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We propose to use the squared multiple correlation
coefficient as an effect size measure for experimental
analysis-of-variance designs and to use Bayesian meth-
ods to estimate its posterior distribution. We provide the
expressions for the squared multiple, semipartial, and par-
tial correlation coefficients corresponding to four com-
monly used analysis-of-variance designs and illustrate our
contribution with two worked examples.
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1 INTRODUCTION

In the empirical sciences, researchers are commonly advised to report effect size (ES) interval
estimates to complement the use of statistical hypothesis testing (e.g., Loftus, 1996; Cohen, 1992,
1994; Cumming, 2014). This is particularly true for psychology, where the need for reporting
ES estimates is stressed in publication guidelines of several organizations and scientific jour-
nals (see Kelley & Preacher, 2012; Peng, Chen, Chiang, & Chiang, 2013 for recent surveys), but
it also applies to other fields of science, such as biology (Nakagawa & Cuthill, 2007), genetics
(Park et al., 2010), and marketing research (Fern & Monroe, 1996). Clearly, the use and interpre-
tation of ES interval estimates is of practical importance and continues to attract much research
interest (e.g., Huberty, 2002; Robinson, Whittaker, Williams, & Beretvas, 2003; Alhija & Levy,
2008; Fritz, Scherndl, & Kühberger, 2012; Grissom & Kim, 2012; Lakens, 2013; Fritz, Morris, &
Richler, 2012).

Despite the continued interest in ES interval estimation, we have two concerns as to their
development for the analysis of variance (ANOVA) model, which is arguably the most often
applied statistical model across the empirical sciences. Our first concern is that ES measures for
ANOVA models are often defined in a somewhat ad hoc manner and follow what Kelley and
Preacher (2012, p. 139) call a definition-by-example approach, making it difficult to generalize the
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ES measures beyond the specific examples given. One case in point is the 𝜔2 measure for the
two-way ANOVA (Hays, 1963, p. 406) and the subsequent difficulty of generalizing it to a partial
𝜔2 measure (Keren & Lewis, 1979). Similar issues have been reported for the commonly used 𝜂2

measure (Cohen, 1973; Kennedy, 1970; Levine & Hullet, 2002; Pierce, Block, & Aguinis, 2004).
Thus, what is lacking is a general framework within which ES measures such as 𝜔2 and 𝜂2 can be
derived.

Our second concern is that ES interval estimation for ANOVA models has been treated almost
exclusively from a classical perspective. Despite their popularity, classical confidence intervals
(CIs) are often misunderstood and misinterpreted (Hoekstra, Morey, Rouder, & Wagenmakers,
2014; Morey, Hoekstra, Rouder, Lee, & Wagenmakers, 2016). Furthermore, Morey et al. (2016)
demonstrated that current CI procedures for 𝜔2 are particularly problematic, as they can produce
empty intervals and involve post hoc manual truncation at the boundary of the parameter space.
In contrast to the classical CIs, Bayesian credible intervals are more straightforward to interpret
(Wagenmakers, Morey, & Lee, 2016). In addition, credible intervals do not have the anomalies that
beset some of the classical ES intervals for ANOVA designs. Despite their added value, however,
Bayesian methods of ES estimation for ANOVA models have so far received little attention.

In light of these concerns, our goals are twofold. Our primary goal is to show that the theory on
squared multiple correlations 𝜌2—well established for linear regression models—also provides a
unifying framework for ES measures in ANOVA designs. Several ES measures that are commonly
reported in the ANOVA literature (e.g.,𝜔2, 𝜂2, partial𝜔2, and partial 𝜂2) will be shown to be special
cases of 𝜌2. Although the connection between ES measures such as 𝜔2 and 𝜂2 for the ANOVA
model and the squared multiple correlations 𝜌2 for the linear regression model has been noted
before (e.g., Keren & Lewis, 1979; Maxwell, Camp, & Arvey, 1981; Sechrest & Yeaton, 1982; Cohen,
Cohen, West, & Aiken, 2003), little is known about the assumptions that underpin this relation.
We will detail these assumptions and indicate the relation for several commonly used ANOVA
designs, thereby providing a formal basis for the development of ES measures for the ANOVA
model.

Our secondary goal is to estimate the squared multiple correlations using Bayesian meth-
ods. Although the issue of Bayesian estimation of multiple correlations has received considerable
attention in the context of linear regression (see, for instance, Geisser, 1965; Press & Zellner, 1978;
Tiwari, Chib, & Jammalamadaka, 1989; Gross, 2000), it has received almost no attention in the
context of ANOVA models. One notable exception is the work of Gelman and Pardoe (2006),
which focused on hierarchical extensions of the classical ANOVA model (see also Gelman, 2005).
While the approach of Gelman and Pardoe (2006) was based on a sample definition of 𝜌2 (i.e.,
R2), we instead derive the population expressions for 𝜌2. The resulting expressions are found to
be functions of the ANOVA model parameters, such that 𝜌2 can be estimated from the posterior
distribution of the ANOVA model parameters.

Below, we first discuss the general background, followed by a more targeted treatment of four
popular ANOVA designs. We end by presenting two worked examples.

2 GENERAL BACKGROUND

Let (𝑦, xT)T denote a (column) vector of variables with covariance matrix

Σ =
(

Var(𝑦) Cov(𝑦, xT)
Cov(x, 𝑦) Var(x)

)
=
(
Ψ ΔT

Δ Γ

)
. (1)
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We will refer to variable y as a dependent variable and the (vector of) variable(s) x as the inde-
pendent variable(s). Given the covariance matrix 𝚺, we can express the relation between the
dependent variable y and the independent variables x using the squared multiple correlation
coefficient (Tate, 1966; Cohen, 1982; Mudholkar, 2014), as follows:

𝜌2 = 𝜌2
𝑦 x = 1 − |𝚺||Ψ||𝚪| = 1 −

|𝚪| (Ψ − 𝚫T𝚪−1𝚫
)

Ψ|𝚪| = 𝚫T𝚪−1𝚫
Ψ

, (2)

provided that the covariance matrix 𝚪 = Var(x) is nonsingular and that Ψ = Var( y) > 0.
The squared multiple correlation coefficient 𝜌2 is the maximum squared correlation that can
be obtained between a single dependent variable y and any linear combination of the set of
independent variables x (e.g., Anderson, 1958, p. 88).

Similar to most of the ES measures that have been proposed for the ANOVA model, the squared
multiple correlation coefficient 𝜌2, as defined in Equation (2), is a so-called proportional reduction
in error (PRE) measure (Reynolds, 1977). In general, a PRE measure expresses the proportion of
the variance in an outcome y that is attributed to the independent variables x. Here, we treat the
assignment in a design  as a random variable, and we decompose the variance of the dependent
variable as follows:

Var(𝑦) = Var(E(𝑦 ∣ x)) + E(Var(𝑦 ∣ x)). (3)

Because the ANOVA model assumes homoscedasticity, the design affects only the conditional
expectations (means) of the dependent variable y. In other words, Var(E( y ∣ x)) is the variance that
can be attributed to random assignment in the design, and E(Var( y ∣ x)) is the residual variation
that is constant across the cells in the design . As a result, we can reexpress Equation (3) as

𝜎2
Y = 𝜎2


+ 𝜎2

E,

where 𝜎2


= Var(E(𝑦 ∣ x)) denotes the design (or assignment) variance and 𝜎2
E = E(Var(𝑦 ∣ x))

denotes the error variance. In this form, Equation (3) is used in the ANOVA literature to define
PRE measures as

1 −
𝜎2

E

𝜎2
Y
=

𝜎2


𝜎2
Y
=

𝜎2


𝜎2

+ 𝜎2

E
. (4)

ANOVA ES measures defined in this manner include 𝜔2 (Hays, 1963, p. 382), 𝜂2 (Hays, 1963,
p. 547), and the intraclass correlation coefficient 𝜌2

I (Hays, 1963, p. 424). In case of an ANOVA
design with a single fixed factor, both 𝜔2 and 𝜂2 specify or estimate 𝜎2


as the sum of squares that

are attributed uniquely to the fixed factor and 𝜎2
E as the residual variance (see Analysis I). When

the factor is random, 𝜎2


can be taken to be the variance of the random factor to define 𝜌2
I (see

Analysis IV).
The definition of 𝜌2 in Equation (2) is of the same form as Equation (4)—note that 𝜎2

Y = Ψ
and 𝜎2


= 𝚫T𝚪−1𝚫. In order to apply Equation (2) to ANOVA, we have to define the joint model

p( y, x), with x encoding the ANOVA design, from which we can derive 𝚺. To this aim, we first
specify the ANOVA model as an ordinary linear regression model, utilizing dummy variables to
encode the fixed effects (Jennings, 1967; Cohen, 1968). That is, for the fixed effects, we introduce
indicator variables xi, with

xi =

{
1, if subject is in group i
0, if subject is not in group i.

We then have that the ANOVA model is a conditional normal distribution p( y ∣ x) that is of the
same form as that used by Olkin and Tate (1961) to express correlations between discrete and
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continuous variables (see also Tate, 1954, 1966). To complete their model, Olkin and Tate (1961)
specified a categorical (or multinomial) distribution for the indicator variables, that is,

p(x) =
∏

i
𝜋

xi
i , (5)

where 𝜋i expresses the probability that a subject is assigned to a group i. With this multinomial
distribution, we are able to cover many designs. In the derivation of 𝜔2, Hays (1963) assumed
that the probabilities 𝜋i are uniform for every cell in the design, and expressions for 𝜂2 typically
generalize this assumption to incorporate unbalanced designs. To foreshadow our later results,
note that posterior inference on the parameters of the ANOVA model will be unaffected by a
particular choice of model p(x) for the design/indicator variables whenever the design model p(x)
does not depend on the parameters of the ANOVA model.

Before we analyze four common ANOVA designs, we first define two correlation measures
that are closely related to the squared multiple correlation: the semipartial correlation coefficient
(also known as the part correlation coefficient) and the partial correlation coefficient. Suppose
that we wish to express the contribution of some subset xA of the design variables x = {xA, xB}
(i.e., xA ∈ A, xB ∈ B, and  = A × B). The squared semipartial correlation 𝜌2

𝑦 xA|xB
is then

defined as (Cohen, 1982, p. 308)

𝜌2
𝑦 xA|xB

= 𝜌2
𝑦 x − 𝜌2

𝑦 xB
=

𝚫T𝚪−1𝚫 − 𝚫T
B𝚪

−1
B 𝚫B

Ψ
, (6)

where 𝜌2
𝑦 xB

is the squared multiple correlation coefficient between y and the (sub)set xB (i.e., the
correlation obtained by removing any columns and rows in 𝚺 that correspond to the set xA). The
squared semipartial correlation 𝜌2

𝑦 xA|xB
expresses the proportion of the variance in the outcome

y that can be uniquely attributed to the subset xA. It is the population value of the R2-change
statistic that is commonly used in multiple linear regression. Consequently, the squared partial
correlation coefficient is defined as (Cohen, 1982, p. 308)

𝜌2
𝑦 xA·xB

=
𝜌2
𝑦 xA|xB

1 − 𝜌2
𝑦 xB

=
𝚫T𝚪−1𝚫 − 𝚫T

B𝚪
−1
B 𝚫B

Ψ − 𝚫T
B𝚪

−1
B 𝚫B

, (7)

where 1 − 𝜌2
𝑦 xB

denotes the proportion of variance in y that is not explained by xB. From this
expression, we see that the squared semipartial correlation 𝜌2

𝑦 xA|xB
expresses the proportion of

the variance that can be attributed to the subset xA after the unique contribution of xB has been
completely removed.

3 ANALYSIS I: AN ANOVA DESIGN WITH ONE FIXED
FACTOR

Consider an ANOVA design with a single fixed factor consisting of n levels, that is,

𝑦 = 𝛽0 +
n∑

i=1
𝛽ixi + 𝜖, 𝜖 ∼  (0, 𝜎2),

where xi is an indicator variable, with

xi =

{
1, if subject is in group i
0, if subject is not in group i
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such that 𝛽0 + 𝛽 i is the expectation of y in group i, and it is assumed that the (residual) variance
𝜎2 is constant within each group. For completeness, we note here that the parameters in the con-
ditional model p( y ∣ x) are not identified due to the use of dummy variables for the conditions. To
identify the model parameters, we impose the sum-to-zero constraint 𝛽1 + · · · + 𝛽n = 0. Upon
assuming the multinomial distribution in Equation (5) for the indicator variables, it is then easy
to confirm that we obtain the matrix 𝚺 with the following elements:

Ψ = Var(𝑦) = 𝜎2 +
n∑

i=1
𝜋i(𝛽i − 𝛽)2

Γi𝑗 = Cov(xi, x𝑗) =

{
𝜋i(1 − 𝜋i), if i = 𝑗

−𝜋i𝜋𝑗, if i ≠ 𝑗

Δi = Cov(𝑦, xi) = 𝜋i(𝛽i − 𝛽),

where we have used 𝛽 to denote the weighted average
∑

i𝜋i𝛽i.
For the definition of the squared multiple correlation coefficient in Equation (2), we require

the inverse of

Γ = Var(x) = diag(𝛑) − 𝛑𝛑T, (8)

where 𝛑 = (𝜋1, 𝜋2,…, 𝜋n)T, which is noninvertible due to the constraint
∑

ixi = 1. Without loss
of generality, however, we can omit the contribution of one of the xi's (c.f. Olkin & Tate, 1960). Let
�̃� denote the matrix 𝚪 with the ith row and column removed, and let �̃� denote the vector 𝚫 with
the i entry removed. In the Appendix, we omit the contribution of xn and show that

�̃�T�̃�−1�̃� =
n∑

i=1
𝜋i(𝛽i − 𝛽)2.

Consequently, the expression for the squared multiple correlation coefficient is

𝜌2
𝑦 x =

∑n
i=1 𝜋i(𝛽i − 𝛽)2

𝜎2 +
∑n

i=1 𝜋i(𝛽i − 𝛽)2
, (9)

which is equation (3.12) from Olkin and Tate (1961).
In Equation (9), we see that the multinomial probabilities weigh the individual contributions

from each group. In a balanced design, we assume that the weights (probabilities) are the same
for each group (i.e., 𝜋i = n−1), and in that case, Equation (9) simplifies to

𝜌2
𝑦 x =

1
n

∑n
i=1 𝛽

2
i

𝜎2 + 1
n

∑n
i=1 𝛽

2
i

,

due to the sum-to-zero constraint;
∑

i𝜋i𝛽i = n−1∑
i𝛽i = 0. This is the expression for 𝜔2 given

by Hays (1963, p. 382). Furthermore, replacing the cell probabilities with observed cell propor-
tions gives 𝜂2. Gelman and Pardoe (2006) replace

∑
i𝜋i(𝛽i − 𝛽)2 with the posterior expectation of

1
n−1

∑
i(𝛽i − 𝛽)2 = 1

n−1

∑
i𝛽

2
i , that is, the posterior expectation of the sample variance of the cate-

gory parameters 𝛽 i, which does not conform to an expression based on a multinomial distribution
as the cell weights do not add to one. As a result, the factor contribution can be overestimated for
designs with factors that have a small number of levels.
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4 ANALYSIS II: AN ANOVA DESIGN WITH TWO FIXED
FACTORS

In this section, we analyze an ANOVA design with two fixed factors. First, we consider a model
with the two main effects but without the interaction, as this model is a direct extension of
the single fixed factor discussed in the previous section. Second, we investigate the complete,
full-factorial model that includes both the two main effects as well as the interaction.

4.1 Two main effects model
Consider an ANOVA model with two fixed factors consisting of n1 and n2 levels, respectively, and
no interaction effects, that is,

𝑦 = 𝛽0 +
n1∑

i=1
𝛽1ix1i +

n2∑
𝑗=1

𝛽2𝑗x2𝑗 + 𝜖, 𝜖 ∼  (0, 𝜎2),

where 𝛽0 + 𝛽1i + 𝛽2j is the expectation of y in cell (i, j) of the n1 × n2 design matrix, and xf i are
indicator variables, with

x𝑓 i =

{
1, if subject is in group i of factor 𝑓
0, if subject is not in group i of factor 𝑓,

and it is assumed that the (residual) variance 𝜎2 is constant across all cells. Upon assuming inde-
pendent multinomial distributions for the indicator variables of each factor (i.e., assuming that
the manipulated factors are orthogonal), we obtain the matrix 𝚺 with the following elements:

Ψ = Var(𝑦) = 𝜎2 +
2∑

𝑓=1

n𝑓∑
i=1

𝜋𝑓 i(𝛽𝑓 i − 𝛽𝑓 )2

Γi𝑗 = Cov(x𝑓 i, x𝑓 ′𝑗) =
⎧⎪⎨⎪⎩
𝜋𝑓 i(1 − 𝜋𝑓 i), if i = 𝑗 and 𝑓 = 𝑓 ′

−𝜋𝑓 i𝜋𝑓𝑗, if i ≠ 𝑗 and 𝑓 = 𝑓 ′

0, if 𝑓 ≠ 𝑓 ′

Δ𝑓 i = Cov(𝑦, x𝑓 i) = 𝜋𝑓 i(𝛽𝑓 i − 𝛽𝑓 ),

where we have used 𝛽 f to denote the weighted average
∑

i𝜋𝑓 i𝛽𝑓 i.
To compute the squared multiple correlation coefficient using (2), we require the inverse of

Γ =
(

Cov(x1, x1) Cov(x1, x2)
Cov(x2, x1) Cov(x2, x2)

)
=
(
𝚪1 𝟎
𝟎 𝚪2

)
,

where 𝚪f is the covariance matrix of the indicator variables for factor f as defined in Equation (8).
Since 𝚪 is a block-diagonal matrix, we only require 𝚪−1

1 and 𝚪−1
2 to express 𝚪−1. Using the results

from the Appendix, where �̃�𝑓 denotes the matrix 𝚪f with the final column and row removed, for
f = 1, 2, we obtain

𝜌2
𝑦 x =

∑2
𝑓=1

∑n𝑓

i=1 𝜋𝑓 i(𝛽𝑓 i − 𝛽𝑓 )2

𝜎2 +
∑2

𝑓=1
∑n𝑓

i=1 𝜋𝑓 i(𝛽𝑓 i − 𝛽𝑓 )2
,

which is similar to the single-fixed-factor case that we have analyzed earlier.
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We will now consider the semipartial and partial correlation for the unique contribution of the
first factor after the contribution of the second factor has been partialed out. From the definition
in Equation (6), we readily find the semipartial correlation

𝜌2
𝑦 x1|x2

=
∑n1

i=1 𝜋1i(𝛽1i − 𝛽1)2

𝜎2 +
∑2

𝑓=1
∑n𝑓

i=1 𝜋𝑓 i(𝛽𝑓 i − 𝛽𝑓 )2
,

and we can confirm that 𝜌2
𝑦 x = 𝜌2

𝑦 x1|x2
+ 𝜌2

𝑦 x2|x1
. Similarly, we can find the partial correlation

𝜌2
𝑦 x1·x2

=
∑n1

i=1 𝜋1i(𝛽1i − 𝛽1)2

𝜎2 +
∑n1

i=1 𝜋1i(𝛽1i − 𝛽1)2
,

which is identical to the expression for the multiple squared correlation in a single-fixed-factor
design.

4.2 Full-factorial model
Next, consider the ANOVA model with both main effects and the interaction, that is,

𝑦 = 𝛽0 +
n1∑

i=1
𝛽1ix1i +

n2∑
𝑗=1

𝛽2𝑗x2𝑗 +
n1∑

i=1

n2∑
𝑗=1

𝛽3i𝑗x3i𝑗 + 𝜖, 𝜖 ∼  (0, 𝜎2),

where 𝛽0 + 𝛽1i + 𝛽2 j + 𝛽3i j is the expectation of y in a cell (i, j) of the n1 × n2 design matrix, and
x3i j are indicator variables, with

x3i𝑗 = x1i × x2𝑗 =

{
1, if subject is in cell (i, 𝑗)
0, if subject is not in cell (i, 𝑗).

To identify the model, we again adopt the sum-to-zero constraint as follows:
n1∑

i=1
𝛽1i =

n2∑
𝑗=1

𝛽2𝑗 =
n1∑

i=1
𝛽3i𝑗 =

n2∑
𝑗=1

𝛽3i𝑗 = 0.

By assuming that the indicator variables encoding the main effects have independent multinomial
distributions for each factor, we find that the indicator variables encoding the interaction effects
also have a multinomial distribution, that is,

p(x3) =
n1∏

i=1

n2∏
𝑗=1

(𝜋1i × 𝜋2𝑗)x3i𝑗 =
n1×n2∏

k=1
𝜋

x3k
3k , (10)

where the latter provides shorthand notation that is useful later on.
With the two-main-effects-only model, we could use the results from the Appendix and omit

a row and column in 𝚪 and 𝚫 for each of the main effects, that is, rows and columns that corre-
spond to x1n1 and x2n2 , to express �̃�T�̃�−1�̃�. This is not the case for the full-factorial design, however,
since even after omitting the rows corresponding to x1n1 and x2n2 (and x3n3 ), the inverse �̃�−1 does
not exist. We can think of two possible solutions to this problem. The first is to remove the con-
tributions of x1n1 and x2n2 altogether, that is, remove a single row and column from both 𝚪1 and
𝚪2, and remove n1 + n2 − 1 rows and columns from 𝚪3. However, as a result of leaving out these
elements from 𝚪, and thus 𝚫, we lose much information about the design. We therefore take a
different approach and use the main effects {x1, x2} in isolation from x3 to express �̃�T�̃�−1�̃�, and
vice versa. We will see that both the main effects and the interaction effects can be obtained with
this approach.
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First, we will study the model implied by only using the indicator variables encoding the
interaction x3 and ignore the {x1, x2} variables. That is, we will first use 𝚪 = Var(x3) and
𝚫 = Cov(x3, y) for𝚺. Second, we will ignore x3 and study the contribution of the main effects using
𝚪 = Var({x1, x2}) and 𝚫 = Cov({x1, x2}, y) for 𝚺. Here, we can isolate the unique contribution
of the main effects. By combining the two approaches, we can subsequently isolate the unique
contributions of main effects and interaction and express these contributions in the form of semi-
partial and partial correlations. Thus, the solution comprises several steps that will be detailed
below.

In the first step, we consider the use of x3 encoding the interaction and ignore the {x1, x2}
variables. It is easy to confirm that for this situation, 𝚺 has the elements

Ψ = Var(𝑦) = 𝜎2 +
n1∑

i=1

n2∑
𝑗=1

𝜋1i𝜋2𝑗(𝛽i𝑗 − 𝛽)2

Γkl = Cov(x3k, x3l) =

{
𝜋3k(1 − 𝜋3k), if k = l
−𝜋3k𝜋3l, if k ≠ l

Δk = Cov(𝑦, x3k) = Cov(𝑦, x3i𝑗) = 𝜋1i𝜋2𝑗(𝛽i𝑗 − 𝛽),

where we have used the shorthand notation from Equation (10), that is, 𝛽 i j to denote 𝛽1i + 𝛽2 j +
𝛽3i j, 𝛽 to denote 𝛽1 + 𝛽2 + 𝛽3, and 𝛽3 to denote the weighted average

∑
i𝑗𝜋i𝑗𝛽3i𝑗 . Since 𝚪 is the

covariance matrix of a single multinomial random variable, we have that (e.g., omitting xn as in
the Appendix)

�̃�T�̃�−1�̃� =
n1∑

i=1

n2∑
𝑗=1

𝜋1i𝜋2𝑗(𝛽1i + 𝛽2𝑗 + 𝛽3i𝑗 − 𝛽)2.

Thus, the squared multiple correlation coefficient can be expressed as

𝜌2
𝑦 x =

∑n1
i=1

∑n2
𝑗=1 𝜋1i𝜋2𝑗(𝛽1i + 𝛽2𝑗 + 𝛽3i𝑗 − 𝛽)2

𝜎2 +
∑n1

i=1
∑n2

𝑗=1 𝜋1i𝜋2𝑗(𝛽1i + 𝛽2𝑗 + 𝛽3i𝑗 − 𝛽)2
,

which, however, does not partition into separate terms for the main effects and the interaction
when the cell probabilities 𝜋i j are not uniform. When the cell probabilities are uniform, that is,
𝜋i𝑗 = 1

n1×n2
, the squared multiple correlation coefficient equals

𝜌2
𝑦 x =

∑n1
i=1 𝛽

2
1i

n1
+

∑n2
𝑗=1 𝛽

2
2𝑗

n2
+

∑n1
i=1

∑n2
𝑗=1 𝛽

2
3i𝑗

n1×n2

𝜎2 +
∑n1

i=1 𝛽
2
1i

n1
+

∑n2
𝑗=1 𝛽

2
2𝑗

n2
+

∑n1
i=1

∑n2
𝑗=1 𝛽

2
3i𝑗

n1×n2

, (11)

which does partition into separate terms for the main effects and the interaction. However, that
the total sum of squares partitions in this manner is insufficient to partial out an effect. We
therefore now turn to the model implied by {x1, x2}.

In the second step, we consider the covariance matrix that is implied by ignoring the indi-
cator variables encoding the interaction and only consider the indicator variables for the main
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effects, that is, {x1, x2}. It is easy to confirm that, for this situation, the covariance matrix 𝚺 has
the elements

Ψ = Var(𝑦) = 𝜎2 +
n1∑

i=1

n2∑
𝑗=1

𝜋3i𝑗(𝛽i𝑗 − 𝛽)2

Γi𝑗 = Cov(x𝑓 i, x𝑓 ′𝑗) =
⎧⎪⎨⎪⎩
𝜋𝑓 i(1 − 𝜋𝑓 i), if i = 𝑗 and 𝑓 = 𝑓 ′

−𝜋𝑓 i𝜋𝑓𝑗, if i ≠ 𝑗 and 𝑓 = 𝑓 ′

0, if 𝑓 ≠ 𝑓 ′

Δ1i = Cov(𝑦, x1i) = 𝜋1i

(
𝛽1i − 𝛽1 +

∑
𝑗

𝜋2𝑗𝛽3i𝑗 − 𝛽3

)

Δ2i = Cov(𝑦, x2i) = 𝜋2i

(
𝛽2i − 𝛽2 +

∑
i
𝜋1i𝛽3i𝑗 − 𝛽3

)
,

where the covariance matrix 𝚪 is identical to the covariance matrix for the two main effects anal-
ysis that we considered before. As a result, we find the squared multiple correlation coefficient,
as follows:

𝜌2
𝑦 {x1, x2}

= 1
Ψ

⎛⎜⎜⎝
n1∑

i=1
𝜋1i

(
𝛽1i − 𝛽1 +

∑
𝑗

𝜋2𝑗𝛽3i𝑗 − 𝛽3

)2

+
n2∑
𝑗=1

𝜋2𝑗

(
𝛽2𝑗 − 𝛽2 +

∑
i
𝜋1i𝛽3i𝑗 − 𝛽3

)2⎞⎟⎟⎠ ,
which does not simplify further in the case of nonuniform cell probabilities 𝝅. Assuming uniform
cell probabilities, that is, 𝜋1i = n−1

1 and 𝜋2𝑗 = n−1
2 , we observe that this expression of the squared

multiple correlation simplifies to

𝜌2
𝑦 {x1, x2}

=

∑n1
i=1 𝛽

2
1i

n1
+

∑n2
𝑗=1 𝛽

2
2𝑗

n2

𝜎2 +
∑n1

i=1 𝛽
2
1i

n1
+

∑n2
𝑗=1 𝛽

2
2𝑗

n2
+

∑n1
i=1

∑n2
𝑗=1 𝛽

2
3i𝑗

n1×n2

,

from which one can also recognize a semipartial correlation, as the contribution of the interaction
effect has been removed from the numerator but not from the denominator.

We can now consider the semipartial and partial correlations that express the contribution of
the first main effect. Since we have seen that 𝜌2

𝑦 {x1, x2}
= 𝜌2

𝑦 {x1, x2}|x3
, we have

𝜌2
𝑦 x1|x2

= 𝜌2
𝑦 {x1, x2}

− 𝜌2
𝑦 x2

= 𝜌2
𝑦 {x1, x2}|x3

− 𝜌2
𝑦 x2|x3

= 𝜌2
𝑦 x1|{x2, x3}

.

As a result, we find the following expression for the squared semipartial correlation for the first
main effect:

𝜌2
𝑦 x1|{x2, x3}

= 1
Ψ

n1∑
i=1

𝜋1i

(
𝛽1i − 𝛽1 +

∑
𝑗

𝜋2𝑗𝛽3i𝑗 − 𝛽3

)2

.

Note that when the cell probabilities are assumed to be uniform, this expression simplifies to

𝜌2
𝑦 x1|{x2, x3}

=

∑n1
i=1 𝛽

2
1i

n1

𝜎2 +
∑n1

i=1 𝛽
2
1i

n1
+

∑n2
𝑗=1 𝛽

2
2𝑗

n2
+

∑n1
i=1

∑n2
𝑗=1 𝛽

2
i𝑗

n1×n2

.
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From here, we can find the squared partial correlation as

𝜌2
𝑦 x1·{x2, x3}

=

∑n1
i=1 𝛽

2
1i

n1

𝜎2 +
∑n1

i=1 𝛽
2
1i

n1

,

which is again simply the expression for the multiple squared correlation in a single-fixed-factor
design.

We have shown how to express the semipartial and partial correlation (ES) measures that
correspond to an ANOVA design with two fixed factors. In particular, we have seen simple expres-
sions for the case with uniform cell probabilities, since, in that case, the total sum of squares 𝜎2



decomposes into distinct terms for the main effects and the interaction (c.f. Equation (11)), that is,

𝜎2

= 𝜎2

A + 𝜎2
B + 𝜎2

A×B,

with the terms denoting the contribution of the main effect from a factor A, factor B, and the
interaction between A and B, respectively. As a result, we see that the semipartial correlation
𝜌2
𝑦 x1|{x2, x3}

expresses the unique contribution of the first factor, that is,

𝜎2
A

𝜎2
E + 𝜎2

A + 𝜎2
B + 𝜎2

A×B
.

For a long time, this expression was proposed as a “partial-𝜔2”/“partial-𝜂2” in the extension of 𝜔2

and 𝜂2 measures for single-factor designs (Kerlinger, 1964; Kennedy, 1970) and consequently used
by statistical software packages such as SPSS (Levine & Hullet, 2002; Pierce et al., 2004). Others
suggested a different expression (e.g., Cohen, 1968, 1973; Keren & Lewis, 1979), that is,

𝜎2
A

𝜎2
E + 𝜎2

A
, (12)

since it “can be shown that in the same way 𝜔2 is a squared multiple correlation (12) is a squared
partial correlation, with the artificial predictor variables designating B and the AB interaction
partialled out” (Keren & Lewis, 1979, p. 123). However, this is true only for the particular case of
uniform cell probabilities (e.g.,𝜔2), since, for the nonuniform case (e.g., 𝜂2), the partial correlation
is found to be ∑

i𝜋1i
(
𝛽1i − 𝛽1 +

∑
𝑗𝜋2𝑗𝛽3i𝑗 − 𝛽3

)2

𝜎2 +
∑

i𝜋1i
(
𝛽1i − 𝛽1 +

∑
𝑗𝜋2𝑗𝛽3i𝑗 − 𝛽3

)2 ,

and it is clear that we cannot completely partial out the interaction. That is, the (semi)partial
measures do not express unique contributions in the nonuniform case.

5 ANALYSIS III: AN ANOVA DESIGN WITH ONE FIXED
FACTOR AND ONE COVARIATE

Consider an ANOVA design with a single fixed factor consisting of n levels and a (set of m)
covariate(s), that is,

𝑦 = 𝛽0 +
n∑

i=1
𝛽1ix1i +

m∑
𝑗=1

𝛽2𝑗x2𝑗 + 𝜖, 𝜖 ∼  (0, 𝜎2),
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where 𝛽0+𝛽1i+
∑m

𝑗=1 𝛽2𝑗x2𝑗 is the expectation of y for a subject in group i with covariate (vector) x2.
As before, we assume that the indicator variables are multinomial random variables and that the
distribution of the indicator variables is independent of that of the covariates, that is, p(x1, x2) =
p(x1)p(x2). For the specification of the covariance matrix, we have to specify the covariance matrix
𝚪2 = Var(x2), which depends on the choice of p(x2). The work of Olkin and Tate (1961) focused
on the case where p(x2) is a multivariate normal that depends on x1.

We consider here the case of a single covariate, which allows us to provide an analytic expres-
sion for the squared correlation coefficient in the general case requiring only that we are able to
specify Var(x2), since it is easy to confirm that the covariance matrix 𝚺 has the elements

Ψ = Var(𝑦) = 𝜎2 +
n1∑

i=1
𝜋1i(𝛽1i − 𝛽1)2 + 𝛽2

2 Var(x2)

Γ1i𝑗 = Cov(x1i, x1𝑗) =

{
𝜋1i(1 − 𝜋1i), if i = 𝑗

−𝜋1i𝜋1𝑗 , if i ≠ 𝑗

Γ12 i· = Cov(x1i, x2) = 0

Γ2 = Var(x2)

Δ1i = Cov(𝑦, x1i) = 𝜋1i(𝛽1i − 𝛽1)

Δ2 = Cov(𝑦, x2) = 𝛽2Var(x2).

If one is willing to assume that the distribution of the covariate is normal with mean 𝜇 and vari-
ance 𝜏2, for instance, then we may replace Var(x2) with 𝜏2. Similarly, one could use the observed
variance.

By assuming that the indicator variables and the covariate(s) are independent, we observe that
the covariance matrix 𝚪 is (block-)diagonal, such that we can apply the results from the Appendix
to obtain

𝜌𝑦 {x1, x2} =
∑n1

i=1 𝜋1i(𝛽1i − 𝛽1)2 + 𝛽2
2𝜏

2

𝜎2 +
∑n1

i=1 𝜋1i(𝛽1i − 𝛽1)2 + 𝛽2
2𝜏

2
.

From here, it is simple to find the semipartial correlation for the covariate as

𝜌𝑦 x2|x1 =
𝛽2

2𝜏
2

𝜎2 +
∑n1

i=1 𝜋1i(𝛽1i − 𝛽1)2 + 𝛽2
2𝜏

2

and, similarly, the partial correlation as

𝜌𝑦 x2·x1 =
𝛽2

2𝜏
2

𝜎2 + 𝛽2
2𝜏

2
.

When more than one covariate is used, it is clear that the expressions above depend on the covari-
ance structure 𝚪2. This is illustrated in the next analysis, where we consider a bivariate normal
distribution for the random effects, which is one specific generalization of the results that we
obtained here.
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6 ANALYSIS IV: AN ANOVA DESIGN WITH ONE FIXED AND
TWO CORRELATED RANDOM FACTORS

Consider an ANOVA design with a single fixed factor of n levels and a (set of m) random effect(s),
that is,

𝑦 = 𝛽0 +
n∑

i=1
𝛽1ix1i +

m∑
𝑗=1

x2𝑗 + 𝜖, 𝜖 ∼  (0, 𝜎2),

where 𝛽0+𝛽1i+
∑m

𝑗=1 x2𝑗 is the mean (expected) value of y for a subject in group i with random effect
(values) x2. In typical applications, it is assumed that the random effects have a (multivariate)
normal distribution with a zero-mean vector (for identification) and covariance matrix 𝚲. We
consider here the situation for two random effects.

We assume that the distribution of the indicator variables for the manipulated factor (x1) is a
multinomial distribution (independent from the random effects) and that the distribution of the
random effects is (bivariate) normal, with covariance matrix

𝚪2 =
(

𝜏2
1 𝜚𝜏1𝜏2

𝜚𝜏1𝜏2 𝜏2
2

)
,

where 𝜚 denotes the correlation between the two random effects. It is easy to confirm that the
covariance matrix 𝚺 has the elements

Ψ = 𝜎2 +
n1∑

i=1
𝜋1i(𝛽1i − 𝛽1)2 + 𝜏2

1 + 𝜏2
2 + 2𝜚𝜏1𝜏2

Γ1i𝑗 = Cov(x1i, x1𝑗) =

{
𝜋1i(1 − 𝜋1i), if i = 𝑗

−𝜋1i𝜋1𝑗 , if i ≠ 𝑗

Γ12 i𝑗 = Cov(x1i, x2𝑗) = 0

Δ1i = Cov(𝑦, x1i) = 𝜋1i(𝛽1i − 𝛽1)

Δ2𝑗 = Cov(𝑦, x2𝑗) = 𝜏2
𝑗 + 𝜚𝜏𝑗𝜏3−𝑗 .

As before, we have assumed that the manipulated factors are independent of other variables, so
that the covariance matrix 𝚪 is block-diagonal. Applying the results from the Appendix to 𝚪1 and
from observing that

𝚪−1
2 = 1

𝜏2
1𝜏

2
2 (1 − 𝜚2)

(
𝜏2

2 −𝜚𝜏1𝜏2
−𝜚𝜏1𝜏2 𝜏2

1

)
,

we find the squared correlation coefficient as follows:

𝜌2
𝑦 x =

∑n1
i=1 𝜋i(𝛽1i − 𝛽1)2 + 𝜏2

1 + 𝜏2
2 + 2𝜚𝜏1𝜏2

𝜎2 +
∑n1

i=1 𝜋i(𝛽1i − 𝛽1)2 + 𝜏2
1 + 𝜏2

2 + 2𝜚𝜏1𝜏2
,

which explicitly uses the covariance between the random effects.
We can now consider semipartial and partial correlations for the first random effect. The semi-

partial correlation (i.e., removing the contribution of the fixed factor and the second random
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effect) describing the contribution of the first random effect is equal to

𝜌2
𝑦 x21|{x1, x22}

=
(1 − 𝜚2)𝜏2

1

𝜎2 +
∑n1

i=1 𝜋i(𝛽1i − 𝛽1)2 + 𝜏2
1 + 𝜏2

2 + 2𝜚𝜏1𝜏2
,

which was to be expected, as (1− 𝜚2)𝜏2
1 is the variance of x21 after conditioning on x22. That is, the

partial correlation coefficient

𝜌2
𝑦 x21·{x1, x22}

=
(1 − 𝜚2)𝜏2

1

𝜎2 + (1 − 𝜚2)𝜏2
1

is the intraclass correlation coefficient (Hays, 1963, p. 424).

7 BAYESIAN INFERENCE ON 𝜌2

The correlation coefficients discussed in this paper are functions of the parameters from the
correlation model

p(𝑦, x ∣ 𝜷, 𝜎, 𝛌) = p(𝑦 |x, 𝜷, 𝜎)p(x |𝛌),
where p( y | x,𝜷, 𝜎) denotes the ANOVA model that depends on cell means 𝜷 and the residual vari-
ance 𝜎2, and p(x |𝝀) is the distribution that we assume for the design variables and depends on the
parameter vector 𝝀 (e.g., cell probabilities 𝝅 and the population parameters of any random effects
or covariates). By assigning prior probabilities p(𝜷, 𝜎) and p(𝝀) independently to the parameters
{𝜷, 𝜎} and 𝝀, we observe that conditional upon the observed data X and Y, the parameters {𝜷, 𝜎}
and 𝝀 are conditionally independent, that is,

p(𝜷, 𝜎, 𝛌 |X, Y) = p(𝜷, 𝜎 |X, Y)p(𝛌 |X).

This factorization confirms that posterior inference on {𝜷, 𝜎} is unaffected by a specific choice of
model p(x|𝝀).

Posterior inference on the correlation coefficients proceeds by simulation: Generate 𝜷∗ and
𝜎∗ as a sample from p(𝜷, 𝜎 |X,Y) and 𝝀∗ as a sample from p(𝝀 |X). Given a simulated draw for
each parameter of the joint model, that is, 𝜷∗, 𝜎∗, and 𝝀∗, we can compute the correlation mea-
sure of interest. Repeating this procedure many times produces samples from the posterior of the
correlation coefficient that we may use to produce Monte Carlo estimates of quantities of inter-
est, such as posterior medians, means, credible intervals, etc. When the prior distributions p(𝜷, 𝜎)
and p(𝝀) are proper probability distributions, one can evaluate the prior distribution on the cor-
relation measure in a similar way: Generate 𝜷∗, 𝜎∗, and 𝝀∗ from the prior distributions and use
these values to compute the correlation measure as a sample from the prior.

Further elaboration of the design model and its parameter 𝝀 offers an interesting avenue
for further study, for instance, in the case of targeted, unbalanced, or multistage experiments.
However, in regular experimental analyses, we are usually not interested in 𝝀 (except perhaps
in the case of random effects), and we can simply use the observed values (i.e., cell proportions,
means, and covariances of the covariates). We therefore only require draws from the posterior
distributions of the ANOVA model parameters {𝜷, 𝜎}. Procedures to sample from these pos-
terior distributions are described in many publications (see, for instance, Gelman et al., 2014;
Gelman, 2005) and oftentimes use Markov chain Monte Carlo methods. A convenient tool is the
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BayesFactor package that is available for GNU-R and works for many of the commonly used
ANOVA designs (Morey & Rouder, 2015).

7.1 Example I: Incorporating prior information in a single-fixed-factor
design
To illustrate the use of our approach to 𝜌2

𝑦 x, we consider data from an experiment performed by
Gibson, Losee, and Vitiello (2014), which was part of a special issue “Replications of important
results in social psychology” (Nosek & Lakens, 2013, 2014). In this experiment, Gibson et al. (2014)
attempted to replicate the results of Shih, Pittinsky, and Ambady (1999) on stereotype susceptibility.
Shih et al. (1999) had investigated the performance of Asian American women on a math test
after the women had been surreptitiously attented to either their Asian identity (i.e., high maths
ability stereotype), or their female identity (i.e., low maths ability stereotype), or have not been
primed as such (control condition). The original results of Shih et al. (1999) suggested a relation
between stereotype priming and maths performance: Subjects in the Asian identity condition
outperformed subjects in the female identity and control conditions, and subjects in the control
group outperformed subjects in the female identity condition.

In their replication attempt, Gibson et al. (2014) collected N = 158 participants: 52 in the
Asian identity condition, 54 in the female identity condition, and 52 in the control condition. (The
data for this example are available at https://osf.io/vnaqq/.) We analyzed the Gibson
data as a single-fixed-factor design using a setup similar to that of Rouder, Morey, Speckman,
and Province (2012), using noninformative Jeffreys priors on 𝛽0 and 𝜎2 and g-priors for 𝛽1, 𝛽2,
and 𝛽3 with the restriction that

∑
i𝛽i = 0, where we use 𝛽1, 𝛽2, and 𝛽3 to refer to the departure

of the overall mean for the Asian identity, female identity, and control conditions, respectively.
For the squared correlation coefficient, we have used expression (9) and simply replaced the cell
probabilities with the observed proportions.

In Table 1, we summarize the posterior distributions of the model parameters and the squared
multiple correlation coefficient in terms of the posterior means, standard deviations, and the 2.5%,
50%, and 97.5% quantiles. Note that there is little variability in the mean departures between the
three groups, indicating that the effect of the manipulation is small. This can also be observed
from the posterior median of 𝜌2 indicating that less than 2% of the total variance is attributed to
the variability between conditions, with a small margin of uncertainty as indicated by the narrow
95% central credible interval that ranges from .001 to .062.

TABLE 1 Posterior summaries for model
parameters and the squared multiple correlation for
Example I

Mean SD 2.5% 50% 95%

𝛽0 0.558 0.019 0.520 0.558 0.595
𝛽1 0.029 0.025 −0.020 0.029 0.079
𝛽2 −0.023 0.025 −0.072 −0.023 0.026
𝛽3 −0.006 0.025 −0.055 −0.006 0.043
𝜎2 0.057 0.007 0.046 0.057 0.071
𝜌2
𝑦 x .019 .017 .001 .014 .062

Note. SD = standard deviation.
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TABLE 2 Posterior summaries for model
parameters and the squared multiple correlation for
Example I using the prior restriction 𝛽2 < 𝛽3 < 𝛽1

Mean SD 2.5% 50% 95%

𝛽0 0.558 0.019 0.521 0.558 0.595
𝛽1 0.045 0.022 0.010 0.043 0.093
𝛽2 −0.040 0.018 −0.080 −0.038 −0.010
𝛽3 −0.006 0.015 −0.037 −0.005 0.024
𝜎2 0.057 0.007 0.046 0.057 0.071
𝜌2
𝑦 x .026 .021 .002 .022 .079

Note. SD = standard deviation.

Note that Gibson et al. (2014) had available prior information from the original experiment of
Shih et al. (1999). In particular, the original results suggested that the Asian identity group out-
performed both the female identity and control groups and that the control group outperformed
the female identity group. This information is easily incorporated into the prior distribution of
the model parameters using the order constraint 𝛽2 < 𝛽3 < 𝛽1. It should be clear that when the
prior constraint aligns with the observed data, we obtain an estimate of 𝜌2 that is at least as high
as the estimate of 𝜌2 obtained without including prior constraints, but we would obtain a lower
estimate when the prior constraint does not align with the observed data.

In Table 2, we show the posterior means, standard deviations, and the 2.5%, 50%, and 97.5%
quantiles for the parameters and the multiple correlation using the prior constraint 𝛽2 < 𝛽3 <

𝛽1. From Table 2, we see that including the prior constraint increased the variability of the group
mean discrepancies, whereas the error variability 𝜎2 remained the same. That is, 𝜌2 increased.
This was to be expected since the posterior results in Table 1 aligned with the hypothesis.

An advantage of a Bayesian approach to interval estimation, as opposed to a classical approach,
is that the intervals and related statistics are derived from the posterior distribution. In Figure 1,
we show histograms of 100,000 posterior samples for 𝜌2, with the top panel showing the poste-
rior distribution of 𝜌2 without the prior constraint and the bottom panel showing the posterior
distribution with the prior constraint. Since the posterior is a probability distribution, we can
ask questions such as: “What is the (posterior) probability that 𝜌2 > 0.05?” From Figure 1, it
should be obvious that this probability is smaller for the estimated posterior distribution shown
in the top panel than in the estimated posterior distribution in the bottom panel. To wit, the prob-
ability that 𝜌2 > .05 equaled approximately 5% for the estimated posterior distribution in the
top panel and approximately 12% for the one shown in the bottom panel. Observe that with the
improper Jeffreys prior on 𝜎2, the prior distribution on 𝜌2

𝑦x is also improper. In fact, it will have all
its mass placed at zero. This would mean that, in this case, the prior probability that 𝜌2

𝑦x > 0.05
is zero.

7.2 Example II: An illustration of 𝜌2-change in a repeated-measures
design
To illustrate the use of the semipartial correlation coefficient as 𝜌2-change (Cohen, 1982), we con-
sider data from Žeželj and Jokić (2014), which was also part of the Social Psychology special issue.
(The data for this example are available at https://osf.io/z5te6/.) Žeželj and Jokić (2014)
aimed at an exact replication of the results from Eyal, Liberman, and Trope (2008), who found
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FIGURE 1 Histogram of 100,000 draws from the posterior distribution of 𝜌2 given the unrestricted model in
the top panel and the order-restricted model in the bottom panel

that “people would judge immoral acts more harshly if presented to them as temporally distant
rather than presented as temporally close” (Žeželj & Jokić, 2014, p. 225). The following experi-
ment was conducted: Subjects were presented with three stories on morally offensive behaviors
(eating one's dead pet, sexual intercourse with sibling, and dusting with the national flag) and
were asked to imagine that the story would either happen the next day (near future) or the next
year (distant future), after which participants were asked to judge the wrongness of these actions.
Žeželj and Jokić (2014) collected data from N = 116 students, which were analyzed using a
mixed-ANOVA design with temporal distance and moral vignettes as between-subject factors,
that is, a 2 × 3 repeated-measures design. We analyzed the data using the BayesFactor pack-
age (Morey & Rouder, 2015), using the main effects of temporal distance (fixed factor 1) and the
moral vignettes (fixed factor 2), and a random participant factor.

Table 3 shows the posterior means, standard deviations, and the 2.5%, 50%, and 97.5% quan-
tiles for the model parameters for this example. From Table 3, we see that there is little variability
for the group mean deviations for the first factor—𝛽11 and 𝛽12—but that there is nonnegligible
variation in the mean deviations for the second factor—𝛽21, 𝛽22, and 𝛽23—and the contribution
of the effect—𝜏2. We will study their contributions, in turn, using semipartial correlations.
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TABLE 3 Posterior summaries for model
parameters for Example II

Mean SD 2.5% 50% 95%

𝛽0 −2.383 0.191 −2.759 −2.383 −2.007
𝛽11 −0.056 0.181 −0.413 −0.055 0.299
𝛽12 0.056 0.181 −0.299 0.055 0.413
𝛽21 −1.535 0.164 −1.855 −1.535 −1.214
𝛽22 −1.416 0.164 −1.736 −1.416 −1.092
𝛽23 2.951 0.164 2.629 2.951 3.273
𝜎2 4.688 0.437 3.907 4.663 5.613
𝜏2 2.630 0.569 1.643 2.584 3.874

Note. SD = standard deviation.

For this example, the squared semipartial correlations are defined as

𝜌2
𝑦 x1|{x2, x3}

=
∑n1

i=1 𝜋1i(𝛽1i − 𝛽1)2

𝜎2 +
∑2

𝑓=1
∑n𝑓

i=1 𝜋𝑓 i(𝛽𝑓 i − 𝛽𝑓 )2 + 𝜏2

𝜌2
𝑦 x2|{x1, x3}

=
∑n2

i=1 𝜋2i(𝛽2i − 𝛽2)2

𝜎2 +
∑2

𝑓=1
∑n𝑓

i=1 𝜋𝑓 i(𝛽𝑓 i − 𝛽𝑓 )2 + 𝜏2

𝜌2
𝑦 x3|{x1, x2}

= 𝜏2

𝜎2 +
∑2

𝑓=1
∑n𝑓

i=1 𝜋𝑓 i(𝛽𝑓 i − 𝛽𝑓 )2 + 𝜏2
,

where 𝜏2 is the variance of the random effect (i.e., subjects). The squared multiple correlation is
defined as the sum of these three semipartial correlations, that is,

𝜌2
𝑦 x = 𝜌2

𝑦 x1|{x2, x3}
+ 𝜌2

𝑦 x2|{x1, x3}
+ 𝜌2

𝑦 x3|{x1, x2}
. (13)

From the posterior samples of the model parameters that we described in Table 3 and using
the observed proportions 𝝅1 = {.491, .509} and 𝛑2 =

{
1
3
,

1
3
,

1
3

}
, we computed the squared

correlation measures.
In Table 4, we summarize the posterior distributions of the squared semipartial correlations

in terms of the posterior means, standard deviations, and the 2.5%, 50%, and 97.5% quantiles. As
can be seen from Table 4 and was argued above, the amount of variation that can be attributed
to the first fixed factor is very small, but the variation that can be uniquely attributed to the sec-
ond fixed factor and the random factor is nonnegligible, with the posterior medians indicating

TABLE 4 Posterior summaries for the squared
semipartial and multiple correlations for
Example II

Mean SD 2.5% 50% 95%

𝜌2
𝑦 x1|{x2 , x3}

.003 .004 .000 .001 .015

𝜌2
𝑦 x2|{x1 , x3}

.373 .033 .308 .374 .437

𝜌2
𝑦 x3|{x1 , x2}

.223 .041 .147 .222 .307

𝜌2
𝑦 x .600 .037 .524 .601 .667

Note. SD = standard deviation.
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FIGURE 2 Histograms of 100,000 draws from the posterior distribution of 𝜌2-change, with the top panel
showing the unique contribution of the first fixed factor (x1), the middle panel showing the joint contribution of
both fixed factors (x1 and x2), and the bottom panel showing the joint contribution of all three factors (x1, x2, and
x3), that is, 𝜌2

𝑦 x

that approximately 0.1%, 37.4%, and 22.2% of the total variance can be uniquely attributed to the
first, second, and random factors, respectively, totaling approximately 60% of the variance being
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explained. While the 95% credible intervals for the semipartial correlations of the second factor
(moral vignettes) and the random participant factor covered more than 10% of the total range,
indicating that we are still uncertain about their exact values, the credible interval of the first fac-
tor (temporal distance) covered less than 2% of the total range, indicating here that we are fairly
certain that temporal distance does not explain much variance.

The unique contributions of each of the three factors are visualized in Figure 2 as a 𝜌2-change,
using 100,000 draws from the posterior distribution of each of the semipartial correlations. That
is, in Figure 2, we show the amount of variance that is uniquely explained by the first fixed factor
in the top panel, by the first and second fixed factors in the middle panel, and, finally, by the
contribution for all three factors combined in the bottom panel.

8 DISCUSSION
In this paper, we have shown that the theory on squared multiple correlation coefficients pro-
vides a useful framework for deriving ES measures for the ANOVA model, and we have analyzed
several aspects that are commonly encountered in experimental designs. This allowed us to detail
some expressions for the correlation coefficients and consequently clarify its underlying assump-
tions. As a result, we have shown that squared correlation measures encompass many of the
existing ES measures that are now used for ANOVA, such as 𝜔2 and 𝜂2, which are found to be spe-
cial cases of the multiple correlation coefficient. Once the correlation expression is obtained, we
note that it is easily evaluated using available software when the parameters of the design model
are assumed fixed. In this manner, posterior interval estimates are simple to compute, which we
have illustrated using two real-data examples. Furthermore, we have shown in our examples how
prior information can be included in the evaluation of the correlation coefficient and illustrated
a Bayesian 𝜌2-change for the ANOVA model.

The analysis of the two-way ANOVA design was complicated by the functional relation
between the indicator variables for the main effects and the indicator variables encoding the inter-
action. We have solved this complication by combining two different approaches: one in which
we only use the indicator variables encoding the interactions and one in which we only use the
indicator variables that correspond to the main effects. In this manner, we were able to partial
out the (unique) contribution of the main effects and the interaction in the particular case of
uniform cell probabilities. Although not explicitly considered here, we believe that this approach
will extend to situations involving more factors and interaction effects and to situations involving
higher-order interactions.
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APPENDIX

ANALYTIC EXPRESSION FOR �̃�T�̃�−1�̃�
Letting �̃� = (𝜋1,… , 𝜋n−1)T and D̃ = diag(�̃�), we write the (n − 1) × (n − 1) matrix �̃� excluding
the contribution of xn as

�̃� = D̃ − �̃��̃�T.

To apply Equation (2), we require the inverse (Sherman & Morrison, 1950), that is,

�̃�−1 = D̃−1 + D̃−1�̃��̃�TD̃−1

1 − �̃�TD̃−1�̃�
= D̃−1 + 𝜋−1

n 𝟏𝟏T
.

It is easy to verify that
�̃� = D̃bT,

where �̃� = Cov(x̃, 𝑦), x̃ = (x1,… , xn−1)T, and b = (b1,… , bn)T with bi = 𝛽i −
∑n

i=1 𝜋i𝛽i = 𝛽i − 𝛽,
such that

�̃�T�̃�−1�̃� = bD̃D̃−1D̃bT + 𝜋−1
n bD̃𝟏𝟏TD̃bT

= bD̃bT + 𝜋−1
n b�̃��̃�TbT

=
n−1∑
i=1

𝜋i(𝛽i − 𝛽)2 + 𝜋−1
n

(n−1∑
i=1

𝜋i(𝛽i − 𝛽)

)2

=
n−1∑
i=1

𝜋i(𝛽i − 𝛽)2 + 𝜋−1
n

(n−1∑
i=1

𝜋i𝛽i −
n−1∑
i=1

𝜋i𝛽

)2

=
n−1∑
i=1

𝜋i(𝛽i − 𝛽)2 + 𝜋−1
n (𝛽 − 𝜋n𝛽n − (1 − 𝜋n)𝛽)2

=
n−1∑
i=1

𝜋i(𝛽i − 𝛽)2 + 𝜋−1
n (𝜋n𝛽 − 𝜋n𝛽n)2

=
n∑

i=1
𝜋i(𝛽i − 𝛽)2.


	Bayesian estimation of explained variance in ANOVA designs
	Abstract
	INTRODUCTION
	GENERAL BACKGROUND
	ANALYSIS I: AN ANOVA DESIGN WITH ONE FIXED FACTOR
	ANALYSIS II: AN ANOVA DESIGN WITH TWO FIXED FACTORS
	Two main effects model
	Full-factorial model

	ANALYSIS III: AN ANOVA DESIGN WITH ONE FIXED FACTOR AND ONE COVARIATE
	ANALYSIS IV: AN ANOVA DESIGN WITH ONE FIXED AND TWO CORRELATED RANDOM FACTORS
	BAYESIAN INFERENCE ON 2
	Example I: Incorporating prior information in a single-fixed-factor design
	Example II: An illustration of 2-change in a repeated-measures design

	DISCUSSION
	References


