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Abstract 

Background: Human T‑cell Leukemia Virus type‑1 (HTLV‑1) is a retrovirus that causes two diseases including Adult 
T‑cell Leukemia/Lymphoma (ATLL cancer) and HTLV‑1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP, a 
neurodegenerative disease) after a long latency period as an asymptomatic carrier (AC). There are no obvious expla‑
nations about how  each of the mentioned diseases develops in the AC carriers. Finding the discriminative molecular 
factors and pathways may clarify the destiny of the infection.

Methods: To shed light on the involved molecular players and activated pathways in each state, differentially 
co‑expressed modules (DiffCoEx) algorithm was employed to identify the highly correlated genes which were co‑
expressed differently between normal and ACs, ACs and ATLL, as well as ACs and HAM/TSP samples. Through dif‑
ferential pathway analysis, the dysregulated pathways and the specific disease‑genes‑pathways were figured out. 
Moreover, the common genes between the member of DiffCoEx and differentially expressed genes were found and 
the specific genes in ATLL and HAM/TSP were introduced as possible biomarkers.

Results: The dysregulated genes in the ATLL were mostly enriched in immune and cancer‑related pathways while 
the ones in the HAM/TSP were enriched in immune, inflammation, and neurological pathways. The differential path‑
way analysis clarified the differences between the gene players in the common activated pathways. Eventually, the 
final analysis revealed the involvement of specific dysregulated genes including KIRREL2, RAB36, and KANK1 in HAM/
TSP as well as LTB4R2, HCN4, FZD9, GRIK5, CREB3L4, TACR2, FRMD1, LHB, FGF3, TEAD3, GRIN2D, GNRH2, PRLH, GPR156, and 
CRHR2 in ATLL.

Conclusion: The identified potential prognostic biomarkers and therapeutic targets are proposed as the most 
important platers in developing ATLL or HAM/TSP. Moreover, the proposed signaling network clarifies the differences 
between the functional players in the activated pathways in ACs, ATLL, and HAM/TSP.
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Introduction
Human T-cell Leukemia Virus type-1 (HTLV-1) belongs 
to the family Retroviridae and subfamily Orthoretro-
virinae [1]. The HTLV-1 infection may cause develop-
ing two major diseases including Adult T-cell Leukemia/
Lymphoma (ATLL cancer) and Tropical Spastic Parapa-
resis/HTLV-1 Associated Myelopathy (TSP/HAM) after 
elapsing an asymptomatic carrier (AC) state. Although 
HTLV-1 is not a widespread virus all over the world, it is 
an endemic pathogen in sub-Saharan Africa, East north 
of Iran, the Caribbean region, Japan, and South Amer-
ica [2]. Approximately, 90% of the infected HTLV-1 are 
asymptomatic carriers (ACs) [3] with the capability of the 
silent transmission of the virus through blood contact, 
sexual intercourse, breastfeeding, etc.[4].

There are three main receptors on the cells for HTLV-1 
including neuropilin, glucose transporter 1 (GLUT-1), 
and heperan sulfate proteoglycan [5]. The HTLV-1 pro-
viral DNA is found in the immune cell types comprising 
dendritic cells, monocytes, CD8+ T-cells, B cells, and 
in higher extent in CD4+ T-cells [6, 7]. Two oncogenic 
proteins named as the HTLV-1 basic leucine zipper pro-
tein (HBZ) and the transactivator protein (Tax) are fre-
quently expressed by the HTLV-1 genome. However, the 
tax gene expresses in only around 40% of ATLL patients 
[8]. Tax has a critical function in the viral pathogenesis of 
HAM/TSP patients through promoting the proliferation 
of infected cells by activating NFκB and AP-1 pathways, 
avoiding apoptosis, and activating cytotoxic T lympho-
cyte (CTL) response [3, 9]. On the other hand, HBZ pro-
hibits NF-κB pathway, promotes tumor progression, and 
boosts T cell proliferation and lymphoma [10, 11].

One of the beneficial approaches to find the patterns 
of co-regulated genes is gene co-expression analysis [12]. 
Two common approaches are usually utilized to deter-
mine the mechanistic diversity between two conditions 
including identifying differential gene expression and 
differential gene co-expression. Through co-expression 
analysis, the highly correlated genes (a module) can be 
identified. Moreover, the differential co-expressed analy-
sis determines the specific co-regulated genes in each 
condition. DiffCoEx is a sensitive and efficient method 
to find the gene co-expression differences which are 
grouped in various modules between multiple conditions 
[13]. The major advantage of this method is determining 
significant differential co-expressed gene groups even in 
the attendance of the within-group correlation across 
two conditions.

Since the pathogenesis mechanism of HTLV-1 as a 
virus-caused cancer and virus-caused neurologic dis-
ease have not been yet fully ascertained, the identifica-
tion of differential co-regulated genes can determine new 
functional players in ACs, ATLL, and HAM/TSP. To this 

end, we integrated various gene expression datasets and 
then found the differential co-expressed genes between 
every two conditions employing DiffCoEx approach. The 
outcomes specified the gene players and activated path-
ways implicated in the development of each disease after 
infection.

Methods
Data collection, merging, and preprocessing
To find the relevant datasets correspond to our study 
purpose, Gene Expression Omnibus (GEO) repository 
database was searched. A total of four microarray data-
sets including GSE29312, GSE29332, GSE33615, and 
GSE55851 were selected to be involved in our analysis. In 
total, these datasets contain 58 normal samples, 43 ACs 
samples, 62 ATLL samples, and 20 HAM/TSP samples. 
Since datasets belong to different platforms, remove-
BatchEffect function in the R limma package was utilized 
to remove the batch effect across different datasets [14]. 
The expression data of samples related to each condition 
were merged, individually. A total of 15,565 common 
genes were finally used for further analysis. The merged 
data were quantile-normalized and log2-transformed. 
Moreover, to validate the identified modules, the ACs 
and HAM/TSP samples from GSE38537 dataset and 
ATLL samples from GSE43017 dataset were used. Table 1 
contains more details related to each dataset. Moreover, 
Fig. 1 indicates the workflow of the utilized procedure in 
this study, which is explained in the following sections.

Determination of differential co‑expressed modules
To find the differential co-expressed modules among two 
conditions, the DiffCoEx algorithm was employed [13]. 
DiffCoEx principally uses Weighted Gene Co-expression 
Analysis (WGCNA) [12] and contains five steps as fol-
lows: (1) An adjacency matrix is constructed for each 
condition in which their elements are the calculated cor-
relations between each gene pairs. We used Pearson coef-
ficient to measure correlations. (2) A matrix of adjacency 
difference  (dij) is determined by calculating the signed 
squared correlation coefficients. The higher  dij values are 
considered as significant co-expression changes between 
two genes. The soft threshold parameter β is determined 
so that the network follows a scale-free topology [15]. 
Then,  dij values reach the power of β. (3) The topological 
overlap dissimilarity matrix (dissTOM) is constructed to 
detect the shared genes with common neighbors in the 
graph. It is constituted based on the adjacency matrix 
and contains the differential correlation network. (4) 
The hierarchical clustering is performed with flashClust 
[16]. Then, dynamicTreeCut function is used to extract 
gene groups (modules) from the obtained dendrogram 
and mergeCloseModules function is employed to merge 
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close modules. Each module is specified with a color. (5) 
The statistical significance of differential co-expression 
is evaluated using the dispersion statistic to quantify 
the correlation alteration between two conditions. In 

this study, we identified differential co-expressed mod-
ules between normal and ACs, ACs and ATLL, ACs and 
HAM/TSP. Moreover, module-to-module co-expression 
changes were examined by evaluating the significance 

Table 1 Characteristics of datasets involved in the analysis and validation

Dataset Platform Number of Samples

Datasets for main analyses

 GSE29312 Illumina HumanHT‑12 V3.0 expression beadchip
(GPL6947)

Normal: 9
ACs: 20
HAM/TSP: 10

 GSE29332 Illumina HumanWG‑6 v3.0 expression beadchip
(GPL6884)

Normal: 8
ACs: 17
HAM/TSP: 10

 GSE55851 Agilent‑026652 Whole Human Genome Microarray 4 × 44 K v2
(GPL10332)

Normal: 3
ACs: 6
ATLL: 12

 GSE33615 Agilent‑014850 Whole Human Genome Microarray 4 × 44 K G4112F
(GPL4133)

Normal: 21
ATLL: 52

Datasets for validation

 GSE38537 Agilent‑014850 Whole Human Genome Microarray 4 × 44 K G4112F
(GPL6480)

ACs: 4
HAM/TSP: 4

 GSE43017 Affymetrix Human Genome U133 Plus 2.0 Array
(GPL570)

ATLL: 7

Fig. 1 Workflow of the proposed method



Page 4 of 12Zarei Ghobadi et al. Virol J          (2021) 18:175 

of the correlation alterations among the genes in each 
module pair. For this purpose, a similar “module-to-
module” dispersion measure was determined and null 
distributions were produced from the same permutation 
approach.

Pathway enrichment analysis
The most connected genes in each module were enriched 
in the KEGG utilizing g:Profiler webtools (version: 1185_
e69_eg16) [17] and Enrichr. The common gene expres-
sions between ACs, ATLL, and HAM/TSP groups were 
considered as the background. The relevant terms with 
Benjamini–Hochberg FDR < 0.05 were employed as sta-
tistically significant.

Results
Identification of differential co‑expressed modules
The DiffCoEx algorithm was employed to find the dif-
ferential co-expressed gene modules between different 
sample groups. Through this algorithm, the co-regulated 

gene clusters that differentially co-expressed between 
two groups were determined. After computing Pear-
son correlation and then adjacency differences matrices 
according to Methods, the topological overlap matrices 
(TOMs) were constructed with β power of 2, 3, and 2 for 
Normal-ACs, ACs-ATLL, and ACs-HAM/TSP, respec-
tively. These values are the lowest power for which the 
scale-free topology fit index reaches 0.80. Afterward, the 
differential co-expressed modules were identified in each 
comparative group utilizing hierarchical clustering and 
then merging adjacent clusters (Fig.  2a–c). Each mod-
ule is specified with a distinctive color. The differences 
between the correlation pattern in each module are dem-
onstrated in Fig. 3. A total of 8 differentially co-expressed 
modules were identified between Normal and ACs (Dif-
fCoEx_NA) (Fig. 3a). Among them, the modules includ-
ing brown, red, green, and blue are highly correlated in 
ACs samples and only pink module is highly correlated 
in Normal samples. Three of the five identified DiffCoEx 
modules between ACs and ATLL groups (DiffCoEx_AA) 

Fig. 2 Dendrogram of genes clustered based on (1‑TOM) with assigned module colors of a ACs, b ATLL, and c HAM/TSP. The colored rows show the 
module membership acquired after merging modules by the dynamic tree cut method
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including orange, pink, and purple modules are mostly 
correlated in ATLL and the magenta module pursues 
the opposite pattern (Fig.  3b). All eight significant dif-
ferential modules identified between ACs and HAM/
TSP (DiffCoEx_AH) are highly correlated in HAM/TSP 
(Fig. 3c). The list of the identified genes in each module is 
mentioned in Additional file 1. Moreover, the module to 
module co-expression alterations related to each compar-
ison group was determined by employing permutations. 
This matrix reveals the correlations between the differ-
entially co-expressed modules. To this end, 1000 sample 
permutations across the two conditions were carried 
out. Afterward, the correlation alteration for each gene 
group (dispersion value) was calculated for each module 
pair. Figure  4 shows the module-to-module co-expres-
sion alterations across DiffCoEx_NA, DiffCoEx_AA, and 
DiffCoEx_AH, in which the within-module dispersion 
value for each module with permuted data than with 

original data is specified with p-value (the numbers in 
each cell divided to 1000) [13]. Figure  4a discloses that 
although there is no obvious differential correlation in 
black, magneta, and purple modules between ACs and 
normal groups, they were determined as a differentially 
co-expressed module due to their significant correlation 
with the genes in other differentially co-expressed mod-
ules (correlation of black and magenta with brown and 
red modules as well as correlation of purple with blue 
and green modules). Likewise, the black module in Dif-
fCoEx_AA has a remarkable correlation with the genes in 
magenta (Fig. 4b) as well as pink and blue modules in Dif-
fCoEx_AH with the green module (Fig.  4c). In order to 
find the most connected genes at the protein levels, mod-
ules were submitted to STRING and the modules with 
unconnected proteins were excluded. Therefore, modules 
brown, red, and blue in ACs, pink and purple in ATLL, 

Fig. 3 Comparative correlation heatmap containing differentially co‑expressed modules between a normal and ACs, b ACs and ATLL, and c ACs 
and HAM/TSP. The upper and lower diagonals of the main matrix represent a correlation between gene pairs among each studied group. Modules 
are specified in the heatmap by black squares
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and blue, turquoise, and pink in HAM/TSP were selected 
(Additional file 1).

Validation of modules in the external dataset
In order to evaluate the reliability of the identified dif-
ferential co-expressed modules, their preservations in 
an independent dataset were surveyed. For this pur-
pose, the function of “modulePreservation” was used to 
measure  Zsummary and medianRank through a permuta-
tion test (200 times) [18].  Zsummary score is half the sum 

of the mean of  Zdensity and  Zconnectivity. MedianRank is a 
rank-based scale that depends on an observed preserva-
tion statistic and is not dependent on module size [19]. 
A lower medianRank score reveals the high preservation 
of the module. The module preservation analysis was 
employed to validate the ACs and HAM/TSP modules 
in GSE38537 and ATLL modules in GSE43017. Modules 
with a Zsummary > 4 and medianRank < 8 were regarded as 
moderate-high preserved modules [20, 21]. The results 
are mentioned in Additional file  2. Therefore, module 

Fig. 4 Module‑to‑module co‑expression changes using permutations for a DiffCoEx_NA, b DiffCoEx_AA, and c DiffCoEx_AH. This figure is the result 
of the significance analyses. After 1000 permutations of the samples between every two conditions, the dispersion values were computed for each 
module and every possible module pair. The number in each cell shows the p‑value (number/1000) identified for the within‑module co‑expression 
change. Black cells show significant p‑value and light grey modules represent insignificant p value
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brown from ACs and module purple from ATLL with 
Zsummary < 4 were excluded.

Pathway enrichment analysis
The further pathway enrichment analysis clarified that 
modules related to ACs were generally entered in path-
ways related to viral infection, Immune system, cancer, 
and inflammation like Human T-cell leukemia virus 1 
infection, Toll-like receptor signaling pathway, Pathways 
in cancer, PI3K-Akt signaling pathway, Chemokine sign-
aling pathway, Cell adhesion molecules (CAMs), NOD-
like receptor signaling pathway, Th17 cell differentiation, 
Th1 and Th2 cell differentiation, JAK-STAT signaling 
pathway, and MAPK signaling pathway (Additional file 3, 
Sheet 1).

The identified differential modules in ATLL were 
mostly enriched in cancer-, viral- and immune-
related pathways such as PI3K-Akt signaling pathway, 
Chemokine signaling pathway, Antigen processing and 
presentation, Viral carcinogenesis, Pathways in cancer, 
cAMP signaling pathway, Proteoglycans in cancer, Hippo 
signaling pathway, Th1 and Th2 cell differentiation, Th17 
cell differentiation, ErbB signaling pathway, and VEGF 
signaling pathway (Additional file 3, Sheet 2). Moreover, 
the selected proteins in DiffCoEx_AH were enriched in 
viral infection, immune system, inflammation, and neu-
rological pathways like Human T-cell leukemia virus 1 
infection, PI3K-Akt signaling pathway, Th17 cell differ-
entiation, Th1 and Th2 cell differentiation, MAPK signal-
ing pathway, Apoptosis,, NF-kappa B signaling pathway, 
NOD-like receptor signaling pathway, Sphingolipid sign-
aling pathway, JAK-STAT signaling pathway, Chemokine 
signaling pathway, Parkinson disease, and Neurotro-
phin signaling pathway (Additional file  3, Sheet 3). The 
results show that the immune and viral-related pathways 
are activated in ATLL and HAM/TSP, however, cancer 
pathways are mostly activated in ATLL and neurological 
pathways in HAM/TSP.

Specific genes‑pathways
Although the identified modules were almost enriched 
in similar pathways, different genes were involved in the 
dysregulation of these pathways in each disease. To eluci-
date the specific genes, which may significantly dysregu-
late a biological pathway in each disease state, the unique 
pathways-genes were explored. Venn diagram depicted 
in Fig. 5 demonstrates the number of common and spe-
cific pathways-genes in each DiffCoEx group. The list of 
specific pathways-genes is also mentioned in Additional 
file  4. As the figure indicates, some pathways are acti-
vated after virus infection and also in two diseases. On 
the other hand, pathways including Proteoglycans in can-
cer and Rap1 signaling pathway are mostly dysregulated 

in ATLL as well as Sphingolipid signaling pathway, DNA 
replication, Parkinson disease, and Neurotrophin sign-
aling pathway in HAM/TSP. These pathways consider-
ing their specific dysregulated genes can be furthermore 
studied to design proper treatment for ATLL or HAM/
TSP.

Finding potential biomarkers
In order to find potential biomarkers for each disease, 
the common genes between identified DiffCoEx and 
differentially expressed genes (DEGs) were found. To 
this end, DEGs between ACs and ATLL (DEGs_AA) 
as well as ACs and HAM/TSP (DEGs_HA) consider-
ing adj.p.val < 0.05 and |log FC|> 1 were found. There-
fore, the shared genes between module pink in ATLL 
and DEGs_AA, as well as common genes between blue, 
pink, and turquoise modules in HAM/TSP and DEGs_
HA, were identified. Eventually, the specific genes that 
were uncommon between ATLL and HAM/TSP were 
determined. As a result, KIRREL2, RAB36, and KANK1 
were identified as specific genes and possible candidate 
biomarkers for HAM/TSP. Moreover, 77 specific genes 
were found for ATLL. To find the most important gene 
players in the progression of ATLL, pathway enrichment 
analysis was performed and the pathways enriched by at 
least 3 proteins were identified. Four pathways including 

Fig. 5 Venn diagram representing the number of common and 
specific pathways‑genes in each DiffCoEx group
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Neuroactive ligand-receptor interaction, cAMP signaling 
pathway, Calcium signaling pathway, and Hippo signaling 
pathway were enriched by 15 genes including LTB4R2, 
HCN4, FZD9, GRIK5, CREB3L4, TACR2, FRMD1, LHB, 
FGF3, TEAD3, GRIN2D, GNRH2, PRLH, GPR156, and 
CRHR2. These genes may also be proposed as potential 
biomarkers for ATLL (Additional file 5).

Discussion
The functional cellular pathways implicated in the 
HTLV-1 infected ACs and two main HTLV-1 related dis-
eases (including ATLL and HAM/TSP) have not been 
completely figured out. Herein, we tried to shed light 
partially on the differences between the involved genes 
and also activated pathways between these diseases and 
AC state through a differential co-expression analysis. To 
this end, we applied DiffCoEx algorithm to find differen-
tial co-expressed genes between normal and ACs, ACs 
and ATLL, ACs and HAM/TSP. The most important acti-
vated pathways in each condition are depicted as a sche-
matic signaling network in Fig. 6.

While the majority of the infected subjects by HTLV-1 
remain as asymptomatic carriers, the most challenging 
question is the reason for progression from an asymp-
tomatic viral infection toward ATLL or/and HAM/TSP. 
The identified differential co-regulated modules in ACs 

versus normal group revealed the activation of pathways 
related to the HTLV-1 infection which are expected.

HTLV-1 transfers between the infected and unin-
fected T cells through several mechanisms. One of the 
main mechanism is the formation of virological synapse 
(VS) [22]. This type of cell to cell transfer has notable 
advantages for viruses including more efficient trans-
fer, elevating transfer speed, and confining the expo-
sure to host immune defense mechanisms [23]. One of 
the major prerequisite steps to activate this transmis-
sion mechanism is the involvement of LFA-1 protein 
encoded by ITGLA. LFA-1 naturally binds to ICAM-1 
that leads to changing both infected and uninfected 
cells. This provides the proper VS condition to trans-
fer the virus. Tax and p12 implicate in the activation of 
LFA-1 and ICAM-1 expression [22, 24].

NF-kappa signaling is an important pathway in cell 
proliferation. It maintains cellular balance as well as 
Th1 and Th2 cell differentiation pathway through the 
expression alteration of the involved genes such as 
IKBKG and PLCG1. HTLV-1 can activate both Th1 
and Th2 through interference in the NF-kappa signal-
ing pathways based on the infection step. The down-
regulation of LCK was also observed in ACs which 
may be due to the expression of the viral regulatory 
tax gene [25]. Moreover, the obvious dysregulation of 

Fig. 6 The proposed signaling networks implicated AC state and pathogenesis of ATLL and HAM/TSP diseases
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chemokine and cytokine-cytokine interaction path-
ways through down-regulation of CCR7 and CCR2 are 
also observed in this study. Our results showed that the 
virus in ACs keeps a balance in the successful infection 
by avoiding immune response. After latent infection of 
the virus, ATLL or HAM/TSP can be developed. Per-
haps developing inflammation is the substantial differ-
ence between HAM-TSP and ACs.

HAM/TSP is known as an inflammatory disease in 
which several immune cells together have critical roles 
in the disease progression. The pathogenesis of HAM-
TSP is explained in three levels: peripheral, transmit to 
the central nervous system, and damage to the nerv-
ous tissues. It appears that multiple genes and pathways 
are activated at each level which has been shown in this 
work.

Sphingolipid is a regulator of the cell signals through 
two secondary lipid messengers including ceramide 
(Cer) and sphingosine-1-phosphate (S1P). Cer stimu-
lates apoptosis in the oligodendrocytes and neurons, and 
S1P speeds up the exit of lymphocytes from lymphoid 
tissues to blood [26]. Sphingolipid signaling pathway is 
affected in HAM/TSP that reveals the importance of the-
ses metabolites and genes of MAPK8, PPP2R5E, GNAI3, 
S1PR1, MAPK1, RAF1, BID, NSMAF, TNFRSF1A, 
MAPK3 in the progression of disease.

Cer activates PP2A (PPP2R5E belongs to this protein 
family) and BID to stimulate apoptosis [27]. It also targets 
the kinase suppressor Ras which aids to regulate TNFα-
mediated (may by the function of TNFRSF1A) actuation 
of MAPK3 and MAPK1 [28, 29], activation of RAF-1, and 
MAPK pathway [30]. Moreover, the overexpression of 
S1PR1 and interaction with GNAI3 helps to activation of 
MAPK pathway and promotes migration and cell survival 
[31]. Also, NSMAF is necessary for TNF-mediated acti-
vation of neutral sphingomyelinase and probably has a 
function in regulating responses of TNF-induced cellular 
such as inflammation [32].

DNA replication is another pathway that should be 
considered in the development of HAM/TSP. DNA rep-
lication is increased in the Tax-expressing cells causing 
progression of cell cycle, even in the presence of DNA 
damaging agents. Therefore, DNA damage can result 
in the accumulation of mutations in the Tax-expressing 
cell and also apoptosis [33]. In our previous studies, we 
showed the importance of apoptosis in the HAM/TSP 
pathogenesis [34, 35] which also confirms in this study.

Neurotrophin signaling pathway is mostly activated 
in HAM/TSP. This pathway is associated with the level 
of neurotrophin and downstream signaling cascades. 
The inhibitor factors in neurotrophin signaling pathway 
are strongly regulated by degradation and dephospho-
rylation. Neurotrophin signaling pathway implicates in 

several neurodegenerative disorders, such as Hunting-
ton’s disease, Alzheimer’s disease, and psychiatric dis-
orders like depression and substance abuse [36, 37]. In 
this study, the function of co-regulated of genes includ-
ing RPS6KA3, MAP3K3, PSEN1, SOS2, MAP2K5, RELA, 
ATF4 in the activation of Neurotrophin signaling path-
way in HAM/TSP were clarified. TrkA is one of the main 
receptors that interact with neurotrophins. It leads to 
the activation of intracellular signaling cascades, actua-
tion of Ras via GRB2 and SOS2, and further promotion of 
the ERK/MAPK pathway with the functional activity of 
MAP3K3 and MAP2K5. Moreover, RPS6KA3 phospho-
rylates ATF4 and has critical roles in cell survival, cellular 
differentiation, and axonal growth [38].

Three genes comprising KIRREL2, RAB36, and KANK1 
were found as biomarkers for HAM/TSP. KIRREL2 
(NEPH3) belongs to the immunoglobulin superfamily 
of cell adhesion molecules. NEPH3 is regulated by the 
cooperation of WT1 and NF-κB in podocytes. NEPH3 is 
a downstream target of Ptf1a in the progressing central 
nervous system. It is also expressed in early postmitotic 
neurons of the developing spinal cord. NEPH3 intercedes 
the adhesion between the Ptf1a-progenitors, which is 
essential for maturation, neuronal migration, and differ-
entiation [39]. The dysregulation of NEPH3 may have a 
role in the progression of HAM/TSP and should be fur-
thermore studied.

RAB36 is a member of the RAB family which is located 
on chromosome 22q11.2. It was reported that the deple-
tion of RAB36 leads to G1 cell cycle arrest, disruption of 
mesenchymal-epithelial transition, and simplification of 
the malignant rhabdoid tumors dissemination [40, 41]. 
The information about the role of RAB36 in the devel-
opment of diseases is limited, so further investigation is 
indispensable.

KANK1 belongs to the Kank family which is mainly 
involved in the cytoskeleton formation by regulating 
actin polymerization. The mutated KANK1 may develop 
the central nervous system disorder (cerebral palsy spas-
tic quadriplegic type 2). It also inhibits the cell migra-
tion and formation of actin fiber. It can inhibit malignant 
peripheral nerve sheath tumors through the regulationof 
CXC5 as an apoptosis-related gene [42, 43].

ATLL is another disease caused by HTLV-1 infection. 
The overall identified DiffCoEx_AA and the activated 
pathways reveal that the viral infection provides a pri-
mary condition in the infected cells to malignancy in 
association with genetic susceptibility and other risk fac-
tors [44]. The differential co-expressed genes between 
ATLL and ACs implicates in cancer- and malignancy-
related pathways. The final goals of these pathways are 
sustained angiogenesis, evading apoptosis, tissue inva-
sion, block differentiation, proliferation, and genomic 
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instability. Form this study, the dysregulation of path-
ways including Rap1 signaling pathway and Proteogly-
cans in cancer were identified in ATLL. Rap1 signaling 
pathway is activated with the involvement of several pro-
teins. Rap1 upregulates ARAP3 which is a PI3K effector. 
ARAP3 selectively uses Rho as its substrate, and then Rho 
targets ACTB resulting in cell adhesion and migration. 
On the other hand, the expression of WNT3A has been 
reported along with the WNT signaling pathway compo-
nents FZD9 and CTNNB1 [45]. Moreover, IQGAP1 is a 
significant scaffold in the EGF-stimulated MAPK cascade 
due to its direct interaction with MAPK1 and EGFR [46]. 
These events ultimately result in proliferation, cell migra-
tion and invasion, and also cytoskeleton activation as 
parts of the pathway of Proteoglycans in cancer.

Fifteen genes including LTB4R2, HCN4, FZD9, GRIK5, 
CREB3L4, TACR2, FRMD1, LHB, FGF3, TEAD3, 
GRIN2D, GNRH2, PRLH, GPR156, and CRHR2 were 
also determined as potential biomarkers for ATLL.

The importance of cAMP in developing hematological 
cancer has been reported previously [47]. The cAMP lev-
els are regulated by the balance between the functions of 
two enzymes: adenylyl cyclase (AC) and cyclic nucleotide 
phosphodiesterase (PDE) [48]. cAMP binds to HCN4 and 
also mediates phosphorylation of proteins by PKA. PKA 
may increase the NMDAR currents (GRIN2D is a subu-
nit of NMDA receptors). The overexpression of GRIN2D 
may cause an excessive influx of  Ca2+ and as a result the 
regulation of CALM1 in the calcium signaling pathway 
[49]. On the other hand, regulation of transcription by 
PKA is obtained by direct phosphorylation of the CREB 
which finally may lead to cell survival/death [50].

TEAD3 is a transcription factor and FRMD1 is an acti-
vating transcription factor binding which have impor-
tant functions in the Hippo signaling pathway, a pathway 
involved in tumor suppression by limiting proliferation 
and boosting apoptosis.

FGF3 belongs to the basic fibroblast growth factor 
(FGF) gene family which plays a major role in cell differ-
entiation and proliferation and is involved in the calcium 
signaling pathway [51]. Furthermore, the contribution of 
GNRH2, PRLH, GPR156, GRIK5, LHB, and CRHR2 to 
the neuroactive ligand-receptor interaction pathway are 
specified in ATLL in consistent with some other cancers 
[52, 53].

LTB4R2 is one of the LTB4 receptors that is associated 
with invasion, survival, and metastasis. TACR2 is also a 
receptor for tachykinins that is mainly expressed in the 
periphery including inflammatory cells. Overexpression 
of TACR2 can develop the proliferation and migration of 
cancer cells by regulating the Wnt signaling pathway [54]. 
It seems that further in vivo and in vitro studies on the 

function and the involved proteins in this pathway may 
introduce a novel therapeutic way.

Our results reveal that more dysregulated genes and 
pathways are involved in the HAM/TSP pathogenesis 
in comparison to ATLL, which probably explains more 
prevalence of ATLL in the HTLV-1 infected patients 
[55]. Interestingly, some features which are implicated 
the HTLV-1 infection pathway and activated by differ-
ential co-expressed genes between HAM/TSP and ACs, 
do not observe in ATLL. Given these results, it seems 
that the host features and genetic susceptibility are the 
main players in ATLL. Moreover, the specific identi-
fied genes for each condition have of importance in the 
future proposed treatment for each disease.

Conclusion
The pathogenesis mechanism and development of dis-
eases caused by HTLV-1 infection is obscure. Herein, 
through the identification of differential co-expressed 
module analysis and pathway enrichment, the major 
genes implicated the pathogenesis process of ACs 
toward ATLL and HAM/TSP were clarified. It seems 
that different dysregulated genes cause the activation 
of similar pathways in ATLL and HAM/TSP. They may 
be proposed as potential therapeutic targets. However, 
further studies should be designed and performed to 
evaluate the identified genes in each condition.
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