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Purpose: To develop and validate a machine learning-based CT radiomics method for

preoperatively predicting the stages (stage I and non-stage I) of Wilms tumor (WT) in

pediatric patients.

Methods: A total of 118 patients with WT, who underwent contrast-enhanced

computed tomography (CT) scans in our center between 2014 and 2021, were

studied retrospectively and divided into two groups: stage I and non-stage I disease.

Patients were randomly divided into training cohorts (n = 94) and test cohorts (n =

24). A total of 1,781 radiomic features from seven feature classes were extracted

from preoperative portal venous–phase images of abdominal CT. Synthetic Minority

Over-Sampling Technique (SMOTE) was used to handle imbalanced datasets, followed

by a t-test and Least Absolute Shrinkage and Selection Operator (LASSO) regularization

for feature selection. Support Vector Machine (SVM) was deployed using the selected

informative features to develop the predicting model. The performance of the model was

evaluated according to its accuracy, sensitivity, and specificity. The receiver operating

characteristic curve (ROC) and the area under the ROC curve (AUC) was also arranged

to assess the model performance.

Results: The SVM model was fitted with 15 radiomic features obtained by t-test

and LASSO concerning WT staging in the training dataset and demonstrated favorable

performance in the testing dataset. Cross-validated AUC on the training dataset was 0.79

with a 95 percent confidence interval (CI) of 0.773–0.815 and a coefficient of variation of

3.76%, while AUC on the test dataset was 0.81, and accuracy, sensitivity, and specificity

were 0.79, 0.87, and 0.69, respectively.

Conclusions: The machine learning model of SVM based on radiomic features

extracted from CT images accurately predicted WT stage I and non-stage I disease

in pediatric patients preoperatively, which provided a rapid and non-invasive way for

investigation of WT stages.
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INTRODUCTION

Wilms tumor (WT) is the most common renal tumor and
the second most common intraabdominal tumor in pediatric
patients, accounting for approximately 90% of all renal
neoplasms and 7% of all malignant tumors (1–3). The estimated
annual incidence of WT is 7 to 10 cases per million for children
younger than 15 years (4).

Prognosis and treatment of WT are closely linked to tumor
risk stratification, which is based on clinical, surgical, and
biological factors. Tumor stages and histological subtypes are
the most important factors for treatment outcomes and survival
(5, 6).

A lower stage predicts a positive prognosis as in most tumors
(5, 6), despite age, tumor weight, and histological type also
playing a role in WT outcome. Studies showed that patients
in stage I WT, without renal capsule penetration/renal sinus
infiltration and vascular metastasis, had the potential to perform
nephron-sparing resection (7) or receive nephrectomy only
without postoperative chemotherapy (8).

However, histological stages of WT need to be determined by
en bloc resection (9). If we can develop a technique to assess WT
stage I disease preoperatively, it will be helpful in the treatment
decision-making and surgical individualization strategies.

Radiomics is a novel imaging technique that extracts a large
number of quantitative information describing the phenotypic

FIGURE 1 | Flowchart of Wilm’s tumor (WT) staging based on machine learning model of radiomics.

characteristics of lesions fromCT, positron emission tomography
(PET), Magnetic resonance imaging (MRI), and other medical
images (10, 11). Radiomics, combined with appropriate
mathematical algorithms, have demonstrated advantages in
tumor histological subtypes classification (12), staging (12),
distinguishing lymph node metastases (13), and prognosis
analysis (14) to provide clinical decision support, hence, has a
wide application prospect (15).

This research aims to use CT-based radiomic features to
build a machine-learning model to discriminate WT stage I and
non-stage I disease in pediatric patients before surgery.

METHODS

Objects
A retrospective study was conducted to analyze hospitalized
patients withWT fromOctober 2014 to October 2020. This study
was approved by the hospital’s ethical committee (No. 2021-IRB-
097).

The inclusion criteria included the following: (1) CT-
enhanced abdominal scan before surgery, biopsy, radiotherapy,
or chemotherapy; (2) subsequent successful tumor resection;
and (3) postoperative pathology confirmed as WT. Exclusion
criteria were shown as follows: (1) Contrast-enhanced CT scan
of the abdomen was not carried out or treatment was performed
before CT examination; (2) radiotherapy, chemotherapy, or both
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of them were implemented before surgery; (3) Pathology was
unclear; (4) bilateral WT; and (5) Motion artifacts in CT images,
which affect observation. A total of 118 WT cases were included
in this study based on the above criteria.

WT Staging
Patients with WT were divided into two groups based on the
Children’s Oncology Group (COG) staging criteria: stage I and
non-stage I, and the preoperative assessment is the focus of this
study. Stage I conditions include the following: (1) The tumor
is confined to the kidney and the renal capsule is intact; (2)
the tumor has not ruptured or been biopsied before surgical
resection; and (3) tumor cells have not invaded the renal sinus
system (1). The rest is labeled as non-stage I. There were
48 patients with stage I disease and 70 cases with non-stage
I disease among the 118 patients WT, who were recruited
(Supplementary Table S1).

Image Acquisition and Analysis
Image Acquisition
Two types of multi-slice helical CT (Optima CT660 CT, GE
Medical Systems, and Somatom Emotion 16, SIEMENS) were
used for examination. The scanning parameters of GE Optima
CT660 CT were tube voltage of 120 kV, tube current is 80mA,
the layer thickness of.625mm, and the field of view (FOV) is
350x350mm, and the matrix is 512x512. The Somatom Emotion
16 CT scanner parameters were tube voltage of 110 kV, tube
current of 75mA, the layer thickness of 1.5mm with FOV of 350
× 350mm, and matrix of 512 × 512. Non-ionic iodine contrast
agent was injected intravenously with a high-pressure syringe
(Mallinckrodt Injection System, Liebel-Flarsheim Co.) and was
dosed according to body weight (1.5 ml/kg) at a rate of 1.5–2
ml/kg. Portal venous phase images were acquired with a delay of
50 s after the injection.

The CT images are retrieved from the Picture Archiving and
Communication System (PACS) for radiomics analysis.

Image Processing
The retrieved portal venous phase CT images were uploaded
to a secure laptop. Then, a 3-dimensional slicer (16) (3DSlicer,
4.11.0, http://www.slicer.org/) platform was used to delineate
the three-dimensional (3D) regions of interest (ROIs) of renal
masses with a semi-automatic segmentation procedure, which
was performed by two senior radiologists who had more than 10
years of clinical experience.

Firstly, inter- and intra- observer repeatability of feature
extraction was evaluated by Intra Class Correlation Coefficient
(ICC) with images of 60 (17) randomly selected cases for analysis
in a blind way by the two radiologists. Radiologist 1 (J. Xuan)
repeated the generation of radiomic features twice within 2 weeks
following the same procedure to observe the intra-observer
reproducibility. Simultaneously, radiomic features were extracted
by radiologist 2 (H.C. Zhou) using the same methodology with
the same set of images, which were used to assess inter-observer
reproducibility between radiologist 1 (J. Xuan) and radiologist 2
(H.C. Zhou). An ICC of higher than 0.75 was considered to have

TABLE 1 | Demographic data and clinical factors of WT patients.

WT staging P-value

Variables Stage I Non-Stage I

n 48 70

Sex, n (%) F 26 (54.2) 34 (48.6) 0.682

M 22 (45.8) 36 (51.4)

Age, Y (median) 2.1 2.1 0.306

Volume, cm3 (median) 287.6 325.2 0.547

Metastasis, n (%) No 48 (100.0) 10 (14.3) <0.001

Yes 0 (0.0) 60 (85.7)

Tumor thrombus, n (%) No 48 (100.0) 49 (70.0) <0.001

Yes 0 (0.0) 21 (30.0)

Anaplastic WT, n (%) No 48 (100.0) 67 (95.7) 0.270

Yes 0 (0.0) 3 (4.3)

good agreement (17). Then, radiologist 1 (J. Xuan) completed the
workflow for the rest images.

Feature Extraction
Pyradiomics (18), an open-source toolbox based on Python (v3.0,
https://pyradiomics.readthedocs.io/en/latest/), was deployed to
analyze and extract the internal imaging features of tumor ROI
in patients with WT. The overall workflow is as follows:

1) All the ROI of images were resampled into isotropic data
with voxel spacing of 1∗1∗1 mm3 with a B-spline algorithm,
discretized into a bin width of 25, and normalized (with
the normalized scale of 500) to a consistent gray value by
Pyradiomics in the first place.

2) Filters (including wavelet, Laplacian of Gaussian,
Exponential, Logarithm, Square, Square Root, Gradient,
Local Binary Pattern 2D, and Local Binary Pattern 3D filter) were
applied to transform the images. Both the original images and
the derived images using filters were arranged to extract features.

3) The extracted radiomic features incorporated First Order
Statistics, Shape-based 3D, Gray Level Co-occurrence Matrix
(GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level
Size Zone Matrix (GLSZM), Neighboring Gray Tone Difference
Matrix (NGTDM), and Gray Level Dependence Matrix (GLDM).

4) A total of 1,781 radiomic features were generated from the
tumor ROI of each patient with WT.

Feature Selection, Classification, and
Validation
The workflow of image processing, radiomics feature extraction,
and machine learning is shown in Figure 1. Python (Version
3.7.3, https://www.python.org) was used for feature engineering,
machine learning, and data visualization based on the obtained
radiomic features with these packages: Matplotlib, Numpy,
Sklearn, Pandas, Seaborn, and Scipy.

Feature Selection
Firstly, the data were randomly divided into training sets and
test sets (8:2). Then, a t-test was applied to select significantly
different features (P < 0.05) between the stage I and non-stage
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FIGURE 2 | The optimal lambda value (0.0136) in least absolute shrinkage and selection operator (LASSO) regression.

I disease in the train set. Then, Least Absolute Shrinkage and
Selection Operator (LASSO) regression was used to screen the
optimal feature subset.

Dataset Balancing
The proportion of stage I and non-stage I group in the
training data was imbalanced (38:56). So, the Synthetic Minority
Over-Sampling Technique (SMOTE), a kind of oversampling
technique, was used to introduce artificial minority instances
to even the class distribution before classification. The SMOTE
training data was applied to build the predictive model.

Classification and Validation
Models were established using a machine learning method of
Support Vector Machine (SVM) with the selected radiomic
features. Stratified 10-fold cross-validation was carried out to
evaluate the generalization ability of the model, which would
further split the training data into new training and test sets
and use the new training sets to fit the model, while the
corresponding new test sets to verify the model for 10 times.
Accuracy, sensitivity, specificity, and area under the ROC curve
(AUC) were utilized to assess the performance of the model for
WT staging in the training cohort and test cohort.

The Mann-Whitney U test was used to compare the
differences in age between the stage I group and the

non-stage I, and the Chi-Square test was utilized to
assess the gender differences. P < 0.05 was considered
statistically significant. Statistical analysis was carried out
by Python.

RESULTS

Demographic Data and Clinical Factors
A total of 48 patiens with WT with stage I (22 males and 26
females) disease and 70 non-stage I (36 males and 34 females)
were included in the study (Table 1). The median age of patients
with WT with both stage I and non-stage I disease was 2.1
years. There was no significant difference in age and sex between
the two groups (P > 0.05). Clinical factors were also classified.
Metastasis and tumor thrombus were significantly different
between the stage I and non-stage I groups, whereas anaplastic
status was not (Table 1).

Intra- and Inter-observer Reproducibility
The features extraction achieved satisfactory inter- and intra-
observer reproducibility. The intra-observer ICC ranged from
0.819 to 1 based on radiologist 1’s twice feature extraction. The
inter-observer ICCs derived using radiologist 1’s first-generated
features and radiologist 2’s features ranged from 0.726 to 1.
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FIGURE 3 | Coefficient profile plot showed the coefficient paths following different lambda values.

Accordingly, the whole results were based on the features
obtained by radiologist 1.

Feature Extraction and Selection
Pyradiomics was used to extract radiomic features from
original and filtered images, which had been preprocessed
with resampling and normalization, yielding 1,781 features
for each case. Subsequently, a t-test, a kind of univariate
feature selection, was applied and 35 features were selected,
which were narrowed down to 15 by further using the Lasso
algorithm with the most proper lambda value of 0.0136
(Figures 2, 3).

The 15 radiomics features had different weights in
distinguishing WT stages (Figure 4).

The presence of collinearity may lead to serious problems
in the model, and 0.8 and 0.9 are commonly used cut-offs
(19), indicating a strong linear correlation. So, the correlation
of the selected features was analyzed and a correlogram
(Supplementary Figure S1) was plotted to show that no
multicollinearity existed according to the given cut-offs.

Finally, a total of 15 features were used for model
fitting, including 2 first-order features and 13 texture features
(Supplementary Table S2).

Machine Learning Results and Model
Validation
Approximately 80% of the patients with WT were randomly
chosen as the training set, with the remaining set as the test set.

The SVM for WT staging based on selected radiomic features
was fitted, achieving a mean accuracy of 0.75, a mean AUC of
0.79 (95%CI, 0.773–0.815) with a coefficient of variation of 3.76%
in 10-fold cross-validation, and a mean sensitivity/specificity of
0.71/0.80. On the independent test dataset, the model reached
0.79 on the accuracy, 0.81 on AUC, 0.87 on sensitivity, and 0.69
on specificity (Figure 5). The findings of the machine-learning
model of SVM for classifying stage I vs. non-stage I disease were
seen in Table 2.

DISCUSSION

We investigated the capacity of radiomics combined with
the machine-learning method to identify the stage of WT in
pediatric patients prior to surgery. The fifteen-feature–based
SVM machine learning model was trained to be effective for
WT staging, which could classify patients with WT into stage
I class and non-stage I class, with an AUC of 0.81, the
accuracy of 0.79, the sensitivity of 0.87, and specificity of 0.69,
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FIGURE 4 | Radiomic features related to WT staging and their weights.

leading the potential to serve as non-invasive WT staging prior
to surgery.

To our knowledge, no other teams have studied preoperative
non-invasive WT staging methods. The radiomics-based SVM
can benefit patients with WT in two ways. Firstly, it enables
a more rational design of surgical protocols, such as choosing
nephron-sparing surgery (NSS), because potential cases for NSS
should have low-stage tumors; evidence suggests that prognosis
for anaplastic (high-risk) and other subtypes (intermediate
and low-risk) is similar in patients with stage I disease (20).
Secondly, it has the potential to facilitate the SIOP system

in developing more personalized preoperative chemotherapy
regimens; patients in stage I have the opportunity to receive
less chemotherapy to reduce treatment-related toxicity and late
side effects while maintaining efficacy due to the significant
differences inmetastasis and tumor thrombosis between the stage
I and non-stage I groups (21).

Previous studies have directly associated radiomic features
with genomic, transcriptomic, and proteomic characteristics
(22) and believed that radiomics techniques could evaluate
both molecular and clinical traits of a tumor in a non-
invasive way relying on the features extracted from medical
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FIGURE 5 | Receiver operating characteristic (ROC) curve of the support vector machine (SVM) machine learning method.

images. We collected 1,781 features from CT images of each
patient, then, utilized a feature selection procedure to filter non-
redundant, robust, and informative features for WT staging, and
finally screened out 15 potential predictors (2 First-order and
13 Second-order statistics) for building a supervised machine
learning model.

These two First-order statistics were Mean and Minimum,
which described the average and the lowest gray level intensity
within the image region as defined by the mask—representing
the density of the tumor—and were applied to quantify tumor
phenotypic features (23). High stages, massive tumors, and
liquefied necrotic regions were usually correlated (24) in most
malignant neoplasms. In other words, higher stages meant more
necrotic areas and less homogeneous.

The other 13 potential predictors from GLCM, GLDM,
GLRLM, and GLSZM classes were all second-order statistics, also
known as texture features, which depicted differences in texture
based on gray tone spatial dependencies (23) and had a higher
weight than the screened first-order statistics.

Texture analysis has been suggested as a way to discriminate
malignant masses from benign ones and to predict treatment
response and prognosis (25) because of its relationship
with intratumoral heterogeneity. For example, the maximum

TABLE 2 | The SVM model’s performance in training set and test set.

AUC Sensitivity Specificity Accuracy

Training set

(mean, 95% CI)

0.79 0.71 0.80 0.75

0.773–0.815 0.646–0.782 0.734–0.868 0.705–0.788

Testing set 0.81 0.87 0.69 0.79

probability of GLCM described the most frequently occurring
texture features in the image within the ROI, and a lower
probability suggested a more complicated texture pattern, which
was consistent with this study—the maximum probability value
was lower in non-stage I group.

There were some shortcomings in the current study. Given
that tumor thrombi and hematogenous metastases (stage III and
IV) would be visible on the diagnostic CT, the current radiomics
study focused mainly on the mass of WT, and lacked inclusion
of lymph nodes in the segmentation, which might result in a
limited predictive power of our radiomics model. Moreover, due
to the limitations of small sample size and sample heterogeneity,
retrospective analysis, and single-center design, there may be a
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selection bias that limits the robustness and generalization ability
of our radiomics model. Further studies in a larger prospective
cohort and independent test datasets from other centers are
needed in the future.

CONCLUSIONS

In conclusion, there were CT-based radiomic features that were
independently associated with WT stage I disease in pediatric
patients, and the SVM machine learning model built with
them could act as an effective and non-invasive technique to
differentiate stage I and non-stage I WT preoperatively.
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