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Abstract: Nanotwinned metals exhibit superior mechanical properties due to unique dislocation–twin
boundary interactions. In the present work, we elucidate the microscopic deformation mechanisms
and their correlations with the macroscopic mechanical response of nanotwinned Al containing
inclined twin boundaries under nanoindentation by means of molecular dynamics simulations.
The effect of twin boundary orientation with respect to the indented surface on the nanoindentation
is evaluated. Simulation results reveal that dislocation slip, dislocation–twin boundary interaction,
and twin boundary migration operate in parallel in the plastic deformation of nanotwinned Al.
The inclination angle of twin boundaries with respect to indented surface has a strong influence
on the interaction between individual deformation modes, which in turn leads to the anisotropic
indentation behavior of nanotwinned Al.
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1. Introduction

Aluminum is one of the most widely used key materials for aerospace applications due to its low
density, high strength, high wear resistance, and good workability. In particular, mechanical properties
play a critical role in determining the performance of aluminum-based components and devices.
The nanoindentation technique has been widely used to derive intrinsic mechanical properties, such as
Young’s modulus and hardness, of different types of materials at the micro/nanoscale [1,2].

With the development of hierarchically structured materials, interface engineering has been playing
an important role in tailoring mechanical properties of materials. For instance, nanotwinned metals
containing imbedded twin boundaries (TBs) show extraordinary properties of high electrical conductivity,
high strength, and considerable ductility. While strengthening originates from TB blocking dislocation
motion, ductility results from TB acting as a dislocation source or from TB migration itself [3–6].
For aluminum in particular, Bufford et al. reported a high work-hardening capacity and plasticity in
twinned Al [7].

The alignment of TBs plays a central role in determining the mechanical behavior of twinned
metals. Wei et al. found that the plasticity of twinned metallic nanowires can be dominated by
TB-associated mechanisms by designing the inclination angle of TBs [8]. Stukowski et al. showed that
the dislocation–TB intersection in nanotwinned Cu under uniaxial tension can be altered by the TBs’
orientation with respect to the loading direction [9]. Brown et al. showed that the plasticity in twinned
Cu nanopillars greatly depends on the TBs’ orientation with respect to the loading axis [10]. Zhang et al.
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investigated the effect of the inclination angle on the nanoscratching behavior of nanotwinned copper,
and found a critical inclination angle of 26.6◦ for the lowest yield strength and the highest friction
coefficient [11]. However, there is rather limited work focusing on the effect of the inclination angle of
TBs on the mechanical properties of aluminum.

Therefore, in the present work, we perform molecular dynamics (MD) simulations to investigate
the deformation mechanisms of nanotwinned Al containing inclined TBs under nanoindentation.
The microscopic deformation mechanisms of materials are elucidated and are correlated with the
macroscopic response of nanoindentation. We further investigate the effect of the inclination angle of
TBs with respect to the indented surface on the nanoindentation process.

2. Simulation Method

Figure 1 shows the atomic structures of nanotwinned Al specimens containing differently inclined
TBs. Five inclination angles are considered, as 0◦, 26◦, 45◦, 64◦, and 90◦, respectively. To construct the
TBs with different inclination angles, the twinned specimen containing TBs with an inclination angle of
0◦ is first constructed by periodically changing the atomic arrangement of a single crystalline specimen
along the (111) direction. Then, the refereed specimen is rotated with a 2D rotation matrix along the
(110) direction. Each specimen has a dimension of 35 nm in length, 12 nm in height, and 35 nm in width,
respectively. The Al–Al atomic interactions within the aluminum specimen are described using an
embedded atom method (EAM) [12]. The intrinsic stacking fault energy of Al predicted by the utilized
EAM potential is 146 mJ/m2, which agrees well with the experimental values of 120–144 mJ/m2 [13].
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Figure 1. Atomic structures of nanotwinned Al containing differently inclined twin boundaries (TBs).
Inclined angle of TBs: (a) 0◦; (b) 26◦; (c) 45◦; (d) 64◦; and (e) 90◦. Atoms are colored according to their
common neighbor analysis (CNA) values.
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Prior to nanoindentation, the as-constructed specimen is subjected to relaxation through the following
procedures: First conjugate-gradient energy minimization at 0 K, and then dynamic relaxation at 3 K
and under 0 bar for 50 ps using the canonical (constant number of atoms, constant volume and constant
temperature, NVT) ensemble. After reaching the equilibrium configuration, the specimen is subjected
to nanoindentation using a spherical indenter. The indenter with a radius of 4 nm is modeled by a
strong repulsive potential [14]. Nanoindentation is performed in a displacement-controlled mode,
that is, the indenter penetrates the specimen surface with a constant velocity of 20 m/s until it reaches
a predetermined indentation depth of 2 nm. The common neighbor analysis (CNA) is utilized to
distinguish types of lattice defects [15]. The coloring scheme is as follows: Green stands for face-centered
cubic (FCC) atoms, red for hexagonal closed packed (HCP) atoms, and gray for free surface and dislocation
cores. All the MD simulations are performed using the Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) code with an integration step of 1 fs [16]. Ovito is utilized to visualize MD data
and generate MD snapshots [17].

3. Results and Discussion

3.1. Deformation Mechanisms

To obtain the fundamental deformation mechanisms of twinned Al, MD simulation of
nanoindentation on the twinned Al with an inclination angle of 0◦ is first performed. Figure 2
plots the force–displacement curve obtained, which shows that the nanoindentation can be categorized
into two stages, as elastic deformation and plastic deformation, respectively. Specifically, Figure 2
shows that the transition from elastic stage to plastic stage is accompanied with a rapid decrease of
indentation force, which is corresponding to the pop-in phenomenon observed in the load-controlled
nanoindentation tests.
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Figure 2. Force–displacement curve of twinned Al with an inclination angle of 0◦ under nanoindentation.

Figure 3 presents MD snapshots of the twinned Al with an inclination angle of 0◦ at different
displacements. It is seen from Figure 2 that there is a rapid increase of indentation force in the elastic
stage. Figure 3a shows that, at a displacement of 0.72 nm, the free surface in contact with the indenter
is curved, but there is no internal defect generated, indicating that the material is undergoing pure
elastic deformation. Upon further advancement of the indenter, a dynamic inspection of deformation
behavior shows that the force drop shown in Figure 2 is caused by the emission of dislocations from
surface in contact with the indenter. After nucleation, dislocation glides on the (111) slip planes along
the (110) slip directions. The avalanche of dislocations releases the strain energy accumulated in
the elastic stage, which leads to the force drop. However, the subsequent sliding of dislocations is
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hindered by the TBs. Figure 3b shows that, at a displacement of 0.88 nm, there is an intersection of
lattice dislocations with the horizontal TB. Consequently, the TB is divided into three sections that are
connected by twinning partial dislocations, that is, TB migration occurs.
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Figure 3. Cross-sectional views of twinned Al with an inclination angle of 0◦ under different
displacements. Displacement: (a) 0.72 nm; (b) 0.88 nm; (c) 1.12 nm; and (d) 2.0 nm. Atoms are
colored according to their CNA values.

Figure 4a further presents the instantaneous zoom view of the dislocation–TB interaction at
a displacement of 0.88 nm. It is found from Figure 4a that only a portion of TB is migrated
to the distance of an atomic layer, and the dislocations are confined within the twin lamellae.
The confinement of dislocations by TBs leads to work hardening of the indented material, which is
accompanied by the increase of indentation force. Upon further indentation, fresh dislocations are
successively nucleated to accommodate the plastic strain induced by the advancement of the indenter.
The fluctuation events shown in the force–displacement curve are associated with the successive
nucleation events of dislocations. However, dislocation motions are still confined to the first twin
lamellae. Furthermore, there are more pronounced interactions between dislocation and TB, as shown
in Figure 3c. Figure 4b presents the instantaneous zoom view of the dislocation–TB interaction at a
displacement of 1.6 nm. While considerable dislocations in the twin lamellae exist, dislocations are
mainly inclined to the TB that is parallel to the free surface. Consequently, multiple TB migrations
occur. Figure 3d shows that after the completion of nanoindentation, dislocation density is significantly
decreased due to the absorption of dislocations by TBs, and dislocations are completely confined
within the twin lamellae. Figure 3d also demonstrates that the migrated TB segments are not recovered.
The above results indicate that the plastic deformation of twinned Al under nanoindentation is
governed by dislocation slip, dislocation–TB interaction, and TB migration in parallel. A previous
study indicated that the mechanical response and dislocation motion in bicrystal Al containing TBs
under nanoimprinting are not strongly influenced by the presence of TBs [18].
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3.2. Influence of Inclination Angles

MD simulations of nanoindentation on twinned Al with differently inclined TBs are also
performed to investigate the influence of the inclination angle on the nanoindentation response.
Figure 5 plots the force–displacement curves during nanoindentation for different inclination angles.
It is seen that for each inclination angle, the variation of indentation force has similar characteristics:
It first increases rapidly in the elastic deformation, then drops at the elastic–plastic transition,
and then finally increases with fluctuations in the plastic deformation. We note that the force drop
phenomenon is not equally pronounced for different inclination angles, due to intrinsically different
crystallographic orientations. However, the force–displacement curves for the inclination angle of
0◦ show a higher slope than those for the other four angles, indicating a higher Young’s modulus of
the twinned Al with an inclination angle of 0◦. For the other four inclination angles, although the
force–displacement curves in the elastic deformation have approximately the same slopes, the critical
displacement and associated critical force for the elastic–plastic transition are different for different
inclination angles, as demonstrated in Table 1. Specifically, the inclination angle of 45◦ has the
highest critical displacement and critical force, followed by 26◦, 64◦, 0◦, and 90◦. After yielding,
the difference in the force–displacement curves for different inclination angles is reduced due to
complex deformation behavior.
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Figure 5. Force–displacement curves of twinned Al containing TBs with different inclination angles
under nanoindentation.

Table 1. Critical force and displacement for different inclination angles.

Inclination Angle Critical Force (nN) Critical Displacement (nm)

0◦ 326.5 0.76
26◦ 348.3 0.96
45◦ 380.8 1.06
64◦ 327.1 0.91
90◦ 209.0 0.70

Figure 6 presents the cross-sectional views of twinned Al with different inclination angles after
nanoindentation. Figure 7 further presents defect structures of twinned Al with different inclination
angles after nanoindentation. As with the inclination angle of 0◦, TBs act as barriers for dislocation
motions, which also leads to TB migrations. However, the confinement of dislocation within twin
lamellas is different for different inclination angles. For the inclination angle of 90◦, there are lattice
dislocations gliding parallel to TBs, in addition to inclined dislocations. However, only inclined
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dislocations are observed for the other inclination angles. Consequently, TB migration is more
pronounced for the inclination angle of 90◦ than for the other four inclination angles. For the inclination
angles except for 0◦ in particular, there are lattice dislocations emitting from the migrated position of
TBs, indicating that TB acts as a dislocation source, which means dislocation activity is easier to be
triggered. This also indicates the lower strength of twinned Al with an inclination angle different from
90◦. The above results also indicate that the mean work hardening rate in the plastic regime increases
with increasing inclination angle of TBs.
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Figure 7. Representative dislocation–TB interactions. Inclination angle: (a) 26◦; (b) 45◦; (c) 64◦;
and (d) 90◦. Atoms are colored according to their CNA values, and perfect FCC atoms are not shown.

Figure 8 presents the surface morphology of the indented twinned Al after the completion of
nanoindentation. It is seen that the surface pile-up around the residual impression is significantly
different for different inclination angles. The surface pile-up is most pronounced for the inclination
angle of 45◦, followed by 26◦, 64◦, 0◦, and 90◦. It is indicated that the surface pile-up behavior
is closely associated with the strength of the twinned material, which is determined by the
alignment of TBs. The propagation direction of surface pile-up is also different for different twinned
materials. While there are intersections of TBs with free surface for the inclination angle of 26◦,
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45◦, 64◦, and 90◦, the propagation of displaced materials is mainly along the intersection direction.
However, surface pile-up for the inclination angle of 0◦ is different.
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4. Conclusions

In summary, we performed MD simulations to investigate the fundamental deformation
mechanisms of nanotwinned Al containing inclined TBs under spherical nanoindentation. It was
found that the plastic deformation of nanotwinned Al is dominated by individual deformation
modes of dislocation slip, dislocation–TB interaction, and TB migration, the interaction between
which is strongly dependent on the inclination angle of TBs with respect to the indented surface.
The mean work hardening rate in the plastic regime increases with increasing inclination angle of TBs.
Specifically, for an inclination angle of 45◦, the critical force and displacement for the elastic–plastic
transition are the highest, and the surface pile-up morphology is the most pronounced.

Author Contributions: Y.L., Y.D. and J.Z. conceived the project, Y.L. and J.Z. performed the simulations, Y.D. and
J.Z. wrote the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (51875119 and 61473096),
National Key R&D Program of China (2016YFB0501203), the Fundamental Research Funds for the Central
Universities, and the Science Challenge Project (No. TZ2018006-0201-02).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pharr, G.M.; Oliver, W.C. Measurement of thin film mechanical properties using nanoindentation. MRS Bull.
1992, 17, 28–33. [CrossRef]

2. Saha, R.; Nix, W.D. Effects of the substrate on the determination of thin film mechanical properties by
nanoindentation. Acta Mater. 2002, 50, 23–38. [CrossRef]

3. Lu, L.; Chen, X.; Huang, X.; Lu, K. Revealing the maximum strength in nanotwinned copper. Science 2009, 323,
607–610. [CrossRef] [PubMed]

4. Li, X.Y.; Wei, Y.J.; Lu, L.; Lu, K.; Gao, H.J. Dislocation nucleation governed softening and maximum strength
in nano-twinned metals. Nature 2010, 464, 877–880. [CrossRef] [PubMed]

5. Pan, Q.S.; Zhou, H.F.; Lu, Q.H.; Gao, H.J.; Lu, L. History-independent cyclic response of nanotwinned metals.
Nature 2017, 551, 214–217. [CrossRef] [PubMed]

6. Sun, L.G.; He, X.Q.; Lu, J. Nanotwinned and hierarchical nanotwinned metals: a review of experimental,
computational and theoretical efforts. npj Comput. Mater. 2018, 4, 6. [CrossRef]

7. Bufford, D.; Liu, Y.; Wang, J.; Wang, H.; Zhang, X. In situ nanoindentation study on plasticity and work
hardening in aluminium with incoherent twin boundaries. Nat. Commun. 2014, 5, 4864. [CrossRef] [PubMed]

8. Wei, Y.J. Anisotropic size effect in strength in coherent nanowires with tilted twins. Phys. Rev. B 2011, 84, 014107.
[CrossRef]

9. Stukowski, A.; Albe, K.; Farkas, D. Nanotwinned fcc metals: Strengthening versus softening mechanisms.
Phys. Rev. B 2010, 82, 224103. [CrossRef]

10. Brown, J.A.; Ghoniem, N.M. Reversible–irreversible plasticity transition in twinned copper nanopillars.
Acta Mater. 2010, 28, 886–894. [CrossRef]

11. Zhang, J.J.; Hartmaier, A.; Wei, Y.J.; Yan, Y.D.; Sun, T. Mechanisms of anisotropic friction in nanotwinned Cu
revealed by atomistic simulations. Model. Simul. Mater. Sci. Eng. 2013, 21, 065001. [CrossRef]

http://dx.doi.org/10.1557/S0883769400041634
http://dx.doi.org/10.1016/S1359-6454(01)00328-7
http://dx.doi.org/10.1126/science.1167641
http://www.ncbi.nlm.nih.gov/pubmed/19179523
http://dx.doi.org/10.1038/nature08929
http://www.ncbi.nlm.nih.gov/pubmed/20376146
http://dx.doi.org/10.1038/nature24266
http://www.ncbi.nlm.nih.gov/pubmed/29088707
http://dx.doi.org/10.1038/s41524-018-0062-2
http://dx.doi.org/10.1038/ncomms5864
http://www.ncbi.nlm.nih.gov/pubmed/25204688
http://dx.doi.org/10.1103/PhysRevB.84.014107
http://dx.doi.org/10.1103/PhysRevB.82.224103
http://dx.doi.org/10.1016/j.actamat.2009.10.003
http://dx.doi.org/10.1088/0965-0393/21/6/065001


Nanomaterials 2018, 8, 695 8 of 8

12. Mishin, Y.; Farkas, D.; Mehl, M.J. Papaconstantopoulos, D.A. Interatomic potentials for monoatomic metals
from experimental data and ab initio calculations. Phys. Rev. B 1999, 59, 3393. [CrossRef]

13. Rautioaho, R.H. An interatomic pair potential for aluminium calculation of stacking fault energy. Phys. Status
Solidi B 1982, 112, 83–89. [CrossRef]

14. Kelchner, C.L.; Plimpton, S.J.; Hamilton, J.C. Dislocation nucleation and defect structure during surface
indentation. Phys. Rev. B 1998, 58, 11085–11088. [CrossRef]

15. Honeycutt, J.D.; Andersen, H.C. Molecular dynamics study of melting and freezing of small Lennard-Jones
clusters. J. Phys. Chem. 1987, 91, 4950–4963. [CrossRef]

16. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.
[CrossRef]

17. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization
Tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 015012. [CrossRef]

18. He, Y.S.; Sun, T.; Yuan, Y.; Zhang, J.J.; Yan, Y.D. Molecular dynamics study of the nanoimprint process on
bi-crystal Al thin films with twin boundaries. Microelectron. Eng. 2012, 95, 116–120. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevB.59.3393
http://dx.doi.org/10.1002/pssb.2221120108
http://dx.doi.org/10.1103/PhysRevB.58.11085
http://dx.doi.org/10.1021/j100303a014
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1088/0965-0393/18/1/015012
http://dx.doi.org/10.1016/j.mee.2012.02.033
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Simulation Method 
	Results and Discussion 
	Deformation Mechanisms 
	Influence of Inclination Angles 

	Conclusions 
	References

