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Abstract

Sighted animals extract motion information from visual scenes by processing spatiotemporal 

patterns of light falling on the retina. The dominant models for motion estimation exploit intensity 

correlations only between pairs of points in space and time. Moving natural scenes, however, 

contain more complex correlations. Here we show that fly and human visual systems encode the 

combined direction and contrast polarity of moving edges using triple correlations that enhance 

motion estimation in natural environments. Both species extract triple correlations with neural 

substrates tuned for light or dark edges, and sensitivity to specific triple correlations is retained 

even as light and dark edge motion signals are combined. Thus, both species separately process 

light and dark image contrasts to capture motion signatures that can improve estimation accuracy. 

This striking convergence argues that statistical structures in natural scenes have profoundly 

affected visual processing, driving a common computational strategy over 500 million years of 

evolution.

Introduction

The statistical distribution of light intensities across space is a core feature of any 

environment1–3. These spatial distributions can be sampled over time to extract information 

about visual motion, a critical behavioral cue for many animals. The dominant 

computational models of motion processing estimate motion by correlating light intensity 
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between pairs of points separated in space and time or, equivalently, by measuring local 

motion energy4,5. These pair correlations provide information about the direction and speed 

of moving edges. However, natural scenes contain additional information about motion that 

these signals do not capture6–8. For example, the contrast polarity, being either dark or light, 

is also a fundamental feature of moving edges yet is explicitly discarded by pair correlations. 

Here we show that both the fly and human visual systems take advantage of this additional 

information, available in specific correlations between three points in space and time, to 

detect motion.

There are two dominant models of motion perception. The first of these is the Hassenstein-

Reichardt Correlator (HRC), which computes spatiotemporal correlations directly by 

multiplying local contrast signals at two points in space, one at a later time than the other. 

These products are then summed in anti-symmetric fashion to produce an average signal 

whose sign and amplitude indicates the direction and magnitude of motion (Fig. S1)4. 

Motion energy, a second correlational model, begins with linear, oriented spatiotemporal 

receptive fields that are sensitive to particular directions of motion (Fig. S1)5. Subsequent 

circuit operations square and then sum these responses to produce a motion signal. Based on 

neural and behavioral measurements, motion energy models have been favored in 

vertebrates9, while HRC models have been favored in invertebrates10. Nonetheless, the two 

models are sometimes mathematically equivalent5,11, and both ultimately compute 

correlations only between pairs of points in space and time (see SI).

Experiments using a variety of artificial stimuli have demonstrated that both vertebrates and 

invertebrates can detect motion even when there are no systematic correlations in intensity 

between pairs of points12–16. An optimal motion estimator would incorporate prior statistical 

information about the environment and its motion, and would compute many types of 

stimulus correlations to take advantage of higher-order statistics in moving natural scenes6. 

In particular, analysis of optimal estimators suggests that natural luminance asymmetries2,17 

would allow animals to estimate motion using triple correlations6. Here we show that two 

very different visual systems, those of flies and humans, employ triple correlations to 

estimate motion in a manner that distinguishes light and dark edges. These results suggest 

that the separate processing of dark and light in the visual pathways of many organisms can 

increase the fidelity of motion perception.

Results

To demonstrate how the motion of natural scenes generates spatiotemporal correlations, we 

approximated full-field motion by rigid translations of natural images (Fig. 1ai, 1bi). 

Minimal motion energy and HRC-based models rely exclusively on information extracted 

from pairwise correlations across the image. One simple example of this correlation 

structure is the difference between rightward and leftward correlations (Fig. 1aii). In this 

case, the local correlation, on average, indicated the correct direction of motion (red areas in 

Fig. 1bii), but because of the variability within the image18, this signal also suggested 

leftward motion in some regions (blue areas in Fig. 1bii). In this example, the standard 

deviation of the local motion signal, computed across pixels, was 3.6 times the mean. 

Spatiotemporal averaging can suppress this variability18, but at the expense of resolution.

Clark et al. Page 2

Nat Neurosci. Author manuscript; available in PMC 2014 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Here we consider two triple correlation structures involving three points in space and time, 

which we refer to as diverging (Fig. 1aiii) and converging (Fig. 1aiv). The diverging case 

incorporates two spatial points at the later time (one point diverges into two points), while 

the converging case incorporates two spatial points at the earlier time (two points converge 

onto one point). These two triple correlations maintain the local spatial and temporal 

resolutions of the comparable pair correlation. Like the pairwise estimator, these triple 

correlations were highly variable across the image, but their average signified the direction 

of motion (Fig. 1biii–biv). Importantly, the motion signals provided by these triple 

correlations incompletely overlapped with the motion signals derived from pair correlations 

(Fig. 1bii–biv). Thus, 3-point motion signals provide additional information about motion, 

beyond what can be obtained from the pairwise signal6.

Because the accuracy of motion estimation is scene-dependent, one must determine whether 

motion estimators that capture specific spatiotemporal correlations perform reliably across 

an ensemble of scenes. We used a published natural image database19 to determine how well 

pair and triple correlations can predict image velocity (Fig. 1c–d). We considered motion 

estimators with human-like spatial resolution (see Online Methods, Fig. 1ci) and with 

Drosophila-like spatiotemporal sampling (see Online Methods, Figs. 1di, S1). In both cases, 

we approximated the distribution of image velocities with a Gaussian having zero mean, 

using standard deviations that were 5°/s and 90°/s respectively, comparable to estimated 

natural speeds20,21. The output of local pairwise motion estimators was weakly correlated 

with the image velocity (Fig. 1cii–dii). This correlation was improved by averaging two 

pairwise estimators that survey neighboring spatial points (Fig. 1cii–dii). The diverging and 

converging triple correlations were more weakly correlated with the velocity (Fig. 1ciii–

civ,diii–div), but typically improved motion estimation when summed with the pairwise 

estimate using optimal weighting coefficients (Fig. 1ciii–civ,diii–div). Strikingly, for 

Drosophila-like sampling, the increased accuracy afforded by the converging 3-point motion 

estimator (Fig. 1div) exceeded that afforded by a neighboring pairwise estimator (Fig. 1dii). 

Because these two 3-point estimators sampled the same two spatial and temporal points as 

the pairwise estimator, this improvement is available without sacrificing either spatial or 

temporal precision. Importantly, these triple correlations require asymmetric contrast 

distributions for their functionality6 (Fig. S2), thereby capitalizing on the strong 

asymmetries present in natural contrast distributions that are absent from many artificial 

stimuli (Fig. S2 and S3).

Triple correlations, unlike pair correlations, can encode whether a moving edge is light or 

dark (Fig. 2). Light and dark edges are defined by whether light intensity at a single point in 

space increases (light edge, green in Fig. 2) or decreases (dark edge, violet in Fig. 2) as the 

edge moves across that point in space. The net pairwise correlation motion signal was 

positive when either edge type moved to the right and was negative when either edge type 

moved to the left (Fig. 2a). Because moving light and dark edges induce the same pair 

correlations, the contrast polarity of the moving edge cannot be discerned from pairwise 

correlations alone (see also SI). Conversely, 3-point estimators do capture edge polarity 

information. The diverging 3-point estimator produced a positive signal to rightward-

moving light edges and leftward-moving dark edges, and a negative signal to leftward-
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moving light edges and rightward-moving dark edges (Fig. 2b). Thus, triple correlations 

jointly encode the direction of motion and the contrast polarity of the moving edge. 

Critically, this joint encoding implies that the contrast polarity of each moving edge can be 

deduced in local regions of space from triple correlations once the direction of motion is 

determined. For example, when the motion is rightward, positive diverging triple 

correlations signal the presence of a light edge and negative diverging triple correlations 

signal the presence of a dark edge. We observed similar response patterns in pair and triple 

correlations when we simulated moving edges by translating natural scenes (Fig. 2c). Triple 

correlations are able to improve motion estimates in natural scenes (Fig. 1) precisely 

because in natural scenes, light and dark moving edges generate asymmetric triple 

correlation signals (see SI).

The early insect visual system contains distinct substrates specialized for detecting moving 

light and dark edges22,23. Because triple correlations can improve motion estimation 

accuracy and can discriminate between the motion of light and dark edges, we next 

determined whether flies actually detect these signals. Following previous psychophysical 

approaches14, we constructed “glider” stimuli that enforce positive or negative correlations 

of the same form as the pairwise, diverging, and converging correlations shown in Figure 1 

(Fig. 3a and S4). Importantly, the 3-point “gliders” contained no net 2-point correlations, 

and vice versa. Thus, by construction, these glider stimuli separate the motion information 

contained in 3-point correlations from that specified by 2-point correlations (see Online 

Methods and Fig. S4).

We presented spatially homogeneous glider stimuli on panoramic screens arranged around 

tethered flies. In this apparatus, flies walked on an air-cushioned ball, which was tracked to 

monitor fly turning23,24 (Fig. 3b). Flies respond to visual rotations by turning in the direction 

of motion (the optomotor response), thereby allowing the movement of the ball to provide a 

behavioral measure of the fly’s motion percept25. As predicted by the HRC, flies turned in 

one direction when presented with the positive 2-point correlations and in the opposite 

direction with the negative 2-point correlations (top, Fig. 3c–d)4,23,26. Remarkably, flies also 

turned in response to the diverging and converging 3-point gliders, with responses that 

approached 20% of the 2-point glider response (bottom, Fig. 3c–d). These 3-point glider 

stimuli are, by design, very different from natural motion, as they achieve their correlation 

specificity by averaging out all 2-point correlations, whereas natural motion contains both 2-

point and 3-point correlations (Fig. 1). As with the 2-point stimuli, positive and negative 

correlations in 3-point gliders evoked turns in opposite directions. In other words, simply 

inverting the contrast of 3-point glider patterns inverted their perceived directions. Neither 

the canonical HRC nor the motion energy model predict that flies would respond to 3-point 

glider stimuli14 (Fig. 3d, bottom), and a recent modification to the HRC27 also does not 

predict the measured responses (Figure S4d). This behavioral response was not a generic 

consequence of arbitrary triple correlations in the stimulus, as flies responded only weakly 

to several other glider stimuli (Fig. S5).

Previous studies demonstrate that the disruption of large monopolar cell (LMC) function 

causes selective behavioral deficits in response to moving light or dark edges22–24,28. We 

therefore determined how the disruption of LMC function affects behavioral responses to 

Clark et al. Page 4

Nat Neurosci. Author manuscript; available in PMC 2014 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the diverging and converging 3-point gliders by genetically suppressing synaptic output 

from the three LMCs (L1–L3) that have been associated with motion detection24 (Fig. 4a). 

Control strains in which LMC function was normal all responded similarly to wild-type flies 

for each glider (Fig 4b). When LMC function was genetically disrupted, responses to 

various glider stimuli increased, decreased, or inverted compared to the controls (Fig 4b).

Triple correlations are differentially associated with moving light and dark edges (Figs. 2b), 

as are the three LMCs (L1–L3) that provide inputs to motion detecting circuits22–24. We 

thus tested whether 3-point correlation responses predicted the relative strength of responses 

to moving light and dark edges both in wild-type flies and in flies with disrupted motion 

pathway inputs. To do this, we used an edge selectivity index corresponding to the 

behavioral response to light edges minus the response to dark edges divided by their 

sum22–24. Each glider forces a particular correlation to occur consistently throughout the 

visual field (see Online Methods). We thus used the observed behavioral response of each 

genotype of flies to a glider stimulus to infer its sensitivity to the associated correlation. We 

then predicted the response of each genotype to moving light and dark edges as the 

appropriately weighted sum of its 2- and 3-point glider responses (Fig. 5), where the 

weighting scheme was determined by counting how often each glider’s correlational element 

appeared in each edge type (Fig. 5a and S6). Remarkably, we observed a high correlation 

between the edge selectivity predicted by the weighted responses to glider stimuli and the 

independent measurements of edge selectivity (Fig. 5b). This striking result suggests that 

these 3-point correlations are integral to edge selectivity in flies.

In the primate visual system, light and dark are differentially processed in a variety of 

ways29. We therefore examined whether humans have separate pathways to process the 

direction of motion for light and dark edges, and whether triple correlations are involved in 

human edge contrast selectivity. Instead of genetic manipulation, as in flies, we used 

differential adaptation. In a first experiment, we measured scalp EEG signals, and in a 

second experiment, we measured behavioral responses. We designed stimuli that 

independently manipulate both edge contrast polarity and motion direction23. In particular, 

we generated two complementary “opposing edge” stimuli in which every light edge moved 

in one direction and every dark edge moved in the opposite direction (Fig. S7, supp. movie 

M1). We denoted the stimulus where light edges moved to the right as “A” and the stimulus 

where light edges moved to the left as “B.” These stimuli were balanced for leftward and 

rightward motion and for positive and negative edge contrast polarity, but they were 

imbalanced in the compound feature that combines motion direction with edge polarity.

Human participants were presented with either stimulus A or stimulus B as an adapting 

stimulus and then probed with a stimulus that rapidly interleaved short segments of A and B, 

designated A′ and B′ (Figs. 6a and S7, supp. movie M2), while EEG signals were recorded 

on the scalp (Fig. 6b). If light and dark edge motions are treated equivalently by neural 

circuitry, then the probe response should be independent of the adapter. If, however, A and 

B differentially adapt some neural population, then they would be expected to have 

complementary effects on the probe response. In particular, as each adapter corresponds to 

one half of the probe, selective adaptation should create a response that coincides with the 

rate of alternation between A′ and B′ in the probe. Since the two halves of the probe were 
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constructed to be 180° out of phase, the differentially adapted responses should also be 180° 

out of phase. Indeed we found that the two adapting stimuli evoked different departures 

from baseline in the EEG signal (Fig. 6c, S7) (n=7 participants), and the measured phase 

difference between them was 179±20° (Fig. 6d, S7).

To compare these adaptation effects with those caused by adaptation to drifting sine-wave 

grating motion30, we computed an adaptation index that quantified the fractional change in 

response due to adapation30 (see Online Methods). Previous experiments using drifting sine-

wave gratings produced an adaptation index of 2.31 ± 0.52 (mean ± SEM). Here we 

observed an adaptation index of 1.71 ± 0.18 (mean ± SEM). The difference between these 

adaptation indices is small and not statistically significant, demonstrating that these adaption 

effects have a similar fractional magnitude. This is remarkable because the adapting stimuli 

in the current experiment contained no net motion, but generated direction-selective 

adaptation. Thus, these experiments demonstrate that the human visual system contains 

neurons that differentially adapt to the motion of light and dark edges, thereby suggesting 

that neural populations are differentially activated by the motion of these two edge types.

We next investigated whether edge-polarity-selective motion pathways in humans were 

associated with behavioral responses to triple stimulus correlations, as in flies. By asking 

participants to classify glider stimuli as moving leftward or rightward, we first reproduced 

previous psychophysical results demonstrating that humans perceive diverging and 

converging 3-point gliders as motion14 (black bars, Figs. 7 and S8c, supp. movie M3). We 

then adapted edge selective motion pathways using opposing edge stimuli as adapters, and 

probed the perception of glider motion. Results were aggregated using the relative 

orientation of the adapter and probe (see Online Methods). These stimuli had no effect on 

converging glider percepts (gray bars Figs. 7 and S8c). However, these opposing edge 

adapters inverted the perceived direction of a specific glider (the negative left-diverging 

glider; Fig. 7).

As opposing edge adapters contain both light and dark edge motion, this adaptation effect 

could emerge from moving light edges, dark edges or both. To resolve this ambiguity, we 

generated two more types of adapting stimuli, each containing either light or dark moving 

edges. These stimuli were not motion balanced, and some participants reported a strong 

motion aftereffect that caused all responses to be in the opposite direction to the adapter 

(n=2 of 9, see Fig. S8d). Thus, we restricted subsequent analyses to those participants whose 

responses were not dominated by motion after-effects (n=7 of 9). Light edge adaptation 

caused perceptual inversion of the same glider affected by opposing edge adaptation (green 

bars, Fig. 7). In contrast, dark edge adaptation had no effect on glider perception (purple 

bars, Fig. 7). Because the light and dark edge adaptors have different effects on glider 

perception, yet contain equivalent net motion signals, this specific pattern of adaptation 

cannot be explained by a simple motion after-effect. Thus, these experiments demonstrate 

that at least one triple correlation is differentially involved in edge polarity-selective motion 

processing in humans.
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Discussion

Our results indicate that both flies and humans extract the motion of light and dark edges via 

distinct processing pathways in a way that allows both organisms to exploit higher-order 

statistical correlations that are present in moving natural scenes. We demonstrated this in the 

detailed pattern of human and fly psychophysical responses, in the profile of human neural 

responses after adaptation, and in the behavioral responses of flies after genetic 

manipulation of underlying input channels. Our analysis of natural scenes showed that triple 

correlations provide information that can improve motion estimates without reducing spatial 

or temporal resolution. Such odd-ordered correlations are also required for discriminating 

between edge polarities. Building on previous work showing that visual input circuits in 

Drosophila are separately specialized for detecting moving light and dark edges22,23, we 

showed that flies respond to triple correlations, and that the pattern of these responses 

predicted edge polarity selectivity across genotypes. Our EEG measurements found a neural 

correlate of polarity specific motion pathways in humans, consistent with previous 

psychophysical observations31,32. In addition, while humans had previously been shown to 

perceive motion in 3-point glider stimuli14, we showed that behavioral responses to specific 

3-point correlation stimuli are differentially adapted by light and dark moving edges. Thus, 

we have shown that higher-order correlations play central roles in distinguishing moving 

edge polarity in both flies and humans.

Models of motion processing that are restricted to pairwise correlations (e.g. the motion 

energy model) have been extremely successful in explaining both perception and neural 

activity in areas V1 and MT9,33,34. Nevertheless, there is also strong evidence that such 

models cannot fully capture motion processing in either primates14,15 or 

invertebrates12,13,35. For example, humans perceive robust motion in certain stimuli lacking 

pairwise correlations (“non-Fourier” motion)15. Moreover, experiments in non-human 

primates have demonstrated that non-Fourier motion can elicit direction-selective behavioral 

responses in the absence of direction-selective neural responses in area MT 36,37. Several 

studies have shown that flies can detect certain non-Fourier motion cues12,13,35. This prior 

work utilized motion stimuli that included quadruple (4-point), or higher even-ordered 

correlations, but lacked triple correlations. As a result, models that account for these effects 

specifically detect quadruple correlations35. Our current results highlight that triple 

correlations are important for estimating motion when luminance distributions are 

asymmetric, as they are in natural scenes38, and for encoding the contrast polarity of a 

moving edge. More generally, our results illustrate how non-Fourier motion cues that seem 

paradoxical in isolation can signify motion in natural environments6.

Relatively minor changes to existing biological models of motion detection can provide 

access to high-order motion correlations. For example, the ON and OFF channels in the 

vertebrate retina treat contrast increments and decrements differently, in terms of both 

amplitude and kinetics29. This asymmetry, were it to be appropriately retained, could 

enhance motion estimation by giving downstream neurons access to higher-order 

correlations. Similarly, the existence of ON direction-selective retinal ganglion cells39 

shows that contrast polarity specific motion signals are present already in the retina. 

Interestingly, our demonstration that triple correlations both improve motion estimation in 
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natural environments and associate with edge polarity specific pathways in fly and human 

visual systems suggests that brains might utilize separate ON and OFF processing channels 

to extract complex signatures of natural motion. Nevertheless, it is also possible that the 

brain explicitly computes higher-order correlations. A variety of machine vision algorithms 

make direct use of higher-order statistics to improve motion estimation7,8,40. Here we 

multiply three signals to build HRC-like models that compute triple correlations. The 

vertebrate motion energy model computes and squares local spatiotemporal frequency 

components to compute the motion signal. By extension, multiplying three frequency 

components can produce the bispectrum, which encodes triple correlations. Thus, simple 

generalizations of standard models that compute pairwise correlation enable the computation 

of triple correlations.

Dark and light have long been considered to be perceptually distinct29. Our work extends 

studies in primates showing that motion processing has a component that retains information 

about edge contrast polarity31,32,41. The distinct processing of light and dark moving edges 

may reflect fundamental differences in the statistics of light and dark objects in the world. 

For example, luminance asymmetries in natural scenes imply that the contrast magnitude of 

light edges can vastly exceed the contrast magnitude of dark edges2,17. More complex 

asymmetries also exist. For instance, light and dark are correlated with distance in natural 

scenes, with near elements tending to be brighter than far ones42. Further, the asymmetry in 

magnitude between light and dark in natural scenes implies that light objects tend to have a 

smaller spatial extent than dark objects. Therefore, light edges tend to be quickly followed 

by dark ones, and processing light and dark edges separately could reflect ethological 

differences in the detection of light and dark edges as the leading or lagging edges of 

moving objects43. Overall, light and dark edges are not symmetric in natural environments, 

and treating each separately can enhance motion estimation.

We have demonstrated that triple correlations can distinguish the motion of light and dark 

edges and can improve the accuracy of motion estimation without sacrificing spatiotemporal 

resolution. Although we have emphasized the utility of triple correlations for wide-field 

motion estimation, these properties might make triple correlations even more critical in 

behavioral contexts where light and dark signals hold special significance or where 

extensive spatiotemporal averaging is not possible. For example insects track the motion of 

dark objects44 and exhibit stereotyped escape responses when presented with looming visual 

stimuli45. The stimuli that elicit these behaviors have strong light-dark edge dependencies: a 

dark object moving across a light background always consists of a dark leading edge and 

light lagging edge43, whereas the edges of looming objects all have the same contrast 

polarity and move in different directions. Object tracking is also distinct from wide-field 

motion estimation in humans15 and could similarly exploit triple correlations to account for 

object polarity. In addition, depth estimation using binocular disparity has many similarities 

with motion estimation and also utilizes luminance polarity information through 

independent disparity-tuned mechanisms for light and dark features46. Interestingly, 

observers better estimate depth when the stimulus contains both light and dark 

information46, possibly reflecting the aforementioned correlation between luminance and 

distance in natural scenes42. Consistent with these observations, neurons in macaque V1 
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show conjoint disparity and luminance tuning that reflects the pattern of environmental 

correlations between brightness and depth47.

There is strong selective pressure to compute accurate motion estimates. The statistics of the 

terrestrial world, combined with biological and physical constraints on neural circuitry48–50, 

shape the computations that underpin these motion estimates, resulting in the possibility of 

similar motion estimation solutions across diverse taxa. The common existence of light and 

dark edge selective pathways in flies and humans, along with the association of triple 

correlation computation with those pathways, points to a deep similarity between fly and 

human motion estimation strategies. Since chordates and arthropods diverged more than 500 

million years ago, and their visual systems have very different architectures, it seems 

unlikely that these similarities are the result of a conserved algorithm derived from a 

common ancestor. Rather, these commonalities could reflect the purposeful use of high-

order statistics to estimate motion, leading flies and humans to converge on remarkably 

similar computational strategies to process this critical cue.

METHODS

Natural Scene Statistics Analysis Methods

Correlation images—We began with natural images from van Hateren’s database (image 

size = 1024×1536 pixels, pixel size = one arc minute)19. We linearly converted each image 

to a contrast scale, Ci = (Ii − I0)/I0, where Ci is the ith pixel contrast, Ii is its intensity, and I0 

is the image’s average pixel intensity. The pair correlation image (Fig. 1bii) was

where Ri denotes the ith pixel of the pair correlation image, C(t) denotes the image at time t, 

summations inside the pixel index denote horizontal shifts, Δ = 10 arcmin, and δ = 30 ms. 

The velocity of motion was v = 5.6°/s, so Ci(t) = Ci+Δ(t + δ). The diverging (Fig. 1biii) and 

converging (Fig. 1biv) triple correlation images were

where Di and Ni denote the ith pixels of the diverging and converging triple correlation 

images. Symmetric color axes saturate one standard deviation from 0.

Quantitative comparison of motion estimators—To consider the accuracy of motion 

estimation strategies built from raw image correlations, we converted images to contrast, 

randomly chose a row from an image, sampled the velocity from a zero-mean Gaussian 

distribution with 5°/s standard deviation, and computed local pair and triple correlations as 

above. We performed 107 simulations for Fig. 1c and S3 and 105 simulations for Fig. S2.
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We also considered strategies with HRC-like spatiotemporal sampling. Since pixels were 

small relative to Drosophila’s sampling, we down-sampled each image to one-degree pixels 

by averaging. We converted images to contrast and then emulated photoreceptor blurring by 

filtering across rows with a Gaussian kernel (FWHM = 5.7°). We considered the central row 

of the filtered image as a one-dimensional image, c(x). Given a randomly chosen image and 

a velocity drawn from a zero-mean Gaussian with 90°/s standard deviation, we modeled 

photoreceptor responses as

where i indexes the photoreceptor, xi is the position of the ith photoreceptor (spaced 5.1° 

apart), T is a causal exponential kernel (timescale = 10 ms), and h is a Gaussian kernel 

(FWHM = 5.7°)51. We applied reflective boundary conditions to generate images that 

covered the visual field. The general HRC is

We took the filters to be

where τ =30 ms23, and g(t) is comparable to LMC responses52. The converging and 

diverging third-order correlators used identical filters:

where Ni(t) and Di(t) denote the converging and diverging 3-point correlators (Fig. S1). We 

performed 4 · 105 simulations (duration = 800 ms, time step = 10 ms) and considered each 

correlator’s final value as its velocity estimate.

We estimated the correlation between each estimator and the velocity using 2-fold cross-

validation. For each data partitioning, we randomly assigned half of the simulations to the 

training set (the rest comprised the test set). We determined the optimal linear coefficients to 

combine motion estimators from the training set and evaluated performances on the test set. 

The percentages in Figs. 1, S2, and S3 are fractional correlation increases, relative to the 

local 2-point correlator. Figs. 1c, S2, and S3 show means and standard deviations across 100 

data partitionings (1000 in Fig. 1d).
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Drosophila Methods

Strains—Drosophila melanogaster were raised and prepared for testing as previously 

described23, grown on molasses-based food in a 12hr-12hr light-dark cycle, and tested for 

behavior during the 4 hours after lights-on or 4 hours before lights-off. Females were 

collected on CO2 1–2 days after eclosion, then tested 48–72 hours later, using cold to 

immobilize them prior to gluing with a UV-cured epoxy. Genotypes are listed in Table S1. 

All inserts were in the isoD1 background53 or backcrossed 5 times into that background.

Fly Behavior—Fly responses to different visual stimuli were measured with an apparatus 

similar to one previously described23, with modified screens24. Three screens, each 3 × 3cm, 

were arranged as adjacent sides of a cube with the fly at the center. They subtended from 

+135° to −135° azimuthally, and from +45° to −45° vertically. Images were relayed from a 

digital light projector to a coherent fiber-optic bundle 23, and then imaged onto back-

projection material that constituted the screens. The angular resolution was identical to the 

previously described rig23; each pixel subtended approximately 1°. The luminance in all 

glider experiments was 6 cd/m2; edge selectivity data was taken at 18 cd/m2. All flies were 

tested at a temperature of 34° C, the restrictive temperature for shibirets 54.

Fly Stimuli—All stimuli were presented with a screen refresh rate of 240 Hz, using custom 

code to generate stimuli23. Pixel intensities were gamma-corrected, and all stimuli were 

drawn on a virtual cylinder about the fly, using software to perform azimuthal angular 

corrections. All stimuli were presented both clockwise and counter-clockwise; the response 

was measured as the difference in response between the two directions. Each glider 

presentation had a different random seed pattern. Each stimulus was presented more than 30 

times, and responses averaged to obtain each fly’s response. Presented means and SEMs 

were computed for the tested flies from each fly’s average response to each stimulus.

Binary glider stimuli were created in real time as described in Constructing Gliders (below) 

and in their original publication14. Glider stimuli lasted for 1 second, and were interleaved 

with 0.5 s periods of uncorrelated updates. All glider pixel updates took place at 40 Hz. The 

correlations were 1-dimensional, so that each ‘pixel’ subtended 5° horizontally and the 

entire extent vertically. The reported response is the integral of the response from 0.5 s to 1 s 

after stimulus onset. Non-responding flies were excluded from the analysis by requiring that 

flies exceed a threshold response to at least one of the glider stimuli. That threshold was set 

at 30°/s during the second 0.5 seconds of the glider stimulus. WT flies respond to the 

positive parity, 2-point glider with turning rates of 140 ± 50°/s (mean±std), so that this 

threshold excluded very few flies. In most genotypes, including WT, this procedure 

excluded no flies at all; it excluded 1 of 20 flies of genotype L1/shits and 2 of 19 of genotype 

L2+L3/shits. Among three sicklier genotypes, it excluded 5 of 27 (L3/shits), 9 of 23 (L3/+), 

and 9 of 25 (L2/+). Inclusion of these non-responding flies tended to bring all responses 

towards 0 and to add variability to the predicted edge selectivity, due to the small 

denominator in the normalization procedure (see below).

Individual light and dark edge stimuli were created, presented, and analyzed as previously 

described23.
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Fly Metrics & Statistics—The glider fractional response was computed for each 

genotype to account for differences in general health, which created variability in the 

strength of all turning responses. Within a given genotype, all flies’ 2- and 3-point stimulus-

induced rotations were computed; then each average was divided by the genotype’s mean 

response to the 2-point, parity +1 stimulus to compute the response as a fraction of the 

genotype’s 2-point response.

Edge selectivity (Figure 5) was defined as (Xl − Xd)/(Xl + Xd), where Xl is the experimental 

light edge response and Xd is the experimental dark edge response. When either Xl or Xd 

averages to close to zero, instances of this metric can become greater than 1 or less than −1, 

a property that accounts for the error bars overlapping ±1 in Figure 5. Xl and Xd were 

directly computed for the light and dark edge stimuli by integrating the evoked turning 

response23. We generated predictions for Xl and Xd, denoted X̂
l and X̂

d, from the 

experimental responses to each glider,

where the linear coefficients correspond to the components of each correlation in the edge 

type (Fig. 5a and S6), XR+/XR− are the responses to the positive/negative parity 2-point 

gliders, XD+/XD− are the responses to the positive/negative parity diverging 3-point gliders, 

and XN+/XN− are the responses to the positive/negative parity converging 3-point gliders. 

The glider predicted edge selectivity was (X̂
l − X̂

d)/(X̂
l + X̂

d).

Throughout, the statistical significance of differences were judged by a 2-tailed Student’s t-

test between experimental and control groups, or between the experiment and null 

hypothesis for WT data. Significance is reported as the maximum p-value relative to the 2 

controls. We did not assess whether the data was normally distributed. We did not use 

statistical methods to predetermine our sample sizes, but they are comparable to those in the 

literature23,24,26,28.

Simulated EMD responses to glider stimuli—Wild-type HRC and ON/OFF model 

motion detector responses to various gliders (Figs. 3d and S4d) were simulated in Matlab 

(Natick, MA). The WT HRC parameters were taken directly from a recent study23, while the 

model parameters for the ON/OFF model were taken from its publication27. Simulations 

were run on a 1-dimensional array of 61 photoreceptors, with spacing of 5.1° and Gaussian 

acceptance angle of 5.7° (FWHM)55. Spatial resolution of the simulation was 1°, and the 

simulation ran in 1ms time steps. Means and standard deviations in figures were computed 

from 25 instantiations of the gliders. Responses to gliders were computed as the mean 

response over 2 seconds, excluding an initial second to discard transients. In the case of the 

ON/OFF model, the response was the mean in the preferred direction minus the mean in the 

null direction.
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Human EEG Methods

Subjects—Informed consent was obtained from the 7 subjects (4 male, 3 female, ages 24–

44 years), who participated in the experiments under protocols approved by the Institutional 

Review Board of Stanford University. We did not use statistical methods to predetermine 

our sample sizes, but they are comparable to those in the literature30.

Stimulus generation—Stimulus generation and signal analysis were performed by in-

house software, running on a Macintosh G4 platform. Stimuli were presented in a dark and 

quiet room on a calibrated CRT monitor at a resolution of 800 × 600 pixels viewed from 125 

cm (full-width of 18.0°, full-height of 13.6°), with a 72-Hz vertical refresh rate.

There were two types of adapting stimuli. Both consisted of a 2° period vertical opposing 

edge presented at 6 Hz (resulting in a velocity of 12°/s) with a mean luminance of 71.5 

cd/m2 and a 97% Michelson contrast. The difference between adapting stimuli was in the 

motion direction of the bright and dark edges. The probe stimulus comprised a 4° period 

vertical opposing edge presented at 3 Hz (resulting in a velocity identical to the adapter of 

12°/s) and was identical for all three conditions (no adaptation, adapter type A, adapter type 

B). The adapting stimulus was viewed for 20 seconds. Immediately after the adaptation the 

probe stimulus was displayed and reversed edge polarity directions at 3 Hz for 12 seconds. 

All stimuli space-time plots are shown in Fig. S7, and movies of adapter A and the probe 

stimulus are shown in movies M1 and M2.

Adaptation Procedure—A session began with a block of 20 probe trials (unadapted) that 

was followed by 20 trials of an adapt/probe cycle with a randomly chosen adapter (A or B). 

The adaptation/probe cycle within a block is illustrated in Figure 6a. After a block using the 

first adapter, the participant was allowed to rest for several minutes in order to dissipate the 

adaptation effect, after which they were given a block using the alternate adapter.

Attention Control—To control for possible time- or stimulus-dependent effects of 

attention, participants performed a demanding letter discrimination task at fixation during 

measurement of the steady-state Visual Evoked Potential (ssVEP)56.

Spectral signature of stimulus specific adaptation—We used a method that isolates 

responses of directionally selective neurons in the ssVEP30. Briefly, in the unadapted state, 

the ssVEP after each phase of the probe stimulus is identical. After adaptation the responses 

of individual neurons that are tuned for the adapting stimulus are reduced. The resulting 

imbalanced, adapted response creates a signal that has a different temporal sequence, either 

strong/weak or weak/strong, depending on the adapting stimulus. Therefore, the presence of 

odd harmonic responses that are 180°-phase shifted after adapting to the different adapters is 

diagnostic of selective adaptation. Because phase is a circular variable we used the circular 

statistics toolbox (Matlab) to calculate the 95% confidence intervals for the differences in 

phase57.

EEG signal acquisition and source imaging procedure—The 

electroencephalogram (EEG) was recorded, preprocessed, and analyzed identically to prior 

experiments58. The resulting amplitude spectra of the ssVEP were then evaluated at the first 
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harmonic of the stimulus frequency (3 Hz). Reported averages in Fig. 6 and S7 are from an 

average of probe responses between 1 and 6 s after the probe began; a time course of the 

first harmonic response is shown in Fig. S7c.

Adaptation Index—The adaptation index provides a measure of the fractional change in 

the signal due to adaptation. The amplitude of the first harmonic was divided by the summed 

amplitude of the first and second harmonic, using the single electrode with the maximum 

response (shown in Fig. 6b). We then averaged the two adapted conditions and divided by 

the unadapted case.

Human Psychophysics Methods

Subjects—Informed consent was obtained from the 9 subjects (5 male, 4 female, ages 23–

55 years), who participated in the experiments under protocols approved by the Institutional 

Review Board of Stanford University. We did not use statistical methods to predetermine 

our sample sizes, but they are comparable to those in the literature14.

Stimulus Generation and Presentation—Dynamic stimuli were presented on a 

HP-1320 video monitor, with 800 × 600 pixel resolution, 120 Hz refresh rate, mean 

luminance of 48.1 cd/m2, and contrast of 93.5% (Michelson). A 5°-radius aperture 

surrounded the fixation cross; stimuli were presented within the aperture and mean 

luminance outside.

We used four adapting stimuli (Fig S8): static bars, opposing light and dark edges, light 

edges, and dark edges. The static adapter was a full contrast square wave with a period of 2°. 

The opposing edges adapter had the same parameters as the adapter in the EEG experiments: 

2° period and 12°/s edge speeds. The single edges consisted of periodic single edges moving 

across the screen in one direction, repeated in time (see Fig S8). The single edges had 

identical parameters to the opposing edge stimuli, moving at a speed of 12°/s and with a 

period of 2°.

We created a total of 8 3-point glider stimuli: converging/diverging, ±1 parity, and centroid 

moving left/right. The gliders were full contrast, updated at 30 Hz, and consisted of square 

pixels of 0.1° on a side, updated using the glider update rules to constrain the contrast 

correlations appropriately in each case (see Constructing Gliders, below). Each row of the 

glider stimulus was independent of the others, but updated with the identical update rule (see 

movie M3).

Adaptation Protocols—An initial adaptation phase lasted for the first 20 seconds of each 

experiment. After the initial adaptation, probe glider stimuli were shown in random order for 

0.65 seconds, interleaved with 3-second adaptation ‘top ups’, repeating the initial adapter. 

All adapters were tested along with their mirror-symmetric counterpart, and the results 

averaged with appropriate sign changes. Each glider was tested 20 times for each adapter, 

for a total of 40 trials for each subject in the points shown in Fig. 7. The static case 

contained 20–60 trials for each subject, as it was occasionally run more than once if the 

subject participated in multiple sessions.
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Data analysis—For each adaptation and glider condition, the fraction of trials that were 

perceived as moving to the right was computed for each subject. Means and standard errors 

presented in the Figure were computed from the cross-subject data, and significance 

between conditions was assessed with a 2-sample, unpaired Student’s t-test, Bonferoni-

corrected. (The bar plots in Fig. 7 represent a linear transform of fraction-to-the-right. 0 

maps to all-left, 0.5 maps to random, and 1 maps to all-right.) We did not assess whether 

data was normally distributed.

Constructing gliders

Gliders are binary spatiotemporal stimuli with enforced correlational structures that were 

previously developed and used to produce motion percepts in humans14. These authors 

describe several properties that make gliders ideal for probing mechanisms of motion 

detection. First, they are, on average, equiluminant in time and space, averaging to a mean 

gray. Second, the variance at each time and at each point in space is the same. Third, the 

enforced correlational structure excludes many other correlational structures. For instance, 

the four 3-point gliders we produce here exclude all 2-point correlations, and exclude all 

other 3-point correlations. Gliders can produce more complex, higher-order or more distant 

correlations14.

Each glider stimulus begins with a random seed and uses an update rule to determine 

whether a pixel should be white or black. It iterates the rule across all pixels to produce a 

full space-time pattern that obeys the correlational pattern determined by the update rule. 

Figure S4a shows examples of each update rule, and Figure S4c gives examples of each 

rule’s space-time patterns. Movie M3 shows 4 gliders similar to those used in the human 

psychophysics experiments.

The simplest update rule is uncorrelated, when each pixel is randomly chosen to be black or 

white, independent of all other pixels’ values. The second simplest pattern is a 2-point 

update rule. We coded white pixels as having value +1 and black as having −1, matching our 

standard definition of fractional contrast. The update rule is then Ci(t)Ci+Δ(t + δ) = P, where 

Δ is the pixel spacing, δ is the frame duration, and P is the parity of the pattern, which is 

equal to +1 for even parity or −1 for odd parity. This is equivalently written as Ci+Δ(t + δ) = 

PCi(t), since C = 1/C for our values of C. Each new pixel value is the previous time’s 

adjacent pixel multiplied by 1 or −1. For even parity, this rule translate the entire pixel 

pattern in one direction, while for odd parity, it translates and inverts on each update.

The 3-point glider rules are a generalized version of the 2-point rules. The update rule is 

Ci(t)Ci+Δ(t)Ci+Δ(t + δ) = P (converging case) and Ci(t)Ci(t + δ)Ci+Δ(t + δ) = P (diverging 

case). Each pixel’s value is updated as a function of its surrounding pixels’ values and is 

determined by the seed state, so these patterns are similar to Conway’s Game of Life, the 

origin for the term “glider”59. Edge cases can result in undetermined pixel values; in such 

cases, we seeded with random pixel contrasts. In 3-point gliders, the two different parities 

are contrast inversions of each other: inverting the contrast on a P = 1 pattern turns it into a 

P = −1 pattern (Figure S4b). Conversely, inverting the contrast of a 2-point glider does not 

alter its parity, since all pairwise products remain unchanged.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Multiple correlations signify natural image motion. Each row presents a comparison 

between correlational motion signatures. Columns present: (i) context for each comparison; 

(ii) properties of pairwise motion estimators; (iii) properties of diverging 3-point estimators; 

and (iv) properties of converging 3-point estimators. (ai) Motion is approximated by the 

rigid translation of natural images. (aii-aiv) Cartoon of the correlation structure that each 

estimator detects. (bi) Example natural image. (bii–biv) Pixelwise contributions to motion 

estimation are highly variable and differ across estimators. (ci) An ensemble of natural 

images. (cii–civ) The accuracy with which correlations convey motion is examined across 

this ensemble. The performance of each estimator is quantified through the Pearson’s 

correlation between the estimator output and the simulated velocity. We linearly combined 

estimators to quantify the improvements afforded by multiple correlational signals. The 

numbers above each bar denote the fractional increase with respect to the 2-point estimate. 

(d) Same as (c), but with signals spatiotemporally filtered to match motion processing in 

Drosophila. Error bars are standard deviations over cross-validating trials (see Online 

Methods).
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Figure 2. 
Triple correlations distinguish between light and dark moving edges. (a) A dark point 

becomes light when a light edge moves across the visual field (rows 1 and 3), and a light 

point becomes dark when a dark edge moves across the visual field (rows 2 and 4). We 

decompose the net pair correlation motion signal into four elements whose frequency of 

occurrence depends upon the motion. This net pair correlation motion signal reflects the 

direction of motion (compare rows 1 and 2 to rows 3 and 4) and is insensitive to whether the 

edge was light or dark (compare row 1 to row 2 or row 3 to row 4). (b) We similarly 

decompose the net diverging and converging triple correlation into four elements (shown for 

the diverging triple correlation). The sign of the net diverging triple correlation depends both 

on the contrast polarity of the edge and on the direction of motion (shown for rightward 

motion). Thus, triple correlations jointly encode the direction and contrast polarity of a 

moving edge. (c) Natural motion comprises both moving light edges and moving dark edges. 

Motion signals are associated with each moving edge, but only the 3-point motion signatures 

distinguish between edge contrast polarities.
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Figure 3. 
Drosophila responds to triple correlations. (a) Binary spatiotemporal patterns, glider stimuli 

with 2- and 3-point contrast correlations, were presented to flies. Space-time plots for each 

of the 6 gliders, and an uncorrelated stimulus, are shown. (b) During the presentation, we 

measured flies’ turning in response to each glider. Positive rotational velocities represent 

turning in the direction of the ‘centroid’ of the pattern (to the right in the space-time plots in 

(a)). (c) One second periods of glider stimuli were interleaved with uncorrelated stimuli; the 

timing of the presentation of the gliders is denoted by the thick black bar. Response curves 

show the mean (solid line) and SEM (shading) over flies. (d) Mean turning velocities were 

computed for each glider by averaging over 0.5s of the stimulus (gray bar in (c)). Turning 

responses are presented for wild-type Drosophila, alongside the predicted response of a 

Hassenstein-Reichardt Correlator (HRC) to each glider. N=12 in (c) and (d). ‘**’ denotes a 
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difference from 0 at the p<0.01 level (two-tailed t-test); from right to left, the marked p-

values are 4.4×10−3 (t11=3.6), 6.0×10−7 (t11=10.2), 8.2×10−4 (t11=4.6), and 3.7×10−6 

(t11=8.5). Error bars show SEM.
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Figure 4. 
Detection of triple correlations associated with specific pathways in Drosophila. (a) Left: 

schematic of the inputs to the fly motion processing pathways. Signals from photoreceptors 

are relayed through the lamina monopolar cells L1, L2, and L3. Right: a temperature-

inducible dominant negative suppressor of synaptic transmission (shi ts) was used to silence 

L1, L2 and L3 using cell-specific expression of Gal4 (L1 shown, red). (b) We examined the 

responses of these disrupted motion detectors to 3-point gliders. Responses are plotted 

relative to the 2-point positive glider response. The two control genotypes (Gal4/+ and +/
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shi ts) have all input pathways intact, but contain the genetic constructs for the experimental 

genotype (Gal4/shi ts). For the genotypes Gal4/shits, Gal4/+, +/shits, from top to bottom, N 

= (19, 14, 19), (18, 13, 19), (29, 16, 19), (22, 14, 19), and (17, 15, 19). Error bars are ± 

SEM. ‘*’ and ‘**’ represent p<0.01 and p<0.001 differences from both control genotypes 

(two-tailed t-test).

Clark et al. Page 24

Nat Neurosci. Author manuscript; available in PMC 2014 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Triple correlations predict the edge selectivity of motion pathways. (a) The frequency of 

correlational elements in a moving edge depends on its contrast polarity and direction (see 

Fig. 2), and we compute the relative abundance of each correlation from the difference in 

frequency of each element in rightward versus leftward motion (see Fig. S6). The relative 

abundances of the four triple correlation elements differ between light and dark edges. (b) 

We used the relative abundance of each correlational element in each edge type (see also 

Fig. 2, S6) to weight and sum the response of each genotype to each correlational element 

(Fig. 4). This generated the glider-predicted responses to each edge type, from which we 

computed the predicted edge selectivity for each genotype. It correlated highly with the 

behaviorally measured edge selectivity (see Online Methods). Edge selectivity is computed 

to be the light minus dark edge responses divided by their sum. Error bars on points are ± 

SEM.
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Figure 6. 
Humans differentially adapt to moving light and dark edges. (a) Schematic of adapter and 

probe stimulus paradigm (see Figure S4). Black box denotes the time interval used for 

analysis. (b) Scalp topography of the amplitude of the response at the A′/B′ alternation rate 

(3 Hz). The amplitude peaks near the occipital pole. (c) Time average of the response from 

the peak electrode to the probe stimulus under the two adaptation regimes. Response to the 

unadapted state obtained by probe presentation without the adapting stimulus has been 

subtracted from this signal (see Figure S4). The response to the probe shows complementary 

modulation by the adapting stimuli at the frequency of probe alternation (3 Hz). Gray area 

represents ± 1 SEM. (d) The within subject difference of phase and amplitude at 3 Hz 

between the two adapting conditions. Ellipse represents 1 SEM while the shaded wedge 

indicates the 95% confidence interval for the phase. N = 7 subjects in (c) and (d).
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Figure 7. 
Adaptation to moving light and dark edges differentially affects the perception of specific 3-

point gliders. Subjects were presented all combinations of four types of adapter stimuli (left 

column), and 8 gliders (right hand panels), and asked to report the direction of perceived 

glider motion. Results for each of the 8 glider stimuli are shown, grouped by glider. The 

color of the bar corresponds to the adapting stimulus: static (black), opposing edges (gray), 

light edges only (green), or dark edges only (magenta). All stimuli were presented mirror-

symmetrically, and responses were aligned to the direction shown in the left hand column. 

‘*’, ‘**’, and ‘***’ indicate differences between conditions at p=1.6×10−3 (t16=5.6), 

p=8.8×10−4 (t14=6.2), and p=2.8×10−6 (t14=10.2) (two-tailed t-test, Bonferroni corrected for 

40 comparisons). N=9 subjects for static and opposing edge adaptation; N=7 for light and 

dark edge adaptation conditions.
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