Ahabchane,^a Hafid Zouihri,^b El Mokhtar Essassi^a and Seik Weng Ng^c*

^aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, ^bCNRST Division UATRS, Angle Allal Fassi/FAR, BP 8027 Hay Riad, Rabat, Morocco, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 7 July 2010; accepted 15 July 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.036; wR factor = 0.102; data-to-parameter ratio = 8.7.

The seven-membered ring in the title compound, $C_{20}H_{19}N_3O_3$, adopts a boat conformation with the two phenylene C atoms representing the stern and the methylene C atom the prow. The dihedral angle between the best plane through the sevenmembered ring (r.m.s deviation = 0.358 Å) and the phenyl substituent is 55.8 (1) $^{\circ}$. The two rings at either ends of the ethyl chain are staggered $[N-CH_2-CH_2-N \text{ torsion angle} =$ 57.5 (4)°].

Related literature

For the background to 2,3-dihydro-1H-1,5-benzodiazepin-2ones, see: Ahabchane et al. (1999). For a related structure, see: Ballo et al. (2010).

Experimental

Crystal data

$C_{20}H_{19}N_3O_3$	$V = 1704.34 (15) \text{ Å}^3$
$M_r = 349.38$	Z = 4
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation
a = 9.0163 (5) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 11.6671 (6) Å	T = 293 K
c = 16.2019 (8) Å	$0.25 \times 0.25 \times 0.15 \ \mathrm{mm}$

Data collection

Bruker X8 APEXII diffractometer 9253 measured reflections 2053 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ 235 parameters $wR(F^2) = 0.102$ H-atom parameters constrained S = 0.90 $\Delta \rho_{\text{max}} = 0.12 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$ 2053 reflections

1578 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.039$

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2052).

References

Ahabchane, N. H., Keita, A. & Essassi, E. M. (1999). C. R. Ser. IIC, 2, 519-523. Ballo, D., Ahabchane, N. H., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, 01277.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2010). E66, o2080 [doi:10.1107/S160053681002828X]

1-[2-(2-Oxo-1,3-oxazolidin-3-yl)ethyl]-4-phenyl-1H-1,5-benzodiazepin-2(3H)-one

D. Ballo, N. H. Ahabchane, H. Zouihri, E. M. Essassi and S. W. Ng

Comment

The background to the class of 2,3-dihydro-1*H*-1,5-benzodiazepin-2-ones is given in an earlier report (Ahabchane *et al.*, 1999). A recent study presented the crystal structure of 1-allyl-4-phenyl-2,3-dihydro-1*H*-1,5-benzodiazepin-2-one (Ballo *et al.*, 2010). The present study has an oxazolidin-2-onyl-ethyl group in place of the allyl group (Scheme I, Fig. 1). The principal feature is the seven-membered ring that is fused to a phenylene ring and adopts a boat-shaped conformation, two phenylene carbons representing the stern and the methylene carbon atom the prow [r.m.s deviation 0.358 Å]. The methyl carbon deviates by 0.637 Å from the best plane. The two rings at either end of the ethyl chain are staggered [N–CH₂–CH₂–N torsion angle, 57.5 (4)°].

Experimental

To a solution of 4-phenyl-1*H*-1,5-benzodiazepin-2-one (2 g, 8,4 mmol) in DMF (40 ml) was added dichloroethylamine hydrochloride (0.9 g, 8.4 mmol), potassium carbonate (3 g, 22.2 mmol) and a catalytic quantity of tetra-*n*-butylammonium bromide. The mixture was heated on a sand bath, the reaction monotired by thin layer chromatography. On completion of the reaction, the solvent was evaporated under reduced pressure. The residue was recrystallized from ethanol to afford the title compound as colorless crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H)$ set to 1.2–1.5 $U_{eq}(C)$. 1486 Friedel pairs were merged in the final cycles of the refinement.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the molecule of $C_{20}H_{19}N_3O_3$ at the 50% probability level.

1-[2-(2-Oxo-1,3-oxazolidin-3-yl)ethyl]-4-phenyl-1H-1,5-benzodiazepin-2(3H)-one

Crystal data C₂₀H₁₉N₃O₃

F(000) = 736

$M_r = 349.38$
Orthorhombic, $P2_12_12_1$
Hall symbol: P 2ac 2ab
<i>a</i> = 9.0163 (5) Å
<i>b</i> = 11.6671 (6) Å
<i>c</i> = 16.2019 (8) Å
$V = 1704.34 (15) \text{ Å}^3$
Z = 4

Data

Z = 4	$0.25 \times 0.25 \times 0.15 \text{ mm}$
Data collection	
Bruker X8 APEXII diffractometer	1578 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.039$
graphite	$\theta_{\text{max}} = 26.7^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$
ϕ and ω scans	$h = -11 \rightarrow 10$
9253 measured reflections	$k = -14 \rightarrow 13$
2053 independent reflections	$l = -20 \rightarrow 14$

 $D_{\rm x} = 1.362 {\rm Mg m}^{-3}$

 $\theta=2.9{-}21.0^\circ$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 KPrism, colorless

Mo Ka radiation, $\lambda = 0.71073$ Å Cell parameters from 2227 reflections

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.102$	H-atom parameters constrained
<i>S</i> = 0.90	$w = 1/[\sigma^2(F_o^2) + (0.0742P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
2053 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
235 parameters	$\Delta \rho_{max} = 0.12 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.16 \ e \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.3905 (2)	0.62919 (16)	0.33575 (12)	0.0439 (5)
N2	0.1611 (2)	0.45822 (16)	0.37488 (12)	0.0416 (5)
N3	0.4287 (2)	0.61202 (17)	0.51545 (12)	0.0458 (5)
01	0.5951 (2)	0.51620 (17)	0.32572 (12)	0.0669 (5)
O2	0.1947 (2)	0.60716 (17)	0.57036 (13)	0.0677 (6)
O3	0.3700 (2)	0.48444 (16)	0.61065 (11)	0.0629 (5)
C1	0.2372 (3)	0.6471 (2)	0.31906 (14)	0.0434 (5)
C2	0.1935 (3)	0.7508 (2)	0.28491 (17)	0.0597 (7)
H2	0.2650	0.8049	0.2710	0.072*
C3	0.0461 (4)	0.7750 (2)	0.27117 (19)	0.0697 (8)
H3	0.0181	0.8445	0.2477	0.084*

C4	-0.0596 (3)	0.6950 (3)	0.29269 (17)	0.0646 (8)
H4	-0.1594	0.7110	0.2841	0.078*
C5	-0.0192 (3)	0.5927 (2)	0.32647 (15)	0.0520 (6)
Н5	-0.0921	0.5403	0.3414	0.062*
C6	0.1301 (3)	0.5651 (2)	0.33911 (13)	0.0416 (5)
C7	0.2709 (3)	0.39924 (19)	0.34851 (13)	0.0405 (5)
C8	0.3658 (3)	0.4400 (2)	0.27737 (14)	0.0477 (6)
H8A	0.4248	0.3775	0.2554	0.057*
H8B	0.3046	0.4710	0.2335	0.057*
C9	0.4635 (3)	0.5312 (2)	0.31346 (14)	0.0467 (6)
C10	0.4696 (3)	0.7153 (2)	0.38443 (15)	0.0516 (6)
H10A	0.4560	0.7899	0.3592	0.062*
H10B	0.5748	0.6979	0.3839	0.062*
C11	0.4161 (3)	0.7200 (2)	0.47313 (15)	0.0483 (6)
H11A	0.4732	0.7772	0.5027	0.058*
H11B	0.3131	0.7440	0.4737	0.058*
C12	0.3193 (3)	0.5726 (2)	0.56469 (15)	0.0480 (6)
C13	0.5683 (3)	0.5585 (3)	0.53446 (17)	0.0590 (7)
H13A	0.6327	0.6096	0.5652	0.071*
H13B	0.6190	0.5333	0.4849	0.071*
C14	0.5192 (4)	0.4584 (3)	0.58632 (19)	0.0697 (8)
H14A	0.5224	0.3879	0.5546	0.084*
H14B	0.5826	0.4500	0.6343	0.084*
C15	0.3119 (3)	0.29286 (18)	0.39276 (14)	0.0415 (5)
C16	0.2634 (3)	0.2771 (2)	0.47373 (17)	0.0542 (6)
H16	0.2040	0.3321	0.4989	0.065*
C17	0.3038 (4)	0.1793 (3)	0.51664 (19)	0.0674 (8)
H17	0.2710	0.1690	0.5706	0.081*
C18	0.3914 (3)	0.0977 (3)	0.4807 (2)	0.0658 (8)
H18	0.4195	0.0331	0.5104	0.079*
C19	0.4373 (4)	0.1114 (3)	0.4010 (2)	0.0701 (8)
H19	0.4946	0.0551	0.3759	0.084*
C20	0.3988 (3)	0.2088 (2)	0.35785 (18)	0.0604 (7)
H20	0.4323	0.2180	0.3040	0.072*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
N1	0.0423 (11)	0.0491 (11)	0.0402 (10)	-0.0064 (9)	-0.0003 (9)	0.0029 (9)
N2	0.0395 (11)	0.0438 (10)	0.0415 (10)	-0.0009 (9)	-0.0001 (8)	-0.0040 (9)
N3	0.0414 (11)	0.0531 (11)	0.0428 (11)	0.0005 (9)	0.0037 (9)	0.0065 (9)
01	0.0407 (10)	0.0837 (13)	0.0761 (13)	0.0036 (10)	0.0055 (9)	0.0061 (12)
O2	0.0511 (11)	0.0706 (12)	0.0815 (13)	0.0082 (11)	0.0214 (10)	0.0049 (10)
O3	0.0706 (12)	0.0607 (11)	0.0575 (11)	0.0065 (10)	0.0181 (10)	0.0150 (9)
C1	0.0470 (13)	0.0482 (13)	0.0351 (12)	0.0017 (11)	-0.0029 (11)	-0.0027 (11)
C2	0.0711 (18)	0.0510 (14)	0.0570 (16)	0.0016 (14)	-0.0068 (15)	0.0076 (12)
C3	0.080 (2)	0.0593 (16)	0.0695 (19)	0.0250 (16)	-0.0144 (17)	0.0092 (15)
C4	0.0580 (17)	0.0736 (18)	0.0623 (17)	0.0226 (16)	-0.0112 (15)	-0.0051 (15)

supplementary materials

C5	0.0434 (13)	0.0644 (16)	0.0483 (14)	0.0065 (12)	-0.0018 (11)	-0.0093 (13)
C6	0.0447 (12)	0.0465 (13)	0.0335 (11)	0.0032 (10)	-0.0008 (10)	-0.0061 (10)
C7	0.0412 (13)	0.0444 (11)	0.0358 (11)	-0.0024 (10)	-0.0031 (10)	-0.0058 (10)
C8	0.0558 (14)	0.0542 (13)	0.0330 (11)	0.0057 (12)	0.0038 (11)	-0.0049 (11)
C9	0.0436 (14)	0.0599 (14)	0.0367 (12)	0.0005 (12)	0.0069 (11)	0.0080 (11)
C10	0.0551 (14)	0.0547 (13)	0.0451 (13)	-0.0174 (12)	-0.0012 (12)	0.0062 (11)
C11	0.0559 (15)	0.0455 (13)	0.0435 (13)	-0.0049 (11)	0.0009 (12)	0.0003 (10)
C12	0.0544 (15)	0.0460 (13)	0.0434 (13)	0.0008 (12)	0.0077 (11)	-0.0045 (11)
C13	0.0464 (14)	0.0794 (19)	0.0513 (15)	0.0070 (13)	0.0019 (12)	0.0094 (14)
C14	0.0655 (18)	0.0788 (19)	0.0650 (17)	0.0178 (16)	0.0061 (15)	0.0164 (16)
C15	0.0388 (11)	0.0417 (11)	0.0440 (13)	-0.0032 (10)	-0.0055 (10)	-0.0049 (10)
C16	0.0557 (15)	0.0557 (14)	0.0512 (15)	-0.0024 (12)	-0.0012 (13)	0.0025 (13)
C17	0.0756 (19)	0.0734 (18)	0.0532 (16)	-0.0086 (17)	-0.0077 (15)	0.0144 (15)
C18	0.0613 (17)	0.0592 (17)	0.077 (2)	0.0008 (14)	-0.0237 (16)	0.0153 (15)
C19	0.074 (2)	0.0600 (17)	0.077 (2)	0.0218 (15)	-0.0054 (17)	-0.0025 (15)
C20	0.0643 (18)	0.0614 (16)	0.0554 (16)	0.0138 (14)	-0.0014 (14)	-0.0048 (13)

Geometric parameters (Å, °)

N1—C9	1.367 (3)	C8—C9	1.501 (3)
N1—C1	1.424 (3)	C8—H8A	0.9700
N1—C10	1.463 (3)	C8—H8B	0.9700
N2—C7	1.280 (3)	C10-C11	1.517 (4)
N2—C6	1.403 (3)	C10—H10A	0.9700
N3—C12	1.350 (3)	C10—H10B	0.9700
N3—C11	1.439 (3)	C11—H11A	0.9700
N3—C13	1.439 (3)	C11—H11B	0.9700
O1—C9	1.216 (3)	C13—C14	1.505 (4)
O2—C12	1.197 (3)	С13—Н13А	0.9700
O3—C12	1.350 (3)	C13—H13B	0.9700
O3—C14	1.435 (4)	C14—H14A	0.9700
C1—C2	1.387 (3)	C14—H14B	0.9700
C1—C6	1.398 (3)	C15—C20	1.377 (3)
C2—C3	1.377 (4)	C15—C16	1.395 (4)
С2—Н2	0.9300	C16—C17	1.385 (4)
C3—C4	1.378 (4)	C16—H16	0.9300
С3—Н3	0.9300	C17—C18	1.367 (4)
C4—C5	1.363 (4)	C17—H17	0.9300
C4—H4	0.9300	C18—C19	1.364 (5)
C5—C6	1.399 (3)	C18—H18	0.9300
С5—Н5	0.9300	C19—C20	1.379 (4)
C7—C15	1.480 (3)	С19—Н19	0.9300
С7—С8	1.512 (3)	C20—H20	0.9300
C9—N1—C1	122.7 (2)	C11—C10—H10B	109.1
C9—N1—C10	118.8 (2)	H10A-C10-H10B	107.9
C1—N1—C10	118.3 (2)	N3—C11—C10	113.2 (2)
C7—N2—C6	119.6 (2)	N3—C11—H11A	108.9
C12—N3—C11	121.5 (2)	C10-C11-H11A	108.9
C12—N3—C13	111.40 (19)	N3—C11—H11B	108.9

C11—N3—C13	123.5 (2)	C10-C11-H11B	108.9
C12—O3—C14	109.1 (2)	H11A—C11—H11B	107.7
C2—C1—C6	119.6 (2)	O2—C12—O3	122.2 (2)
C2C1N1	118.7 (2)	O2—C12—N3	128.1 (2)
C6—C1—N1	121.7 (2)	O3—C12—N3	109.8 (2)
C3—C2—C1	121.2 (3)	N3—C13—C14	101.5 (2)
С3—С2—Н2	119.4	N3—C13—H13A	111.5
C1—C2—H2	119.4	C14—C13—H13A	111.5
C2—C3—C4	119.1 (3)	N3—C13—H13B	111.5
С2—С3—Н3	120.4	C14—C13—H13B	111.5
С4—С3—Н3	120.4	H13A—C13—H13B	109.3
C5—C4—C3	120.7 (3)	O3—C14—C13	105.4 (2)
C5—C4—H4	119.7	O3—C14—H14A	110.7
C3—C4—H4	119.7	C13-C14-H14A	110.7
C4—C5—C6	121.1 (3)	O3—C14—H14B	110.7
С4—С5—Н5	119.4	C13-C14-H14B	110.7
С6—С5—Н5	119.4	H14A—C14—H14B	108.8
C1—C6—C5	118.3 (2)	C20-C15-C16	118.1 (2)
C1—C6—N2	124.5 (2)	C20—C15—C7	122.7 (2)
C5—C6—N2	117.2 (2)	C16—C15—C7	119.2 (2)
N2—C7—C15	118.8 (2)	C17—C16—C15	119.9 (3)
N2—C7—C8	121.6 (2)	С17—С16—Н16	120.0
C15—C7—C8	119.5 (2)	C15-C16-H16	120.0
C9—C8—C7	104.95 (17)	C18—C17—C16	120.7 (3)
С9—С8—Н8А	110.8	С18—С17—Н17	119.6
С7—С8—Н8А	110.8	С16—С17—Н17	119.6
С9—С8—Н8В	110.8	C19—C18—C17	119.8 (3)
С7—С8—Н8В	110.8	C19-C18-H18	120.1
H8A—C8—H8B	108.8	C17-C18-H18	120.1
O1—C9—N1	123.2 (2)	C18—C19—C20	120.0 (3)
01—C9—C8	122.3 (2)	С18—С19—Н19	120.0
N1—C9—C8	114.4 (2)	С20—С19—Н19	120.0
N1—C10—C11	112.4 (2)	C15—C20—C19	121.4 (3)
N1—C10—H10A	109.1	C15—C20—H20	119.3
C11—C10—H10A	109.1	С19—С20—Н20	119.3
N1-C10-H10B	109.1		
C9—N1—C1—C2	-132.7 (2)	C9—N1—C10—C11	-108.0 (2)
C10—N1—C1—C2	52.3 (3)	C1-N1-C10-C11	67.3 (3)
C9—N1—C1—C6	49.8 (3)	C12—N3—C11—C10	-137.1 (2)
C10—N1—C1—C6	-125.2 (2)	C13—N3—C11—C10	66.2 (3)
C6—C1—C2—C3	0.7 (4)	N1-C10-C11-N3	57.5 (3)
N1—C1—C2—C3	-176.8 (3)	C14—O3—C12—O2	176.3 (3)
C1—C2—C3—C4	0.7 (5)	C14—O3—C12—N3	-4.3 (3)
C2—C3—C4—C5	-0.6 (4)	C11—N3—C12—O2	12.8 (4)
C3—C4—C5—C6	-1.0 (4)	C13—N3—C12—O2	172.0 (3)
C2-C1-C6-C5	-2.2 (3)	C11—N3—C12—O3	-166.5 (2)
N1—C1—C6—C5	175.2 (2)	C13—N3—C12—O3	-7.3 (3)
C2-C1-C6-N2	-179.1 (2)	C12—N3—C13—C14	14.8 (3)
N1—C1—C6—N2	-1.6 (3)	C11—N3—C13—C14	173.5 (2)

supplementary materials

C4—C5—C6—C1	2.4 (4)	C12—O3—C14—C13	13.4 (3)
C4—C5—C6—N2	179.5 (2)	N3-C13-C14-O3	-16.4 (3)
C7—N2—C6—C1	-42.9 (3)	N2-C7-C15-C20	161.8 (2)
C7—N2—C6—C5	140.2 (2)	C8—C7—C15—C20	-22.5 (3)
C6—N2—C7—C15	173.44 (19)	N2-C7-C15-C16	-19.4 (3)
C6—N2—C7—C8	-2.2 (3)	C8—C7—C15—C16	156.3 (2)
N2	76.5 (3)	C20-C15-C16-C17	0.4 (4)
C15—C7—C8—C9	-99.1 (2)	C7-C15-C16-C17	-178.4 (2)
C1—N1—C9—O1	178.2 (2)	C15—C16—C17—C18	0.2 (4)
C10-N1-C9-O1	-6.8 (3)	C16—C17—C18—C19	-1.3 (4)
C1—N1—C9—C8	-5.5 (3)	C17—C18—C19—C20	1.8 (5)
C10—N1—C9—C8	169.45 (19)	C16-C15-C20-C19	0.1 (4)
С7—С8—С9—О1	107.4 (3)	C7—C15—C20—C19	178.9 (3)
C7—C8—C9—N1	-68.8 (2)	C18-C19-C20-C15	-1.2 (5)

