
Article
Spatial correlation statisti
cs enable transcriptome-
wide characterization of RNA structure binding
Graphical abstract
Highlights
d nearBynding is an R/Bioconductor algorithm to identify

spatial relationships

d Flexible scaffold to cross-correlate diverse transcriptomic

features

d Calculates features at or adjacent to annotation sites

transcriptome-wide

d Accommodates interval or continuous data formats
Busa et al., 2021, Cell Reports Methods 1, 100088
October 25, 2021 ª 2021 The Author(s).
https://doi.org/10.1016/j.crmeth.2021.100088
Authors

Veronica F. Busa, Alexander V. Favorov,

Elana J. Fertig, Anthony K.L. Leung

Correspondence
efertig@jhmi.edu (E.J.F.),
anthony.leung@jhu.edu (A.K.L.L.)

In brief

The nearBynding algorithm calculates

and visualizes spatial relationships

across the transcriptome. Busa et al.

demonstrate that nearBynding can

recapitulate known protein-binding

preferences for structured RNA and RNA

modifications as well as known

geometries between RNA-binding

proteins. nearBynding’s spatial

correlations provide biological insights

into protein binding of G-quadruplexes.
ll

mailto:efertig@jhmi.edu
mailto:anthony.leung@jhu.edu
https://doi.org/10.1016/j.crmeth.2021.100088
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crmeth.2021.100088&domain=pdf


OPEN ACCESS

ll
Article

Spatial correlation statistics enable
transcriptome-wide characterization
of RNA structure binding
Veronica F. Busa,1,2 Alexander V. Favorov,4,7 Elana J. Fertig,1,4,5,6,* and Anthony K.L. Leung1,2,3,4,8,*
1McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
2Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205,

USA
3Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
4Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD

21205, USA
5Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21205, USA
6Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21205, USA
7Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow,

Russia
8Lead contact

*Correspondence: efertig@jhmi.edu (E.J.F.), anthony.leung@jhu.edu (A.K.L.L.)
https://doi.org/10.1016/j.crmeth.2021.100088
MOTIVATION Because RNA regulatory processes often occur at overlapping or adjacent transcriptional
coordinates, assessing spatial relationships at a transcriptome-wide scale represents a powerful means
of evaluating RNA structure, modification, and regulation. Application of available genome-wide correlation
methods to discern transcriptomic spatial relationships is inefficient and/or imprecise. Machine-learning al-
gorithms tailored to transcriptomic data exclusively rely on analysis of overlapping coordinates and cannot
assess adjacent relationships. nearBynding is able to efficiently correlate diverse types of transcriptomic
data such as protein binding, RNA structure, and RNA modification to calculate and visualize their spatial
relationships.
SUMMARY
Molecular interactions at identical transcriptomic locations or at proximal but non-overlapping sites can
mediate RNAmodification and regulation, necessitating tools to uncover these spatial relationships. We pre-
sent nearBynding, a flexible algorithm and software pipeline that models spatial correlation between tran-
scriptome-wide tracks from diverse data types. nearBynding can process and correlate interval as well as
continuous data and incorporate experimentally derived or in silico predicted transcriptomic tracks. near-
Bynding offers visualization functions for its statistics to identify colocalizations and adjacent features. We
demonstrate the application of nearBynding to correlate RNA-binding protein (RBP) binding preferences
with other RBPs, RNA structure, or RNA modification. By cross-correlating RBP binding and RNA structure
data, we demonstrate that nearBynding recapitulates known RBP binding to structural motifs and provides
biological insights into RBP binding preference of G-quadruplexes. nearBynding is available as an
R/Bioconductor package and can run on a personal computer, making correlation of transcriptomic features
broadly accessible.
INTRODUCTION

There has been an expansion in RNA profiling tools developed to

measure transcriptional attributes associated with RNA struc-

ture, modification, and regulation. Sequencing-based tools

have been developed to elucidate the RNAs bound by a partic-
Cell Repo
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ular protein (Sugimoto et al., 2012), to provide a snapshot of

the precise locations of ribosomes on RNA (Ingolia et al.,

2009), to identify loci with adenosine-to-inosine editing (Okada

et al., 2019), and to provide RNA structure information (Lucks

et al., 2011), to name only a small sample of diverse transcrip-

tomic data types. Analysis approaches to integrate these diverse
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Table 1. Comparison of functionality for correlation analysis programs

deepTools

plotCorrelation

bedtools

reldist StereoGene nearBynding

Data type optimized for single-nucleotide resolution U

analyze interval data U U U U

analyze non-binary data U U U

analyze continuous data U U

Correlation capabilities partial correlation U U

cross-correlation U U

correlate non-local features U U U

correlation visualization U U U

Transcriptome tools retains strand information U

select regions of transcriptome U

generate and integrate RNA structure predictions U

See also Figure S8 and STAR Methods.
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data modalities and identify inter-related features can lead to

novel hypotheses about biological regulation.

Efficient methods to correlate genome-wide features are avail-

able (Favorov et al., 2012; Stavrovskaya et al., 2017), but robust

transcriptome-wide spatial correlation requires new tailored ex-

tensions. Transcriptomic data constitute only a fraction of the

genome and their analysis often requires nucleotide-level spatial

relationship resolution (Table 1), in contrast to the 100-bp to

megabase resolution information that usually suffices for

genomic data (Kravatsky et al., 2015; Stavrovskaya et al.,

2017; Zhang et al., 2011). Therefore, applying genomic tools

directly to calculate the spatial correlation of transcriptomic

data analysis is computationally inefficient and imprecise.

To overcome this limitation, the main approach currently used

to assess colocalization of transcriptomic features adapts

genome-based tools to compare features at identical transcrip-

tomic locations or within windows (overlapping genomic coordi-

nates) (Lee et al., 2020b; Luo et al., 2020; Sauer et al., 2019;

Wolfe et al., 2020). However, biologically important relationships

often occur at proximal but non-overlapping transcriptomic sites

(adjacent genomic coordinates) (Beltran et al., 2019; Briese

et al., 2019; Carlile et al., 2019; Van Nostrand et al., 2020a; Wal-

dron et al., 2019), necessitating analyses that evaluate the rela-

tive positions of transcriptomic features. Moreover, these tools

should also be flexible to allow for associations of binary features

from processed RNA profiling data and continuous track data

from assays that resolve quantitative features along the

transcriptome.

One notable example in which transcriptome-wide correlation

is particularly applicable is in the example of RNA-binding pro-

tein (RBP) preference for RNA structure and modification.

Some RBPs recognize RNA structure more than sequence

(Blaszczyk et al., 2004; Heller et al., 2017), but binding prefer-

ences to structured RNA have thoroughly been described for

only a few proteins, and RNA structure surrounding protein-

binding events is rarely characterized. Sequencemotifs ascribed

to RBPs are often insufficient for explaining a large proportion of

binding occurrences (Bahrami-Samani et al., 2015; Edupuganti

et al., 2017; Li et al., 2010, 2014; Taliaferro et al., 2016; Wilbert
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et al., 2012). Describing the unexplained binding of RBPs—

especially for RBPs that bind structured RNAs—will increase

our potential to elucidate the etiology of diseases driven by dys-

regulated protein-RNA interactions.

Several machine-learning algorithms have been developed to

resolve structure-based RBPmotifs using cross-linked immuno-

precipitation (CLIP) data and RNA structure prediction (Maticzka

et al., 2014; Pan and Shen, 2018; Yan et al., 2020). Algorithms

such as GraphProt and iDeepS incorporate a post-processing

step to easily visualize RBP sequence and structure preferences

(Maticzka et al., 2014; Pan and Shen, 2018), but these algorithms

only provide visualization of structure information for a short

binding motif (7–12 nucleotides). The predictive power of many

state-of-the-art algorithms may be limited by their reliance

exclusively on sequence-based RNA structure prediction and

their lack of accommodation for experimentally derived RNA

structure information (reviewed by Chen et al., 2019; Sasse

et al., 2018). The recent algorithm PrismNet has begun address-

ing these problems by allowing the incorporation of in vivo click

selective 20-hydroxyl acetylation and profiling experiment

(icSHAPE) data (Sun et al., 2021), but all algorithms to resolve

structure-based RBP motifs still rely exclusively on analysis of

overlapping coordinates and do not offer insight about the

RNA structure surrounding those motifs, despite evidence that

such context can be important in RBP binding (Carlile et al.,

2019; Jarmoskaite et al., 2019). Current methods interrogating

RNA structure binding contexts at and adjacent to the binding

site can only be performed in a low-throughput manner (Carlile

et al., 2019; Jarmoskaite et al., 2019); therefore, RBPs known

to have preferred secondary structures are sparse. Efficient

methods to perform transcriptome-wide correlation are needed

to overcome these limitations and resolve global RBP binding to

RNA structure.

Here, we present a new algorithm, nearBynding, to calculate

and visualize spatial correlations between transcriptomic data

types. It is implemented in an R/Bioconductor package by the

same name to promote accessibility and ease of use. The near-

Bynding algorithm is unique in three ways: first, it calculates cor-

relations to indicate features colocalized at, or adjacent to,



Figure 1. Overview of nearBynding

(A) The user inputs CLIP-seq data (aligned reads or called peaks), a list of transcripts, and an annotated genome. Optionally, an in silico predicted RNA structure

track can be replaced by an experimentally derived one. RBP binding and RNA structure data are mapped to the concatenated transcriptome and cross-

correlated. nearBynding outputs cross-correlation densities and their distributions to estimate RNA binding.

(B) Examples of six RNA structure contexts predicted by CapR (Fukunaga et al., 2014) for which nearBynding can be applied.

(C) Example heatmap and line plot visualizations of PUM2 binding from eCLIP data in two replicates of K562 cells estimated from the cross-correlation densities

and visualized as part of the nearBynding software. The line plot shows the average signal and plus or minus three standard errors; the black line and error bars

represent null signal (labeled as background) derived from recursively shuffled foreground signal. The heatmap only shows the average value at every position in

cases where multiple samples are used to calculate density values.

Article
ll

OPEN ACCESS
annotation sites in a transcriptome-wide manner; second, it is a

flexible scaffold to cross-correlate diverse transcriptomic data

types; and third, it can analyze transcriptomic data in either inter-

val or continuous data formats. The algorithm achieves tran-

scriptome-wide correlation by expanding our current tool for

genome-wide correlation, StereoGene (Stavrovskaya et al.,

2017), to allow users to select and interrogate specific tran-

scripts and specific regions of those transcripts (e.g., unspliced

or mature; coding sequences [CDSs] or 30 untranslated regions

[UTRs]; see Table 1 and STAR Methods for capability compari-

sons). Users can then use nearBynding to input two tracks,

calculate the pairwise correlation between those tracks, and

visualize the correlation along the transcriptome.

We benchmark nearBynding using simulated data and repli-

cates from enhanced CLIP (eCLIP) experiments. We demon-

strate nearBynding’s utility by comparing our results with known

RBP binding preferences, such as RBP binding to RNA struc-

ture, RBP binding relative to a second RBP, and RBP binding

to RNA modifications. We also demonstrate how nearBynding

could be applied to discern binding preference differences be-

tween awild-type (WT) andmutant RBP. Besides in silico predic-

tions, we employ diverse experimentally derived data types (e.g.,

RNA G-quadruplex sequencing [rG4-seq], N6-methyladenosine
[m6A]-iCLIP sequencing [miCLIP-seq]) that are not utilized by

currently available RBP motif-finding software in our correla-

tion-based predictions of RBP binding preferences. We then

use these discovered RBP binding preferences from our tran-

scriptome-wide correlation analyses to hypothesize RBP char-

acteristics that may predispose binding preferences for or

against specific RNA structures. We show that aligned reads

(continuous data format) provide qualitatively similar outputs

and comparable reproducibility between technical replicates

compared with peak-called data (interval data). The ability of

nearBynding to correlate any interval or continuous feature an-

notated across selected regions of the transcriptome makes it

a diverse, flexible tool to study RBP binding, RNA structure,

RNA modification, and potentially other RNA features.

RESULTS

nearBynding probes transcriptome-wide RBP binding to
RNA structures
Weuse the nearBynding algorithm to incorporate transcriptome-

wide information of RBP binding sites and RNA structure to

discern RNA structure for regions bound by an RBP as an

example of its potential (Figure 1A). nearBynding requires only
Cell Reports Methods 1, 100088, October 25, 2021 3
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a list of transcripts, an annotated genome, and aligned CLIP

sequencing (CLIP-seq) data as inputs. RNA structure data are

an optional input and can be predicted within the pipeline. near-

Bynding produces a concatenated transcriptome made of only

the transcriptome regions being probed and maps the data

tracks (e.g., CLIP-seq and RNA structure) to it, which drastically

reduces the magnitude of the datasets to only the intervals of in-

terest. With this extension enabling transcriptome-scale anal-

ysis, the algorithm for efficient spatial correlations in StereoGene

(Stavrovskaya et al., 2017) is then applied to calculate the pair-

wise correlation between the two data tracks.

To enable analysis of RBP binding, the nearBynding software

further includes visualization tools of the output statistics that are

tailored to illustrate the relative positions of RBP binding and

RNA structure. By default, nearBynding uses RNA structure

probabilities predicted from sequence by CapR (Fukunaga

et al., 2014) for the selected transcriptomic intervals (see STAR

Methods). While CapR provides the default structural data input,

the algorithm can also accept alternative inputs of custom RNA

structure tracks or intervals, such as RNA modifications that

affect RNA structure (e.g., m6A; see below). StereoGene gener-

ates cross-correlation densities for RNA folding contexts relative

to RBP binding. Since cross-correlation shows the relative posi-

tion of one track (e.g., RBP binding) to another track (e.g., RNA

structure), we can use it as a tool to visually represent the loca-

tion of the RNA structure relative to the RBP binding site (i.e.,

upstream, at, or downstream of RBP binding). To account for

the case in which a transcriptional track is correlated to in silico

predictions of structure, the visualizations are performed sepa-

rately for RNA structures based on their categorization as dou-

ble-stranded (stem) or one of five single-stranded types: hairpin,

multibranch, internal, exterior, and bulge (Figure 1B).

Binding profiles illustrating RNA structures at and proximal to

RBPbinding can be visualized either as line plotswith standard er-

rors for cases withmultiple replicates, or as heatmaps (Figure 1C).

nearBynding, via StereoGene, calculates a null signal derived from

the distribution of the correlation metrics for randomly shuffled

windows (black line; Figure 1C, lower panel). nearBynding also

calculates a plus or minus one standard error confidence interval

for the foreground signal when more than one experimental repli-

cate is input for analysis; statistical significance can be assessed

by comparing the distribution of the foreground signal computed

from replicates with the null distribution computed from randomly

shuffled windows, and users can alter the number of standard

errors shown by the error bars to increase or decrease confidence

intervals (e.g., three standard errors were shown in all figures pre-

sented here). This combination of visualization and statistics can

be used to predict RBP binding to and adjacent to RNA structures

transcriptome-wide. In addition to allowing visual assessment,

nearBynding includes functions to quantitatively compare RBP

binding cross-correlation distributions between two different

RBPs. Specifically, the software computes the Wasserstein, or

earth-mover, distance (Schuhmacher et al., 2020) between pairs

of RBP binding profiles. For example, a short Wasserstein dis-

tance suggests similarity between two RBP profiles and possible

binding competition between RBPs.

RBP binding information from CLIP-seq data can be input to

the nearBynding software as a BAM file of aligned reads or as
4 Cell Reports Methods 1, 100088, October 25, 2021
a BED file of peak intervals or protein-RNA cross-linked sites.

Our transcriptome-wide correlation algorithm is applicable to a

variety of CLIP-seq data types. Some processing methods esti-

mate binding peaks or cross-linking sites that correct the CLIP-

seq data for a size-matched input (Drewe-Boss et al., 2018;

Lovci et al., 2013) or modeled background signal (Uren et al.,

2012; Zhang and Xing, 2017). When inputting raw CLIP data,

the nearBynding software also allows for input of a size-matched

input background track, the output of which is subtracted from

the output signal of the foreground track prior to computing

the correlation statistics. We hypothesized that including a back-

ground track would ensure that the observed signal is from the

RBP of interest rather than from experimental artifacts, such as

cell-specific transcript levels or size-matched input noise. To

test this hypothesis, we applied nearBynding to calculate and

visualize the RNA structure preferences of the poly(C)-binding

protein HNRNPK (Matunis et al., 1992) and found that the binding

profiles for HNRNPK in HepG2 and K562 cells were much more

similar after background signal was removed (Wasserstein dis-

tance of 1.80 between non-corrected profiles versus 0.23 for

background-corrected profiles) (Figure S1).

Benchmarking on simulated data demonstrates robust
signal detection
Because of the uniqueness of this algorithm, we were unable to

directly compare nearBynding with other algorithms available for

spatial correlation of genomic tracks (see Table 1 and STAR

Methods for comparisons with related spatial relationship algo-

rithms). To evaluate its performance, we instead designed simu-

lated tracks (we term these RBP binding and RNA structure but

they could instead represent any two transcriptomic data types)

to benchmark a full range of biological variables that may affect

performance (Figure 2). Briefly, we tested three factors that may

affect signal strength: peak concordance between tracks,

foreground to background ratio, and peak width range. Each

simulation contained a pairwise analysis of the cross-correlation

between an RNA structure track (RNA) and a CLIP-seq track

(CLIP), where a greater amplitude for cross-correlation density re-

flects better co-occurrence of the two tracks. The peak distances

and heights of the RNA structure track were varied to simulate the

range of predicted RNA structure probabilities and random distri-

bution of these structures across the transcriptome. The RNA

structure track consisted of 10,000 peaks 31 to 500 nucleotides

apart (unless otherwise stated), 5 nucleotides in width, and 0.02

to 1 unit in height. The CLIP-seq track simulated signal from

aligned CLIP-seq data and contained a mixture of background

and foreground signal. The CLIP-seq track contained 30-unit-

wide peaks (unless otherwise stated) to simulate the 30-nucleo-

tide reads of CLIP-seq data deposited in the ENCODE portal

(Davis et al., 2018). The CLIP-seq track was also shifted 12 units

to the left of and equal in height to the RNA structure track peaks.

First, we tested the impact of the frequency of an RBP binding

to its target RNA structure across the transcriptome, which may

be affected by the accessibility of the RNA structure and the

binding strength of the protein. To simulate this effect, we varied

the frequency of the foreground signal peak concordance of the

CLIP-seq track relative to the RNA structure track (Figure 2A).

We hypothesized that tracks with a higher frequency of RBP



Figure 2. Cross-correlation distribution tracks

of simulated RNA-binding data to benchmark

the performance of nearBynding

The RNA structure track [RNA] is shifted 12 units to

the right relative to the CLIP track to model proximal

RNA structure. For (A), (B), and D) the middle gray

peaks represent RNA structure data and the dark

gray peaks represent signal fromCLIP simulation data

(i.e., foreground).

(A) Cross-correlation distribution tracks with differing

peak concordance.

(B) Cross-correlation distribution tracks with differing

foreground to background signal ratios. Foreground

signal (dark gray) does not change, but different

amounts of randomly distributed background signal is

added to the foreground, as represented by the

lightest gray regions of peaks.

(C) Maximum cross-correlation density values for

pairs of tracks with varying peak concordance and

foreground to background signal ratios.

(D) Cross-correlation distribution tracks with differing

peak width range.

See also Figure S2.
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binding to target RNA structure would provide stronger binding

signals than RBPs with sparser target binding. Supporting this

hypothesis, the result of the nearBynding algorithm for the simu-

lated data showed that cross-correlation signal strength corre-

lates positively with peak concordance.

Next, we simulated artifacts associated with collecting CLIP-

seq reads, such as background signal from input, by varying the

height of the background signal of the simulated CLIP-seq track

relative to the foreground signal (Figure 2B). We hypothesized

that simulations with a greater foreground (dark gray) to back-

ground signal (light gray) would have stronger RBP binding sig-

nals. As expected, cross-correlation signal strength correlated

positively with the ratio of foreground to background. Both peak

concordance and foreground to background ratio greatly affected

signal strength, with nearBynding requiring a foreground to back-

ground signal greater than 0.05 to detect the binding signal (Fig-

ure 2C). Therefore, our algorithm performance may be superior

when applied to data collected by protocols that minimize noise

(e.g., via additional washing steps) rather than protocols that

document all binding events at the expense of greater noise.

We further employed our simulated data to test the sensitivity

of nearBynding to the uniformity of peak width. Specifically, we

increased the range of the simulated CLIP-seq peak widths to

accommodate the possibility that RBPs may have variable bind-
Cell Rep
ing footprints (Figure 2D). Although the

shape of the cross-correlation density track

changed to reflect greater variation in peak

widths, the amplitude and position of the

signal maximum did not since the peaks

were still centered at the same location.

Therefore, we conclude that differences

in peak width have no effect on signal

amplitude.

nearBynding creates a concatenated

transcriptome made of only the regions be-
ing interrogated as an input for StereoGene. However, signal

may not be evenly distributed across the concatenated

transcriptome. Therefore, we tested the dependence of near-

Bynding on the distribution of peaks along a concatenated tran-

scriptome by shifting the locations of the simulated peaks such

that they were all uniformly distributed or clustered near either

end of the CLIP-seq track (Figure S2). Compared with peak

concordance and foreground to background ratio, only a negli-

gible loss in signal amplitude was observed for the most

extremely skewed data (Figure S2). Overall, our results demon-

strate that the order in which transcripts are concatenated,

which could possibly affect the distribution of peaks, has negli-

gible effect on binding signal relative to other variables tested.

Called peaks or aligned tracks for RBP binding produce
similar binding profiles
Current practice for analyzing CLIP data is to call RBP-bound

peaks using algorithms such as Piranha (Uren et al., 2012),

CLIPper (Lovci et al., 2013), CLAM (Zhang and Xing, 2017), or

omniCLIP (Drewe-Boss et al., 2018). The ENCODE portal (Davis

et al., 2018) has eCLIP datasets for 103 RBPs in HepG2 cells and

120 RBPs in K562 cells, with each dataset containing two repli-

cates and an input control. We selected 29 different RBPs in

HepG2 and K562 cells that demonstrate strong, reproducible
orts Methods 1, 100088, October 25, 2021 5
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binding signals at 30 UTRs based on analysis from Van Nostrand

et al. (2020b) (Figure S3A), which came to 40 unique cell-type-

RBP combinations. We used these high-confidence datasets

to test whether nearBynding can produce comparable peak

binding profiles from peak callers and aligned reads. We

collected eCLIP aligned reads and binding peaks called by two

of the most commonly used peak callers, Piranha and CLIPper,

for these RBPs. We ran Piranha on all replicates with parameters

as described in the original publication (Uren et al., 2012). We

also downloaded CLIPper-derived peaks of the eCLIP data

from the ENCODE data portal (Lovci et al., 2013). These three

different inputs—aligned eCLIP reads, Piranha peaks, and

CLIPper peaks—were run through nearBynding, and RBP bind-

ing was assessed for 30 UTR-annotated regions of the transcrip-

tome. We used the Wasserstein distance (Schuhmacher et al.,

2020) to determine the amplitude and distance required to trans-

form one RBP binding profile into another. We calculated the

sum of Wasserstein distances between the cross-correlation

density tracks of all RNA structure contexts for all 40 unique

cell-type-RBP combinations across the three different input

types each. Visualizing their distances in 2D on a multidimen-

sional scaling plot (Figure S3B) and comparing binding profiles

across input types (Figure S3C) showed only minor differences

in the binding profile for RBPs based on the input source. Itera-

tive sampling of binding profiles further indicated that the binding

profiles for the three input sources of the same protein are more

closely clustered compared with randomly chosen binding

profiles from other proteins in the same cell line (p = 5.59 3

10�7 in K562 cells and p = 2.51 3 10�10 in HepG2 cells, Kolmo-

gorov-Smirnov test; Figure S3D). Therefore, the difference be-

tween profiles for different RBPs is greater than the difference

within the same experiment queried via different inputs.

We next tested whether technical replicate reproducibility is

comparable between peak-called and aligned read inputs by

calculating the Wasserstein distance between replicates for

the same 40 unique cell-type-RBP combinations using the three

different input track types. The distance between aligned read

binding profiles for technical replicates was smallest in 12 of

40 cases (30%), Piranha peak-called replicate profiles were

closest in 23 of 40 cases, and CLIPper peak-called replicate pro-

files were closest in 5 of 40 cases (Figure S3E). Further, the dis-

tances between technical replicates for peak-called and aligned

read tracks are quantitatively similar for the majority of cell-type-

RBP combinations tested (Figure S3F). These data cumulatively

suggest that aligned reads generate similar outputs for technical

replicates via nearBynding compared with peak-called tracks.

Cross-correlation tracks reproducibly cluster RBP data
across biological replicates
The context-dependence of RNA binding can be expected to

cause variable signal concordance of binding predictions from

CLIP-seq data for the same RBP. Replicates from the same

cell type wouldmanifest technical differences, whereas analyses

of the same RBP across different cell types may show additional

biological differences in RBP binding. We therefore expected

that binding profiles of the same RBP between replicates within

the same cell type would have greater concordance than profiles

from different cell types. We assessed nearBynding’s ability to
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reproducibly identify RBP binding contexts across replicates

and cell types by clustering RBP binding profiles.

Within the ENCODE datasets, 73 RBPs are common across

both cell lines. Genome-wide RNA structure profiling showed

that 30 UTRs, which are targets for many RBPs, are generally

highly structured in cells (Beaudoin et al., 2014; Van Nostrand

et al., 2020b). Therefore, in order to test our algorithm on a robust

dataset, we restricted our analysis of RBP binding to 30 UTRs.
We collected isoform information of all 30 UTRs expressed in

HepG2 and K562 using RNA sequencing [RNA-seq] data from

ENCODE (Davis et al., 2018). We generated cell-type-specific

binding profiles by selecting eCLIP reads that aligned to isoforms

expressed in the corresponding eCLIP cell type. The most abun-

dant 30 UTR isoforms for the expressed transcripts were then

submitted to nearBynding to determine RBP binding prefer-

ences for these regions.

First, we wanted to test how well biological replicates of the

same RBP in the same cell type clustered. We calculated the

sum of Wasserstein distances between the cross-correlation

density tracks of all RNA structure contexts for every sample

within each cell type. Seventy-one of 206 replicates in HepG2

(34%, p = 9.4 3 10�109 for a one-tailed binomial test assuming

random chance) and 115 of 240 replicates in K562 (48%, p =

1.3 3 10�203, one-tailed binomial test) most closely clustered

in pairs with their corresponding biological replicate (Figure 3A).

Replicates of RBPswith a large proportion of their binding events

in 30 UTRs tend to cluster more closely based on Wasserstein

distance than those of other RBPs (Figure 3B), which is reason-

able since the RBP binding profiles were generated from 30 UTRs
of the transcriptome (Van Nostrand et al., 2020a). Among these

30 UTR-binding RBPs, 33 of 42 replicates in HepG2 (79%, p =

2.2 3 10�45, one-tailed binomial test) and 37 of 44 replicates in

K562 (84%, p = 1.2 3 10�53, one-tailed binomial test) most

closely clustered in pairs with their corresponding biological

replicate, and 93% and 91% of replicates were clustered within

the top two distances in K562 and HepG2, respectively (Fig-

ure 3C). These analyses demonstrate that biological replicates

largely cluster together using Wasserstein distance.

Next, we interrogated the reproducibility of RBPbinding profiles

across cell lines. The cross-correlation densities of biological rep-

licates for each RBP were averaged, and these averaged values

were used to calculate the Wasserstein distances for all RNA

structural contexts. For every RBP in K562 cells, we ranked how

similar its binding profile was to RBPs in HepG2 cells. Fifteen of

73 RBPs (21%) clustered closest with their counterparts in the

other cell line, and 21 of 73 RBP counterparts (29%) were within

the top three closest distances in the other cell line (Figures 3D

and 3E). Interestingly, there was no difference in clustering dis-

tances across cell lines between 30 UTR-binding RBPs and all

other RBPs (Figure S4A). The inverse comparison—the distance

of HepG2 RBPs against all K562 RBPs—also had 29% of RBPs

cluster within the top three distances of their counterparts (Fig-

ure S4B), suggesting poorer concordance across cell types than

between biological replicates in the same cell line.

RNA structure cross-correlation signal is specific
We wanted to analyze negative control datasets to test near-

Bynding’s specificity. Chromatin immunoprecipitation (ChIP)



Figure 3. Binding profiles of all RBPs with eCLIP data in ENCODE clustered using Wasserstein distance

(A) Histogram of ranks for Wasserstein distances of paired biological replicates in HepG2 (left) and K562 (right) cells.

(B) Boxplots of biological replicate binding profile similarity rankings for RBPs that do (TRUE) or do not (FALSE) preferentially bind 30 UTRs compared via t test (p <

0.0001 for both) in HepG2 (left) and K562 (right) cells.

(C) Histogram of similarity rankings for Wasserstein distances of paired biological replicates in HepG2 (left) and K562 (right) cells for RBPs that preferentially bind

30 UTRs.
(D) Histogram of Wasserstein distance similarity rankings for the same RBP across HepG2 and K562 cell lines. The rankings of TIA1 and LARP7 across cell lines

are indicated.

(E) Example binding profiles for TIA1 (top), an RBP that is similar across cell types, and LARP7 (bottom), an RBP that is dissimilar across cell types, in HepG2 (left)

and K562 (right) cells. Error bars represent plus or minus three standard errors.

See also Figures S3 and S4.
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sequencing data depict where proteins bind DNA and can be

mapped to the transcriptome, but the protein-bound DNA is ex-

pected to have virtually no association with the RNA structure

transcribed from the bound genomic regions,making it a reason-

able negative control for RNA structure binding preferences.

eCLIP and ChIP data in the same cell line were available for six

30 UTR-binding proteins in the ENCODE portal (Davis et al.,
2018). The eCLIP data were predicted to have significant prefer-

ence for one or multiple RNA structure contexts, while the ChIP

data were expected to have no significant binding preference

signal. All tested ChIP datasets did not reach statistical signifi-

cance based on a plus or minus three standard error confidence

interval, whereas the eCLIP datasets for the same proteins

demonstrated statistically significant RNA structure binding
Cell Reports Methods 1, 100088, October 25, 2021 7



Figure 4. Application of nearBynding to analyze RBP binding profiles for proteins with known structure preference

(A–C) Binding profiles for (A) PUS1, (B) LIN28B, and (C) STAU2 from eCLIP data.

(D) Binding profile for STAU1 from hiCLIP cross-link site data.

(E) Binding profile for WT UPF1 binding from CLIP data.

(F) Binding profile of helicase-dependent UPF1 binding based on subtraction of DEAA UPF1 signal from WT.

See also Figure S5.
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preferences (e.g., Figures S4C–S4E). These negative control re-

sults suggest that nearBynding’s detection of RNA structure

binding preferences is specific.

RBP binding profiles recapitulate known structural
preferences
Next, we tested whether the binding profiles generated by near-

Bynding reflect known RBP structural binding preferences. We

selected four diverse RBPs to represent RBPs with a defined

sequence preference (PUM2), enzymatic activity (PUS1), multi-

ple types of RNA-binding domains (LIN28B), and a well-charac-

terized structure preference (STAU2).

We selected PUM2 for analysis because its modular structure

of eight tandem repeats is known to recognize RNA in a

sequence-specific manner (Wang et al., 2002). Although PUM2

preferentially binds 30 UTRs in a sequence-specific manner,

there is evidence that PUM2 also has a structural component

to its binding preferences: in vitro analysis shows that PUM2

dissociates from double-stranded regions faster than single-

stranded regions and that it stably binds regions flanked by

stem structures (Jarmoskaite et al., 2019). The PUM2 binding

profile (Figure 1C) showed that PUM2 hasminimal structure pref-

erence at the point of binding (nucleotide = 0), but it does prefer

stem context upstream and downstream of its point of contact.

The enzyme PUS1 adds a pseudouridine modification to target

RNAs (Carlile et al., 2019). PUS1 has a weak trinucleotide binding

sequence motif and modifies nucleotides at the 50 end of stem
8 Cell Reports Methods 1, 100088, October 25, 2021
loops flanked by single-stranded runs for the vast majority of its

high-confidence targets (Carlile et al., 2019). Consistent with

PUS1 binding andmodifying the 50 base of stems, its binding pro-

file showed a preference for single-stranded regions at the end of

the transcript (exterior context) upstream and double-stranded

(stem) context downstream of PUS1 binding (Figure 4A).

LIN28B has two RNA-binding domains: a cold shock domain

(CSD) and tandem zinc-binding motifs (zinc fingers [ZFs]).

Although LIN28 has a preference for binding GGAGA motifs,

target motifs are generally single stranded (Wilbert et al., 2012).

NMR spectroscopy suggests that although LIN28 binds stem-

rich regions, the CSD binds hairpins and the ZFs bind bulges

containing the sequence motif associated with the stem (Nam

et al., 2011). These same results were apparent in the binding

profile, which showed enrichment for stem, bulge, and hairpin

contexts at or proximal to the LIN28 binding site (Figure 4B).

STAU2 binds stretches of base-paired sequences of variable

lengths via its three double-stranded RNA-binding domains

(dsRBDs) (Ramos et al., 2000). Although the dsRBDs bind tight-

est to perfectly complementary stem structures, they are able to

bind stems that contain bulges (Ramos et al., 2000). Consistent

with expectations, the binding profile of STAU2 was strongly en-

riched for stem context, had slight enrichment for bulge context,

andwas generally depleted for single-stranded contexts such as

hairpin, multibranch, and exterior (Figure 4C).

There is a range of nucleotide resolution derived from

the various CLIP-seq techniques. For example, eCLIP provides
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30-nucleotide reads surrounding the protein-RNA cross-linking

site, whereas better resolution can be achieved with techniques

such as individual-nucleotide resolution CLIP (iCLIP) and RNA

hybrid iCLIP (hiCLIP) that are able to identify the protein-RNA

cross-link site with single-nucleotide resolution. The resolution

of nearBynding’s profiles reflects the resolution of the input

data. For example, by using hiCLIP cross-link sites of STAU1

(Sugimoto et al., 2015), which binds dsRNA similar to STAU2,

nearBynding was able to demonstrate that STAU1 contacts sin-

gle-stranded RNA (ssRNA)—preferably hairpin context, but

there was enrichment for all ssRNA contexts at the binding

point—but that this ssRNA was directly 30 of double-stranded
(stem) context (Figure 4D). Consistent with our nearBynding an-

alyses, the authors of the hiCLIP data hypothesized that cross-

linking sites were enriched at ssRNA because bases within the

duplexes are inaccessible for protein-RNA cross-linking (Sugi-

moto et al., 2015). Further, the cross-linking site was often 30 of
a stem-hairpin-stem structure.

Overall, although there are only a fewexperimentally confirmed

RNAstructure bindingpreferences for us to use as true-positives,

nearBynding-generated RBP binding profiles effectively recapit-

ulate documented preferences for RNA structures.

Differentiating WT and mutant RBP structural

preferences

Besides investigating WT protein binding relative to null signal,

nearBynding can be applied to researching mutant RBPs by

comparing WT and mutant protein binding. Although a compar-

ison of WT versus input control depicts the full complement of

RBP binding across the transcriptome, a comparison of WT

versus a mutant allows visualization of the function-dependent

binding of an RBP. For example, binding data are available for

the processive RNA helicase UPF1, which is involved in many

RNA decay pathways (Kim and Maquat, 2019), as well as for

two helicase-dead UPF1 mutants, K498A and DEAA, which are

deficient in ATP binding and hydrolysis, respectively (Lee et al.,

2015). Both helicase-dead UPF1 mutants retain the ability to

bind RNA, but they exhibit a complete loss in target discrimina-

tion (Lee et al., 2015). The WT-only UPF1 binding profile and the

profiles corrected for helicase-dead mutant signals are all highly

symmetrical (i.e., similar RNA structure binding preferences up-

stream and downstream of binding), but the mutant-corrected

profiles indicate a broader span of structure signals (Figures

4E, 4F, and S5A). The mutant-corrected profiles suggest that

UPF1 requires helicase activity to occupy stem contexts and

select against the unstructured multibranch and exterior

contexts.

Illustrate relative binding positions of RBPs
nearBynding can also use RBP binding as a track against

another RBP binding track, allowing the user to assess binding

preference of one RBP relative to another. To exemplify this

functionality, we chose proteins known to occupy the 50 and 30

ends of introns and used nearBynding to observe the position

and density of their preferred binding relative to each other

across unspliced transcripts in K562 cells (Figure S5B). We stud-

ied four proteins important for pre-mRNA splicing via their roles

in the spliceosome: PRPF8 and RBM22, both of which bind 50 in-
tronic termini, and BUD13 and U2AF2, which bind 30 intronic
termini (Briese et al., 2019). As expected, PRPF8 and RBM22

colocalized, and BUD13 and U2AF2 also colocalized (Figures

S5C and S5D). PRPF8 and RBM22 have comparatively weak,

broad signals roughly 100–300 nucleotides upstream of U2AF2

binding (Figure S5D), which corresponds to the �102 bp intron

length of the significant minimal intron peak common inmamma-

lian genomes (JiaYan et al., 2013). Although these tests only

reproduce known binding geometry, additional pairwise ana-

lyses of RBP binding using nearBynding could provide deeper

insights into the arrangements of proteins relative to one another

across the transcriptome.

Inform RBP binding preferences using experimentally
derived RNA annotations
Analyzing RBP binding to G-quadruplexes

nearBynding is not restricted to in silicoRNA structure prediction

input, so we next interrogated RBP binding profiles with experi-

mentally derived RNA structure data. Guanine-rich RNA se-

quences can interact via Hoogsteen base pairing and fold into

non-canonical structural motifs called G-quadruplexes (G4s)

(Brázda et al., 2014). Althoughmany tools are available to predict

putative G4s, they are prone to false-positives, since G4 folding

is often dependent on the wider context of the RNA sequence

and RBP regulation (Beaudoin et al., 2014; Puig Lombardi and

Londoño-Vallejo, 2020). We therefore used rG4-seq data

(Kwok et al., 2016) to map G4s that form in cells. Although the

rG4-seq data were collected from HEK293 cells and ENCODE

provided RBP binding data from HepG2 and K562 cells, we

reasoned that these cell lines would have enough G4s in com-

mon that we could observe general G4-binding trends. Indeed,

we observed strong RBP binding at G4s across the exome for

multiple published G4-binding proteins such as NONO, FUS,

GRSF1, DROSHA, and DDX42 (Figures 5A and S6A) (Pietras

et al., 2018; Rouleau et al., 2017; Simko et al., 2020; Yagi

et al., 2018; Zyner et al., 2019). Additionally, many of the RBPs

that exhibited the strongest G4-binding signal—PRPF4,

GTF2F1, FAM120A, CSTF2T, and DDX6—have recently been

shown to bind at putative G4 sites in mRNA UTRs (Lee et al.,

2020b). Notably, G4-binding profiles are consistent when

analyzing RBP binding in exonic and unspliced transcriptomic

regions for RBPs that have moderate to strong G4-binding pref-

erence (Figure S7). However, some published G4-binding pro-

teins such as FMR1 did not exhibit a robust signal, perhaps

due to cell-type-specific variations in binding (Figures 5A and

S6A; Table S1). Our analysis also identified RBPs such as

YBX3, PRPF8, ZNF800, PPIG, and NOLC1 that are depleted

for G4s at their binding sites in HepG2 and K562. These proteins

have not previously been documented for their preference

against G4 binding, which warrants future investigation.

We hypothesized that our protein-level data can help identify

domains that play a role in G4-binding preference. We pooled

the exonic HepG2 and K562 data and used the Pfam database

(El-Gebali et al., 2019) and protein sequence information to iden-

tify protein domains present within the RBPs. Across 13 com-

mon protein domains identified, most did not affect G4 binding

(Table 2, Figure S6B). RGG repeats are the most common motif

in G4-binding RBPs (e.g., FUS) (Brázda et al., 2018) and, based

on our analysis, RBPs with RG-rich domains did demonstrate
Cell Reports Methods 1, 100088, October 25, 2021 9



Figure 5. Application of nearBynding to

analyze RBP binding profiles for experimen-

tally derived RNA annotations

(A) G4-binding profiles for all 120 proteins with

eCLIP exome data in K562 cells. RBPs with molec-

ular evidence of G4 binding in the literature are

indicated in red on the left. RBPs with the most

positive and most negative correlation signals are

highlighted by the gray blocks and listed on the right,

with line graph examples to the far right.

(B) m6A binding profiles for RBM15, IGF2BP1,

IGF2BP3, FTO, and shuffled null track based on

miCLIP-seq data.

(C) Line plot of binding profile for IGF2BP1 and

shuffled null track with error bars plus or minus three

standard errors.

See also Figures S6 and S7; Table S1.
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increased G4 binding. Proteins that contain SAP, dsRBD, or

G-patch domains also had increased G4 binding, although there

is no literature evidence of this preference. In contrast, RBPs

that contain one or more armadillo domains had significantly

decreased G4 binding, with six out of eight armadillo-containing

proteins demonstrating G4 depletion in their binding preference.

Analyzing RBP preferences for RNA modification

m6A modification is an abundant RNA modification that affects

RNA structure (Roost et al., 2015). Since m6A modifications

affect RNA folding but are not considered in currently available

in silico folding algorithms, we tested whether miCLIP-seq data

could be used as an input for nearBynding to observe protein-

binding contexts relative to m6A modification. Multiple RBPs

are involved in the writing, reading, and erasing of m6A, such

as RBM15, IGF2BP1/3, and FTO, respectively (Huang et al.,

2018; Patil et al., 2016; Yu et al., 2018). We used miCLIP-seq

data (Huang et al., 2019) and eCLIP data (Davis et al., 2018)
10 Cell Reports Methods 1, 100088, October 25, 2021
from HepG2 to determine whether these

m6A-interacting RBPs show binding pref-

erences relative to m6A modification. As

expected, RBM15, IGF2BP1, and IGF2BP3

all demonstrated a preference for binding

m6A-modified RNA (Figure 5B). In contrast,

FTO did not preferentially occupy m6A-

modified regions of the transcriptome,

perhaps reflecting its role as anm6Aeraser.

Despite their modest density amplitudes,

likely due to a small signal to noise ratio in

the miCLIP-seq data, these signals are sig-

nificant given a plus or minus three stan-

dard error confidence interval above the

shuffled null track (Figure 5C). These repro-

ductions of previously observed results

demonstrate the diversity of data types

that can accurately inform RBP binding

contexts using nearBynding.

DISCUSSION

Our analyses revealed that the concor-
dance of RBP binding profiles across cell lines were lower than

biological replicates of the same cell lines. This difference may

be because (1) the eCLIP data are cleaner for one cell type; (2)

the transcripts expressed and therefore available for binding

differ; (3) there is differential expression of competitive binders,

modifiers, or cofactors; or (4) the RNA folds differently between

cell types. Prior analysis of these datasets has also uncovered

cell-type-specific differences in preferred transcript region bind-

ing for some of the RBPs interrogated (Van Nostrand et al.,

2020a). Literature precedents indicate many examples of RBPs

that shift their binding preferences as a result of post-transla-

tional modifications or cofactor binding (Schmidt et al., 2017;

Timchenko et al., 2006). For some RBPs, their cellular localiza-

tion and therefore binding opportunities rely on cofactor binding

(Heininger et al., 2016), whereas others’ binding opportunities

depend on the expression of competitive binders (Liu et al.,

2015). Variations in protein expression and post-translational



Table 2. Influence of RBP domains on G4-binding signal

Domain G4 signal difference Effect size p value

Armadillo �2.41 0.913 0.00147

RGG-repeat 1.57 0.592 0.00612

SAP 0.836 0.312 0.0123

dsRBD 1.57 0.589 0.0219

G-patch 1.77 0.662 0.0385

Alpha-beta 0.476 0.178 0.198

Winged-helix 1.88 0.707 0.238

RRM 0.385 0.144 0.301

K-homology �0.384 0.143 0.402

Helicase 0.428 0.16 0.436

WD40 �0.479 0.179 0.66

P loop 0.0385 0.0143 0.935

Zinc finger 0.000907 0.000338 0.999

Statistics from pooled HepG2 and K562 binding profiles: the difference in

mean G4-binding signal between proteins with and without the indicated

domain; Cohen’s d effect size; and the p value of a t test comparing G4

signal of proteins with and without the indicated domain. See also Fig-

ure S6.
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modification frequencies across cell lines may therefore drive

differences in protein binding profiles. Molecular validation

would be required to examine these intriguing cell-specific bind-

ing preferences for an RBP; in the absence of this proof, we sug-

gest using signal similarities across replicates and cell types to

bolster confidence in predictions of structure binding preference

for a given RBP.

A statistically significant cross-correlation signal between

RBP binding and RNA structures implies that an RBP binds

that specific structure, but there could be an alternative explana-

tion. It is possible that these RBP-associated sequences are

prone to adopt a particular RNA structure only when it is not

bound by the RBP. DROSHA, for example, binds G4-forming re-

gions only when these regions are unfolded (Rouleau et al.,

2017). Because many G4-forming sequences are actively

unfolded in vivo, we cannot differentiate without further molecu-

lar experimentation whether an RBP binds to G4s or RBP-asso-

ciated sequences are prone to forming G4s. We speculate that a

phenomenon similar to DROSHA’s binding drove the enrichment

of dsRBD-containing RBPs among the higher G4 signals (Table

2), since G4-forming sequences are necessarily GC rich and

likely form stable regions of dsRNA. Biochemical experimenta-

tion such as kinetics assays or crystal structures is necessary

to definitively ascertain RBP binding.

nearBynding is able to process continuous datatypes, such as

the probability of RNA structure and amplitudes of aligned CLIP-

seq reads. Literature suggests modeling RBP binding as a list of

bound regions across the transcriptome provides only a coarse

approximation of RBP binding motifs (Maticzka et al., 2014), and

therefore this nuanced read amplitude information may enable

us to identify preferred RNA structuremotifs based on RBP bind-

ing frequency. Although some differencesmay exist in RBPbind-

ing profiles when called peaks or aligned reads were used, the

differences for distinct RBPs are far greater than for the same
RBP interrogated using different inputs. These analyses demon-

strate the similarity in results between interval and continuous

datatypes, allowing for the possibility of omitting the step of

peak calling for RBP binding analysis.

Most state-of-the-art algorithms that incorporate RNA struc-

ture into predictions of RBP binding motifs rely on RNA

sequence alone to predict RNA secondary structure (Guo and

Bartel, 2016). Similarly, nearBynding can call CapR to predict

RNA structures. All these algorithms, however, assume that

the mRNA being folded is naked and unmodified, with only the

queried RBP binding it. nearBynding provides the flexibility for

users to input an even broader range of experimentally derived

RNA structure information, which could be used to study the

binding of non-canonical RNA structures (e.g., G4s, triple heli-

ces) and RNAmodifications (e.g., A-to-I editing, m6A, or N4-ace-

tylcytidine). In addition, users can improve the study of canonical

RNA structure binding by incorporating structural information

collected via chemical probing (e.g., SHAPE or dimethyl sulfate

[DMS]).

Given that nearBynding allows for the comparisons of various

interval or continuous features across user-selected regions of

the transcriptome, this algorithm may be adapted to correlate

many other transcriptome-related features. Users can study

the binding of an RBP relative to RNA structure, one RBP relative

to another, an RNAmodification relative to RNA structure, or any

pair of interval or continuous features so long as they can be an-

notated on a transcriptome. Further, mutant andWT data can be

directly compared to understand how genetic changes affect

elements such as RBP binding preferences or RNA modifica-

tions. Future work will take advantage of this flexibility to

characterize RBP complexes relative to RNA structure via

wider-ranging approaches than previously possible.

Limitations
nearBynding is only able to provide aggregate information about

RBP binding preferences, in contrast to other available machine-

learning tools that predict individual binding events across the

transcriptome (Sun et al., 2021) or RBP binding to alternative

RNA structures (Tomezsko et al., 2020). Another complexity of

transcriptomic data is that a single gene may have multiple tran-

scribed variants that are overlapping on a traditional genomic

scale. Since nearBynding does not allow redundant mapping

of data (e.g., one RBP binding event in an overlapping region

of two variants cannot be duplicated in the generation of the tran-

scriptome), it is unable to accommodate two or more variants

from the same gene if the queried regions of the transcripts

overlap.

The current software for nearBynding does not accommodate

data from in vitro experiments of proteins bound to RNA oligos

such as from SELEX or RNA Bind-N-Seq, since these methods

use RNA sequences that do not correspond to transcripts that

are mappable to the genome (Tuerk and Gold, 1990; Zykovich

et al., 2009). To correlate in vitro data via nearBynding, the

user would need to create a novel annotated genome containing

sequences for every oligonucleotide probe in the queried exper-

iment; however, the current pipeline could process a novel anno-

tated genome without further customization. While nearBynding

accepts two transcriptome-wide feature inputs for correlation,
Cell Reports Methods 1, 100088, October 25, 2021 11
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the software currently only supports the consideration of repli-

cates and background signal for one of these inputs, such as

for an input control in a CLIP experiment. Future work will sup-

port the possibility of accommodating replicates and removing

background signal for both input features, such as for analyzing

RBP binding to RNA data derived from an RNA immunoprecipi-

tation (RIP) experiment, which use antibodies targeting RNA

structures or modifications (Huang et al., 2018; Park et al., 2019).

The resolution of the nearBynding output is limited by the

lower-resolution input data track, so an output may imprecisely

depict the correlation between one narrow data type (e.g., nucle-

otide sequence, which has functional peak widths of one nucle-

otide) and one broader data type (e.g., CLIP peaks). However, in

cases of similar-width data types (e.g., single-nucleotide RBP

binding information such as iCLIP or hiCLIP; Huppertz et al.,

2014; Sugimoto et al., 2015; see Figure 4D), it is possible to,

for example, assess RNA sequence preferences relative to

RBP binding with single-nucleotide resolution. Current work

has not probed RNA sequence correlations, but future work

will integrate RNA sequence as a feature by separating each of

the four nucleotides into individual RNA tracks, similar to how

CapR separates six RNA structures into different tracks.
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(2018). The amino acid composition of quadruplex binding proteins reveals a

shared motif and predicts new potential quadruplex interactors. Molecules

23. https://doi.org/10.3390/molecules23092341.

Briese, M., Haberman, N., Sibley, C.R., Faraway, R., Elser, A.S., Chakrabarti,

A.M., Wang, Z., König, J., Perera, D., Wickramasinghe, V.O., et al. (2019). A

systems view of spliceosomal assembly and branchpoints with iCLIP. Nat.

Struct. Mol. Biol. 26, 930–940.

Carlile, T.M., Martinez, N.M., Schaening, C., Su, A., Bell, T.A., Zinshteyn, B.,

and Gilbert, W.V. (2019). mRNA structure determines modification by pseu-

douridine synthase 1. Nat. Chem. Biol., 1–9.

Chen, X., Castro, S.A., Liu, Q., Hu, W., and Zhang, S. (2019). Practical consid-

erations on performing and analyzing CLIP-seq experiments to identify tran-

scriptomic-wide RNA-protein interactions. Methods 155, 49–57.

Davis, C.A., Hitz, B.C., Sloan, C.A., Chan, E.T., Davidson, J.M., Gabdank, I.,

Hilton, J.A., Jain, K., Baymuradov, U.K., Narayanan, A.K., et al. (2018). The

Encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids

Res. 46, D794–D801.

Drewe-Boss, P., Wessels, H.-H., and Ohler, U. (2018). omniCLIP: probabilistic

identification of protein-RNA interactions from CLIP-seq data. Genome Biol.

19, 183.

Edupuganti, R.R., Geiger, S., Lindeboom, R.G.H., Shi, H., Hsu, P.J., Lu, Z.,

Wang, S.-Y., Baltissen, M.P.A., Jansen, P.W.T.C., Rossa, M., et al. (2017).

https://doi.org/10.1016/j.crmeth.2021.100088
https://doi.org/10.1016/j.crmeth.2021.100088
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref1
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref1
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref1
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref2
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref2
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref3
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref3
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref3
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref3
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref4
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref4
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref4
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref5
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref5
https://doi.org/10.3390/molecules23092341
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref7
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref7
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref7
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref7
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref8
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref8
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref8
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref9
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref9
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref9
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref10
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref10
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref10
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref10
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref11
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref11
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref11
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref12
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref12


Article
ll

OPEN ACCESS
N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA ho-

meostasis. Nat. Struct. Mol. Biol. 24, 870–878.

El-Gebali, S., Mistry, J., Bateman, A., Eddy, S.R., Luciani, A., Potter, S.C., Qur-

eshi, M., Richardson, L.J., Salazar, G.A., Smart, A., et al. (2019). The Pfam pro-

tein families database in 2019. Nucleic Acids Res. 47, D427–D432.

Favorov, A., Mularoni, L., Cope, L.M., Medvedeva, Y., Mironov, A.A., Makeev,

V.J., andWheelan, S.J. (2012). Exploringmassive, genome scale datasets with

the GenometriCorr package. PLoS Comput. Biol. 8. https://doi.org/10.1371/

journal.pcbi.1002529.

Fukunaga, T., Ozaki, H., Terai, G., Asai, K., Iwasaki, W., and Kiryu, H. (2014).

CapR: revealing structural specificities of RNA-binding protein target recogni-

tion using CLIP-seq data. Genome Biol. 15, R16.

Guo, J.U., and Bartel, D.P. (2016). RNA G-quadruplexes are globally unfolded

in eukaryotic cells and depleted in bacteria. Science 353. https://doi.org/10.

1126/science.aaf5371.

Heininger, A.U., Hackert, P., Andreou, A.Z., Boon, K.-L., Memet, I., Prior, M.,

Clancy, A., Schmidt, B., Urlaub, H., Schleiff, E., et al. (2016). Protein cofactor

competition regulates the action of a multifunctional RNA helicase in different

pathways. RNA Biol. 13, 320–330.

Heller, D., Krestel, R., Ohler, U., Vingron, M., and Marsico, A. (2017). ssHMM:

extracting intuitive sequence-structure motifs from high-throughput RNA-

binding protein data. Nucleic Acids Res. 45, 11004–11018.

Howe, K.L., Contreras-Moreira, B., De Silva, N., Maslen, G., Akanni, W., Allen,

J., Alvarez-Jarreta, J., Barba, M., Bolser, D.M., Cambell, L., et al. (2020). En-

sembl Genomes 2020—enabling non-vertebrate genomic research. Nucleic

Acids Res. 48, D689–D695.

Huang, H., Weng, H., Sun, W., Qin, X., Shi, H., Wu, H., Zhao, B.S., Mesquita,

A., Liu, C., Yuan, C.L., et al. (2018). Recognition of RNA N6-methyladenosine

by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol.

20, 285–295.

Huang, H., Weng, H., Zhou, K., Wu, T., Zhao, B.S., Sun, M., Chen, Z., Deng, X.,

Xiao, G., Auer, F., et al. (2019). Histone H3 trimethylation at lysine 36 guides

m6A RNA modification co-transcriptionally. Nature 567, 414–419.

Huppertz, I., Attig, J., D’Ambrogio, A., Easton, L.E., Sibley, C.R., Sugimoto, Y.,

Tajnik, M., König, J., and Ule, J. (2014). iCLIP: protein–RNA interactions at

nucleotide resolution. Methods 65, 274–287.

Ingolia, N.T., Ghaemmaghami, S., Newman, J.R.S., and Weissman, J.S.

(2009). Genome-wide analysis in vivo of translation with nucleotide resolution

using ribosome profiling. Science 324, 218–223.

Jarmoskaite, I., Denny, S.K., Vaidyanathan, P.P., Becker, W.R., Andreasson,

J.O.L., Layton, C.J., Kappel, K., Shivashankar, V., Sreenivasan, R., Das, R.,

et al. (2019). A quantitative and predictive model for RNA binding by human

pumilio proteins. Mol. Cell 74, 966–981.e18.

JiaYan, W., JingFa, X., LingPing, W., Jun, Z., HongYan, Y., ShuangXiu, W.,

Zhang, Z., and Jun, Y. (2013). Systematic analysis of intron size and abun-

dance parameters in diverse lineages. Sci. China Life Sci. 56, 968–974.

Kim, Y.K., andMaquat, L.E. (2019). UPFront and center in RNA decay: UPF1 in

nonsense-mediated mRNA decay and beyond. RNA 25, 407–422.

Kravatsky, Y.V., Chechetkin, V.R., Tchurikov, N.A., and Kravatskaya, G.I.

(2015). Genome-wide study of correlations between genomic features and

their relationship with the regulation of gene expression. DNA Res. 22,

109–119.

Kwok, C.K., Marsico, G., Sahakyan, A.B., Chambers, V.S., and Balasubrama-

nian, S. (2016). rG4-seq reveals widespread formation of G-quadruplex struc-

tures in the human transcriptome. Nat. Methods 13, 841–844.

Lee, C.M., Barber, G.P., Casper, J., Clawson, H., Diekhans, M., Gonzalez,

J.N., Hinrichs, A.S., Lee, B.T., Nassar, L.R., Powell, C.C., et al. (2020a).

UCSC Genome Browser enters 20th year. Nucleic Acids Res. 48, D756–D761.

Lee, D.S.M., Ghanem, L.R., and Barash, Y. (2020b). Integrative analysis re-

veals RNA G-quadruplexes in UTRs are selectively constrained and enriched

for functional associations. Nat. Commun. 11, 1–12.
Lee, S.R., Pratt, G., Martinez, F., Yeo, G.W., and Lykke-Andersen, J. (2015).

Target discrimination in nonsense-mediated mRNA decay requires Upf1

ATPase activity. Mol. Cell 59, 413–425.

Li, X., Quon, G., Lipshitz, H.D., andMorris, Q. (2010). Predicting in vivo binding

sites of RNA-binding proteins using mRNA secondary structure. RNA 16,

1096–1107.

Li, X., Kazan, H., Lipshitz, H.D., andMorris, Q.D. (2014). Finding the target sites

of RNA-binding proteins. Wiley Interdiscip. Rev. RNA 5, 111–130.

Liu, L., Ouyang, M., Rao, J.N., Zou, T., Xiao, L., Chung, H.K., Wu, J., Donahue,

J.M., Gorospe,M., andWang, J.-Y. (2015). Competition betweenRNA-binding

proteins CELF1 and HuR modulates MYC translation and intestinal epithelium

renewal. Mol. Biol. Cell 26, 1797–1810.

Lovci, M.T., Ghanem, D., Marr, H., Arnold, J., Gee, S., Parra, M., Liang, T.Y.,

Stark, T.J., Gehman, L.T., Hoon, S., et al. (2013). Rbfox proteins regulate alter-

native mRNA splicing through evolutionarily conserved RNA bridges. Nat.

Struct. Mol. Biol. 20, 1434–1442.

Lucks, J.B., Mortimer, S.A., Trapnell, C., Luo, S., Aviran, S., Schroth, G.P.,

Pachter, L., Doudna, J.A., and Arkin, A.P. (2011). Multiplexed RNA structure

characterization with selective 20-hydroxyl acylation analyzed by primer exten-

sion sequencing (SHAPE-seq). Proc. Natl. Acad. Sci. U S A 108, 11063–11068.

Luo, E.-C., Nathanson, J.L., Tan, F.E., Schwartz, J.L., Schmok, J.C., Shankar,

A., Markmiller, S., Yee, B.A., Sathe, S., Pratt, G.A., et al. (2020). Large-scale

tethered function assays identify factors that regulate mRNA stability and

translation. Nat. Struct. Mol. Biol. 27, 1–12.

Maticzka, D., Lange, S.J., Costa, F., and Backofen, R. (2014). GraphProt:

modeling binding preferences of RNA-binding proteins. GenomeBiol. 15, R17.

Matunis, M.J., Michael, W.M., and Dreyfuss, G. (1992). Characterization and

primary structure of the poly(C)-binding heterogeneous nuclear ribonucleo-

protein complex K protein. Mol. Cell Biol. 12, 164–171.

Nam, Y., Chen, C., Gregory, R.I., Chou, J.J., and Sliz, P. (2011). Molecular ba-

sis for interaction of let-7 microRNAs with Lin28. Cell 147, 1080–1091.

Navarro, D. (2015). Learning Statistics with R: A Tutorial for Psychology Stu-

dents and Other Beginners. (Version 0.5) (University of Adelaide).

Okada, S., Ueda, H., Noda, Y., and Suzuki, T. (2019). Transcriptome-wide

identification of A-to-I RNA editing sites using ICE-seq. Methods 156, 66–78.

Ozdilek, B.A., Thompson, V.F., Ahmed, N.S., White, C.I., Batey, R.T., and

Schwartz, J.C. (2017). Intrinsically disordered RGG/RG domains mediate

degenerate specificity in RNA binding. Nucleic Acids Res. 45, 7984–7996.

Pan, X., and Shen, H.-B. (2018). Predicting RNA–protein binding sites and mo-

tifs through combining local and global deep convolutional neural networks.

Bioinformatics 34, 3427–3436.

Park, O.H., Ha, H., Lee, Y., Boo, S.H., Kwon, D.H., Song, H.K., and Kim, Y.K.

(2019). Endoribonucleolytic cleavage of m6A-containing RNAs by RNase P/

MRP complex. Mol. Cell 74, 494–507.e8.

Patil, D.P., Chen, C.-K., Pickering, B.F., Chow, A., Jackson, C., Guttman, M.,

and Jaffrey, S.R. (2016). m6A RNAmethylation promotes XIST-mediated tran-

scriptional repression. Nature 537, 369–373.

Pietras, Z., Wojcik, M.A., Borowski, L.S., Szewczyk, M., Kulinski, T.M., Cysew-

ski, D., Stepien, P.P., Dziembowski, A., and Szczesny, R.J. (2018). Dedicated

surveillance mechanism controls G-quadruplex forming non-coding RNAs in

human mitochondria. Nat. Commun. 9, 2558. https://doi.org/10.1038/

s41467-018-05007-9.

Puig Lombardi, E., and Londoño-Vallejo, A. (2020). A guide to computational

methods for G-quadruplex prediction. Nucleic Acids Res. 48, 1–15.

Quinlan, A.R. (2014). BEDTools: the Swiss-army tool for genome feature anal-

ysis. Curr. Protoc. Bioinformatics 47, 11.12.1–11.12.34.

Ramos, A., Gr€unert, S., Adams, J., Micklem, D.R., Proctor, M.R., Freund, S.,

Bycroft, M., St Johnston, D., and Varani, G. (2000). RNA recognition by a Stau-

fen double-stranded RNA-binding domain. EMBO J. 19, 997–1009.

Roost, C., Lynch, S.R., Batista, P.J., Qu, K., Chang, H.Y., and Kool, E.T. (2015).

Structure and thermodynamics of N6-methyladenosine in RNA: a spring-

loaded base modification. J. Am. Chem. Soc. 137, 2107–2115.
Cell Reports Methods 1, 100088, October 25, 2021 13

http://refhub.elsevier.com/S2667-2375(21)00143-0/sref12
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref12
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref13
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref13
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref13
https://doi.org/10.1371/journal.pcbi.1002529
https://doi.org/10.1371/journal.pcbi.1002529
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref15
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref15
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref15
https://doi.org/10.1126/science.aaf5371
https://doi.org/10.1126/science.aaf5371
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref17
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref17
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref17
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref17
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref18
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref18
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref18
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref19
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref19
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref19
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref19
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref20
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref20
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref20
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref20
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref21
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref21
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref21
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref22
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref22
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref22
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref23
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref23
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref23
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref24
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref24
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref24
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref24
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref25
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref25
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref25
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref26
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref26
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref27
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref27
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref27
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref27
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref28
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref28
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref28
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref29
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref29
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref29
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref30
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref30
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref30
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref31
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref31
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref31
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref32
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref32
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref32
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref33
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref33
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref34
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref34
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref34
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref34
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref35
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref35
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref35
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref35
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref36
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref36
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref36
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref36
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref36
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref37
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref37
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref37
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref37
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref38
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref38
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref39
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref39
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref39
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref40
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref40
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref41
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref41
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref42
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref42
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref43
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref43
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref43
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref44
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref44
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref44
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref45
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref45
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref45
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref46
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref46
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref46
https://doi.org/10.1038/s41467-018-05007-9
https://doi.org/10.1038/s41467-018-05007-9
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref48
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref48
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref49
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref49
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref50
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref50
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref50
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref50
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref51
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref51
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref51


Article
ll

OPEN ACCESS
Rouleau, S.G., Garant, J.-M., Bolduc, F., Bisaillon, M., and Perreault, J.-P.

(2017). G-quadruplexes influence pri-microRNA processing. RNA Biol. 15,

198–206.

Sasse, A., Laverty, K.U., Hughes, T.R., and Morris, Q.D. (2018). Motif models

for RNA-binding proteins. Curr. Opin. Struct. Biol. 53, 115–123.

Sauer, M., Juranek, S.A., Marks, J., Magis, A.D., Kazemier, H.G., Hilbig, D.,

Benhalevy, D., Wang, X., Hafner, M., and Paeschke, K. (2019). DHX36 pre-

vents the accumulation of translationally inactive mRNAs with G4-structures

in untranslated regions. Nat. Commun. 10, 1–15.

Schmidt, T., Knick, P., Lilie, H., Friedrich, S., Golbik, R.P., and Behrens, S.-E.

(2017). The properties of the RNA-binding protein NF90 are considerably

modulated by complex formation with NF45. Biochem. J. 474, 259–280.

Schuhmacher, D., Bähre, B., Bonneel, N., Gottschlich, C., Hartmann, V., Hei-

nemann, F., Schmitzer, B., Schrieber, J., and Wilm, T. (2020). Transport:

Computation of Optimal Transport Plans and Wasserstein Distances (CRAN).

Simko, E.A.J., Liu, H., Zhang, T., Velasquez, A., Teli, S., Haeusler, A.R., and

Wang, J. (2020). G-quadruplexes offer a conserved structural motif for

NONO recruitment to NEAT1 architectural lncRNA. Nucleic Acids Res. 48,

7421–7438. https://doi.org/10.1093/nar/gkaa475.

Stavrovskaya, E.D., Niranjan, T., Fertig, E.J., Wheelan, S.J., Favorov, A.V., and

Mironov, A.A. (2017). StereoGene: rapid estimation of genome-wide correla-

tion of continuous or interval feature data. Bioinformatics 33, 3158–3165.

Sugimoto, Y., König, J., Hussain, S., Zupan, B., Curk, T., Frye, M., and Ule, J.

(2012). Analysis of CLIP and iCLIPmethods for nucleotide-resolution studies of

protein-RNA interactions. Genome Biol. 13, R67.

Sugimoto, Y., Vigilante, A., Darbo, E., Zirra, A., Militti, C., D’Ambrogio, A., Lus-

combe, N.M., and Ule, J. (2015). hiCLIP reveals the in vivo atlas of mRNA sec-

ondary structures recognized by Staufen 1. Nature 519, 491–494.

Sun, L., Xu, K., Huang, W., Yang, Y.T., Li, P., Tang, L., Xiong, T., and Zhang,

Q.C. (2021). Predicting dynamic cellular protein–RNA interactions by deep

learning using in vivo RNA structures. Cell Res., 1–22.

Sun, Z., Xue, S., Xu, H., Hu, X., Chen, S., Yang, Z., Yang, Y., Ouyang, J., and

Cui, H. (2018). Effects of NSUN2 deficiency on the mRNA 5-methylcytosine

modification and gene expression profile in HEK293 cells. Epigenomics 11,

439–453.

Taliaferro, J.M., Lambert, N.J., Sudmant, P.H., Dominguez, D., Merkin, J.J.,

Alexis, M.S., Bazile, C., and Burge, C.B. (2016). RNA sequence context effects

measured in vitro predict in vivo protein binding and regulation. Mol. Cell 64,

294–306.

Timchenko, L.T., Salisbury, E., Wang, G.-L., Nguyen, H., Albrecht, J.H., Her-

shey, J.W.B., and Timchenko, N.A. (2006). Age-specific CUGBP1-eIF2 com-

plex increases translation of CCAAT/Enhancer-binding protein b in old liver.

J. Biol. Chem. 281, 32806–32819.

Tomezsko, P.J., Corbin, V.D.A., Gupta, P., Swaminathan, H., Glasgow, M.,

Persad, S., Edwards, M.D., Mcintosh, L., Papenfuss, A.T., Emery, A., et al.

(2020). Determination of RNA structural diversity and its role in HIV-1 RNA

splicing. Nature 582, 438–442.

Tuerk, C., and Gold, L. (1990). Systematic evolution of ligands by exponential

enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249,

505–510.
14 Cell Reports Methods 1, 100088, October 25, 2021
Uren, P.J., Bahrami-Samani, E., Burns, S.C., Qiao, M., Karginov, F.V., Hodges,

E., Hannon, G.J., Sanford, J.R., Penalva, L.O.F., and Smith, A.D. (2012). Site

identification in high-throughput RNA–protein interaction data. Bioinformatics

28, 3013–3020.

Van Nostrand, E.L., Freese, P., Pratt, G.A., Wang, X., Wei, X., Xiao, R., Blue,

S.M., Chen, J.-Y., Cody, N.A.L., Dominguez, D., et al. (2020a). A large-scale

binding and functional map of human RNA-binding proteins. Nature 583,

711–719.

Van Nostrand, E.L., Pratt, G.A., Yee, B.A., Wheeler, E.C., Blue, S.M., Mueller,

J., Park, S.S., Garcia, K.E., Gelboin-Burkhart, C., Nguyen, T.B., et al. (2020b).

Principles of RNA processing from analysis of enhanced CLIP maps for 150

RNA binding proteins. Genome Biol. 21, 90.

Waldron, J.A., Tack, D.C., Ritchey, L.E., Gillen, S.L., Wilczynska, A., Turro, E.,

Bevilacqua, P.C., Assmann, S.M., Bushell, M., and Le Quesne, J. (2019).

mRNA structural elements immediately upstream of the start codon dictate

dependence upon eIF4A helicase activity. Genome Biol. 20, 300.

Wang, X., McLachlan, J., Zamore, P.D., and Hall, T.M.T. (2002). Modular

recognition of RNA by a human pumilio-homology domain. Cell 110, 501–512.

Wilbert, M.L., Huelga, S.C., Kapeli, K., Stark, T.J., Liang, T.Y., Chen, S.X., Yan,

B.Y., Nathanson, J.L., Hutt, K.R., Lovci, M.T., et al. (2012). LIN28 binds

messenger RNAs at GGAGA motifs and regulates splicing factor abundance.

Mol. Cell 48, 195–206.

Wolfe, M.B., Schagat, T.L., Paulsen, M.T., Magnuson, B., Ljungman, M., Park,

D., Zhang, C., Campbell, Z.T., Goldstrohm, A.C., and Freddolino, P.L. (2020).

Principles of mRNA control by human PUM proteins elucidated from multi-

modal experiments and integrative data analysis. RNA 26, 1680–1703,

077362.120.

Yagi, R., Miyazaki, T., and Oyoshi, T. (2018). G-quadruplex binding ability of

TLS/FUS depends on the b-spiral structure of the RGG domain. Nucleic Acids

Res. 46, 5894–5901.

Yan, Z., Hamilton, W.L., and Blanchette, M. (2020). Graph neural representa-

tional learning of RNA secondary structures for predicting RNA-protein inter-

actions. Bioinformatics 36, i276–i284.

Yu, J., Chen, M., Huang, H., Zhu, J., Song, H., Zhu, J., Park, J., and Ji, S.-J.

(2018). Dynamic m6A modification regulates local translation of mRNA in

axons. Nucleic Acids Res. 46, 1412–1423.

Zhang, Z., and Xing, Y. (2017). CLIP-seq analysis of multi-mapped reads dis-

covers novel functional RNA regulatory sites in the human transcriptome. Nu-

cleic Acids Res. 45, 9260–9271.

Zhang, Y., Liu, H., Lv, J., Xiao, X., Zhu, J., Liu, X., Su, J., Li, X.,Wu, Q.,Wang, F.,

et al. (2011). QDMR: a quantitative method for identification of differentially

methylated regions by entropy. Nucleic Acids Res. 39, e58.

Zykovich, A., Korf, I., and Segal, D.J. (2009). Bind-n-Seq: high-throughput

analysis of in vitro protein–DNA interactions using massively parallel

sequencing. Nucleic Acids Res. 37, e151.

Zyner, K.G., Mulhearn, D.S., Adhikari, S., Martı́nez Cuesta, S., Di Antonio, M.,

Erard, N., Hannon, G.J., Tannahill, D., and Balasubramanian, S. (2019).

Genetic interactions of G-quadruplexes in humans. eLife 8, e46793.

http://refhub.elsevier.com/S2667-2375(21)00143-0/sref52
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref52
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref52
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref53
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref53
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref54
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref54
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref54
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref54
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref55
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref55
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref55
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref56
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref56
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref56
https://doi.org/10.1093/nar/gkaa475
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref58
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref58
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref58
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref59
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref59
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref59
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref60
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref60
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref60
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref61
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref61
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref61
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref62
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref62
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref62
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref62
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref63
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref63
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref63
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref63
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref64
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref64
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref64
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref64
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref65
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref65
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref65
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref65
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref66
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref66
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref66
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref67
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref67
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref67
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref67
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref68
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref68
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref68
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref68
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref69
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref69
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref69
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref69
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref70
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref70
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref70
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref70
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref71
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref71
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref72
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref72
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref72
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref72
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref73
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref73
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref73
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref73
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref73
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref74
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref74
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref74
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref75
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref75
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref75
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref76
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref76
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref76
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref77
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref77
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref77
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref78
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref78
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref78
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref79
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref79
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref79
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref80
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref80
http://refhub.elsevier.com/S2667-2375(21)00143-0/sref80


Article
ll

OPEN ACCESS
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

ENCODE eCLIP, ChIP, and RNA-seq (Davis et al., 2018) https://www.encodeproject.org/

iMaps STAU1 hiCLIP (Sugimoto et al., 2015) https://imaps.genialis.com/iclip/search/collection/hi-clip-

reveals-m-rna-secondary-structures

UPF1 WT, K498A, and DEAA CLIP-seq (Lee et al., 2015) GEO: GSE69586

Ensembl release 100 FASTA and GTF files (Howe et al., 2020) ftp://ftp.ensembl.org/pub/release-100/

UCSC hg38 chain file (Lee et al., 2020a) http://hgdownload.soe.ucsc.edu/goldenPath/hg19/liftOver/

hg19ToHg38.over.chain.gz

Pfam protein domains (El-Gebali et al., 2019) http://pfam.xfam.org/

RGG-repeat-containing proteins list (Ozdilek et al., 2017) Supplemental information

HepG2 miCLIP-seq (Huang et al., 2019) GEO: GSE121942

HEK293 rG4-seq (Kwok et al., 2016) GEO: GSE77282

HEK293 RNA-seq (Sun et al., 2018) GEO: GSE122425

Software and algorithms

nearBynding This paper https://doi.org/10.5281/zenodo.5176831

https://doi.org/10.5281/zenodo.5176827

CapR (Fukunaga et al., 2014) https://github.com/fukunagatsu/CapR

StereoGene (Stavrovskaya et al., 2017) http://stereogene.bioinf.fbb.msu.ru/

BEDtools (Quinlan, 2014) https://bedtools.readthedocs.io/en/latest/

Piranha (Uren et al., 2012) http://smithlabresearch.org/software/piranha/

deepTools (Ramı́rez et al., 2016) https://deeptools.readthedocs.io/en/develop/index.html#
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Anthony

Leung (anthony.leung@jhu.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

d This paper analyzes existing, publicly available data. Accession numbers for the datasets are listed in the key resources table.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

nearBynding inputs
In order to provide predicted RNA structure context for RBP binding, nearBynding requires the following pieces of input data: (1)

CLIP-seq alignment tracks for the RBP of interest, (2) an annotated genome and associated FASTA sequence, and (3) a list of

transcripts of interest. It is recommended that all transcripts selected are expressed in the cell type used for the CLIP-seq exper-

iment. Alternative RNA structure information can optionally be included, and it is recommended that the data is derived from the

same cell type. All data must be converted to bedGraph format, and the functions CleanBEDtoBG and CleanBAMtoBG help users

do this.
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Map data to pseudochromosomes
Users must first choose which regions of the transcripts of interest to interrogate (e.g. UTRs, exons, whole transcript), based on

annotations available in the genome GTF file. nearBynding creates (1) a chain file that will be used to map the selected regions of

transcripts end-to-end, excluding the intergenic regions and undesired transcripts that comprise the majority of the genome, via

the function GenomeMappingtoChainFile and (2) a file detailing the names and sizes of all the chain file’s pseudochromosomes

via the function getChainChrSize. The chain file can then be used to transfer genome references of the CLIP-seq data from the

whole-genome alignment to the transcriptome alignment of interest via liftOverToExomicBG. If external RNA structure data is being

studied, its genome references would need to be transferred to the transcriptome alignment as well using the same chain file. Chain

files cannot accommodate overlapping intervals since they cause ambiguous regions in the transfer process, so it is recommended

that users supply the highest-expressed isoform of every gene expressed in the cell type of the CLIP-seq data to create the concat-

enated pseudochromosomes.

CapR RNA structure prediction
nearBynding pulls the sequences of selected regions of transcripts of interest from the genome FASTA file based on genome anno-

tations using BEDtools (Quinlan, 2014) wrapped in the function ExtractTranscriptomeSequence. Probabilistic RNA structure for the

selected regions are derived from in silico folding predictions by CapR, which includes RNAfold software in its structure predictions

(Fukunaga et al., 2014), via the function runCapR. Each nucleotide is scored as having a 0 to 1 probability of adopting one of six

different contexts by CapR. The data for the six different folding conformations are then separated and the transcript fragments

are concatenated into pseudo-chromosomes via processCapRout. In secondary structure representation, RNA bases are depicted

as vertices of polygons with edges of RNA backbone or hydrogen bonds (Figure 1B). The six different RNA structure contexts are

defined thus: stem context is if a base participates in hydrogen-bonding with another base; exterior context is if a base does not

form a polygon such as that the end of a transcript; hairpin context is if a single-stranded base is involved in a polygon with only

one hydrogen-bonding edge; bulge context is if a single-stranded base is involved in a polygon with two hydrogen-bonding edges

andwhere all stem context vertices are contiguous in the polygon; internal context is if a single-stranded base is involved in a polygon

with two hydrogen-bonding edges and where stem context vertices are not contiguous in the polygon; multibranch context is if a

single-stranded base is involved in a polygon with at least three hydrogen-bonding edges (Fukunaga et al., 2014).

Relative binding position calculation
To visualize the RNA structure landscape surrounding protein binding, StereoGene (Stavrovskaya et al., 2017), wrapped within the

functions runStereogene and runStereogeneOnCapR, is used to calculate the cross-correlation between RNA structure and protein

binding. The get_error argument for runStereogene and runStereogeneOnCapR allows users to also get the standard error for the

shuffled null track, and the nShuffle argument determines howmany times the null track is shuffled; calculating the shuffled null stan-

dard error is optional because it requires substantially more computational time, especially in cases where many shuffling iterations

are requested. nearBynding analyzes structure colocalization in single-nucleotide frames, which sacrifices some of the computa-

tional efficiency of StereoGene but maximizes RBP binding resolution. Cross-correlation densities are within the range -1 to +1,

where -1 suggests perfect depletion of an RBP for a tested RNA structure context, 0 represents no binding preference, and +1 sug-

gests perfect RBP binding for a tested RNA structure context. Since actual experimental correlation densities are far more modest,

they are reported as density x 100 for visualization, which is conducted using the functions visualizeStereogene and

visualizeCapRStereogene.

nearBynding output analyses
nearBynding allows users to calculate the similarity between output binding profiles via Wasserstein distance via bindingContextDis-

tance and bindingContextDistanceCapR, where small values indicate greater similarity. Users can also assess the grouping of

different categories of points via bootstrapping and the Kolmogorov–Smirnov test (Figure S3C) using assessGrouping.

Comparison of available spatial relationship algorithms
Multiple tools are available to evaluate the spatial relationships across genomic data types to draw conclusions about biological in-

teractions (e.g. histonemodifications and transcription start sites; CpG islands and gene promoters; splice sites and Alu elements). A

common approach to assessing colocalization of features is to compare features at identical transcriptomic locations or within win-

dows (overlapping coordinates, Figure S8A), such aswith the plotCorrelation function in deepTools (Ramı́rez et al., 2016). Biologically

important relationships can also occur at proximal but non-overlapping transcriptomic sites (adjacent coordinates), which can be

identified and quantified by tools such as the reldist function in BEDtools (Favorov et al., 2012). StereoGene extended spatial relation-

ship analysis to allow for correlation of continuous values, in addition to interval datatypes (Figure S8B) (Stavrovskaya et al., 2017).

StereoGene is optimized for genomic annotation information and cannot selectively and efficiently analyze transcriptome data

directly, so nearBynding expands its context of usability to transcriptomic data. Here, we provide an in-depth comparison of the

spatial analysis capabilities of deepTools, BEDtools, and StereoGene and detail the ways in which nearBynding extends StereoGene

to expand usability to transcriptomic analysis (summarized in Table 1).
e2 Cell Reports Methods 1, 100088, October 25, 2021
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We consider three main categories when comparing algorithms to correlate genomic relationships: the data types that can be

analyzed, the types of correlation employed, and whether correlation results are visualizable. Different data types represent different

information; for example, peak-called protein binding data is interval data, while aligned sequencing read data is continuous. Some

data, such asG-quadruplex-forming intervals, is binary, whereas other data, such asmethylation frequency, is non-binary. It is vital to

choose a correlation algorithm that is able to accommodate the data type being studied. Some types of correlation, such as

Spearman or Pearson correlation, can provide a single value for the overall correlation of two tracks; spatial correlation yields infor-

mation about the overall relationship between two tracks as a distribution of correlations; cross-correlation shows the relative posi-

tion of two tracks’ features; and partial correlation can be used to remove a confounder that affects both the inputs being compared.

No algorithm is able to compute all of these correlations, so users ought to first consider what correlation type can best answer the

question being asked. Lastly, not all algorithms to correlate genomic relationships have the built-in capacity to graph results, which

may be an important factor to weigh in the data analysis pipeline.

deepTools
deepTools plotCorrelation computes the Spearman or Pearson correlation between two or more files based on scores within

genomic regions (default is 10 kb bins). The scores’ correlation can only be computed between bins with overlapping intervals, so

deepTools is blind to relationships between adjacent coordinates. However, the interval data analyzed can incorporate amplitude

information such as total read coverage within the assigned bins. deepTools is unable to account for confounders affecting the tracks

being correlated, but it does have the option to plot scatterplots or heatmaps to visualize the calculated correlation between files

(Ramı́rez et al., 2016). plotCorrelation uses the output matrices from either multiBamSummary or multiBigwigSummary, so input

data can only be in BAM or BigWig formats.

Since the CapR-predicted RNA structure data is generated as a BED file, we were unable to test how deepTools may be used to

observe RNA structure and RBP binding correlation. However, we were able to test pairwise correlations between RBP eCLIP data-

sets. We input aligned BAM files from the intron-binding proteins PRPF8, RBM22, U2AF2, and BUD13 to see whether deepTools

could observe the proteins’ known colocalization patterns (c.f. Figures S5B–S5D). We input both replicate’s BAM files for each pro-

tein as well as the size-matched inputs from RBM22 and U2AF2 as controls and visualized the correlations via plotCorrelation using

the default arguments (Figure S8D). This method shows strong clustering of technical replicates but does not have conspicuous co-

localization signal between U2AF2 and BUD13, which are known to both bind 3’ intronic termini, and between PRPF8 and RBM22,

which are known to both bind 5’ intronic termini (Briese et al., 2019). Further, there is moderate to strong correlation between size-

matched input files and RBP binding files (0.37-.91), suggesting that size-matched input information may confound the RBP binding

data.

BEDtools
In addition to analyzing overlapping intervals, BEDtools reldist can calculate the correlation between non-overlapping features (i.e.

features upstream and downstream of one another). Developed from GenometriCorr, BEDtools reldist allows users to identify the

relative distance between two sets of intervals with consistent (i.e. non-random) spacing or proximity (Favorov et al., 2012). Unfor-

tunately, BEDtools can only incorporate binarized interval data from BED, GFF, or VCF files in its correlation analysis (Figure S8C).

And, like deepTools, it is unable to discern the effect of potential confounders of the correlation. There is no built-in visualization

functionality.

To test whether BEDtools could be used to recapitulate known RNA structure binding preferences of RBPs (c.f. Figure 4), we input

CapR-predicted RNA structure data and peak-called RBP binding data. Since BEDtools can only incorporate binarized interval data,

we denoted a nucleotide as positive for a structure context (i.e. stem, hairpin, multibranch, bulge, internal, or exterior) if CapR pre-

dicted it to adopt that structure with at least 0.2 probability. We used CLIPper-called peaks for LIN28B and STAU2 eCLIP datasets

(Figures S8E–S8G); PUS1 has only 35 reproducible CLIPper-called peaks, so it was omitted from the analysis. Graphing the reldist

output shows strong correlation of RBP binding and stem structure within the closest colocalization bin for both proteins and weaker

correlation for the other five structure contexts. The graphs for LIN28B in HepG2 and K562 look more similar to one another than to

the STAU2 graph at relative distance < 0.05, but additional conclusions about similarities or differences in the proteins’ binding pref-

erences are difficult (Figures S8E–S8G). Since BEDtools’ output is binned into intervals of 0.01 relative distance, there is poor res-

olution between RBPbinding and RNA structure. BEDtools also cannot show regions of unfavorable binding (the correlation is always

positive) or differentiate between upstream and downstream binding geometries.

The resolution limit of BEDtools is apparent when observing the binding of PRPF8, RBM22, U2AF2, and BUD13: PRPF8 and

RBM22 appear to bind close to each other and U2AF2 and BUD13 bind close to each other as expected (Figures S8H and S8I); how-

ever, there is minimal difference in the correlation of U2AF2 with BUD13 versus U2AF2 with PRPF8 or RBM22 (Figure S8I), even

though PRPF8 and RBM22 are known to generally bind further from U2AF2 than BUD13. Since BEDtools does not differentiate bind-

ing geometries, it is unable to show that PRPF8 and RBM22 have enriched binding�200 nt upstream of BUD13 and U2AF2 binding.

StereoGene
Whereas BEDtools’ correlation of non-overlapping features is limited to binary profiles, StereoGene was extended to allow for spatial

correlation of continuous values (Stavrovskaya et al., 2017). In addition to overall correlation of two tracks (i.e. the degree towhich two
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features are correlated across the tracks), as can be provided by deepTools and BEDtools, StereoGene also calculates positional

cross-correlation to provide information about the relative position of two tracks. The cross-correlation calculation is ultimately

themost valuable component of the output with regards to studying the relative position of two features, since it provides information

about the geometry of the features’ positions. The statistical significance of correlations with StereoGene is evaluated by a permu-

tation-based test that compares the correlation between tracks of matched versus randomly shuffled windows. If a variable is ex-

pected to confound the correlation between the two tracks being tested, StereoGene can account for genome-wide confounders

by partial correlation with another explanatory input track. StereoGene outputs an R script to visualize the cross-correlation and

correlation distributions automatically.

nearBynding wraps StereoGene in biologically relevant methods and expands its context of usability from genome-scale to tran-

scriptome-scale analysis. nearBynding alters the default StereoGene variables so that the size of the cross-correlation windows suits

a transcriptomic rather than genomic scale (10 kb rather than 100 kb) and the correlation occurs in a single-nucleotide sliding frame

for maximal resolution (rather than 100 nt bins). nearBynding provides additional functionality by allowing users to select regions of

the transcriptome of interest; users may select specific transcripts and specific regions of those transcripts to interrogate. If the

strand of the track information is available, this information is preserved for correlation analyses. The transition from genome-scale

to transcriptome-scale analysis improves colocalization calculation specificity and efficiency so that correlation can be conducted at

single-nucleotide resolution on a personal computer. nearBynding also determines RNA sequences and wraps CapR, an in silico

RNA structure prediction software (Fukunaga et al., 2014), to provide RNA structure information as an optional track for correlation

if only one data track (e.g. only protein binding position) is available. StereoGene only outputs the mean value at every position in the

cross-correlation window of shuffled replicates; nearBynding can calculate and output the standard error of the shuffled null track to

allow for a statistical assessment of foreground versus null signal. The StereoGene visualization function can only depict the corre-

lation information for one replicate at a time; nearBynding replaces this with options to depict the mean cross-correlation signal with

error bars for multiple replicates simultaneously and removes experimental background signal if an input track is also provided.

Further, if the user chooses to study correlation relative to the CapR-derived RNA structure contexts, the cross-correlation signal

for all six contexts can be depicted on the same graph.

QUANTIFICATION AND STATISTICAL ANALYSIS

nearBynding tracks were considered significant if +/- three standard error intervals of foreground signal computed from technical

replicates did not overlap with +/- three standard error intervals of the shuffled null distribution (1,000 null iterations). Functions

from the stats package were used to calculate binomial tests (binom.test), t-tests (t.test), and Kolmogorov-Smirnov tests (ks.test);

ks.test is wrapped in nearBynding’s assessGrouping function. The lsr package (Navarro, 2015) was used to calculate Cohen’s

d (cohensD). The transport R package function wasserstein1d (Schuhmacher et al., 2020), wrapped in nearBynding’s

bindingContextDistance and bindingContextDistanceCapR functions, was used to calculate Wasserstein distances.
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