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/e activation of hepatic stellate cells (HSCs) is a key component of liver fibrosis. Two antifibrosis pathways have been identified,
the reversion to quiescent-type HSCs and the clearance of HSCs through apoptosis. Lipopolysaccharide- (LPS-) induced HSCs
activation and proliferation have been associated with the development of liver fibrosis. We determined the pharmacological
effects of wild bitter melon (WM) on HSC activation following LPS treatment and investigated whether WM treatment affected
cell death pathways under LPS-treated conditions, including ferroptosis. WM treatment caused cell death, both with and without
LPS treatment. WM treatment caused reactive oxygen species (ROS) accumulation without LPS treatment and reversed the
decrease in lipid ROS production in HSCs after LPS treatment. We examined the effects of WM treatment on fibrosis, en-
doplasmic reticulum (ER) stress, inflammation, and ferroptosis in LPS-activated HSCs./e western blotting analysis revealed that
the WM treatment of LPS-activated HSCs induced the downregulation of the connective tissue growth factor (CTGF), α-smooth
muscle actin (α-SMA), integrin-β1, phospho-JNK (p-JNK), glutathione peroxidase 4 (GPX4), and cystine/glutamate transporter
(SLC7A11) and the upregulation of CCAATenhancer-binding protein homologous protein (CHOP). /ese results support WM
as an antifibrotic agent that may represent a potential therapeutic solution for the management of liver fibrosis.

1. Introduction

Chronic liver fibrosis is a health problem, characterized by
severe morbidity and significant mortality [1–3]. /e un-
derlying physiology of chronic liver fibrosis has been as-
sociated with the rapid activation and transdifferentiation of
quiescent HSCs fibrogenic myofibroblast-like cells following
liver injury or the development of liver fibrosis [4, 5],
resulting in cell proliferation, migration, extracellular matrix
(ECM) accumulation [6], contraction, chemotaxis, and in-
flammatory signaling [7]. ECM accumulation has been as-
sociated with the increased expression of α-smooth muscle

actin (α-SMA), type I and III collagens, and tissue inhibitor
of metalloproteinase-1 (TIMP-1), following the develop-
ment of liver fibrosis [5, 8–10]. /e contraction of HSCs has
been proposed to mediate fibrosis by regulating sinusoidal
blood flow and ECM remodeling [11]. Recent studies have
shown that HSCs are activated by external signals, con-
tributing to liver inflammation or liver injury by producing
inflammatory cytokines and directing T lymphocytes into
the parenchyma [12]. Multiple cellular and molecular sig-
naling pathways are involved in the regulation of HSC ac-
tivation: (1) the release of mitogenic (transforming growth
factor-alpha (TGF-α [13]), platelet-derived growth factor
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(PDGF [14, 15]), interleukin-1 (IL-1 [16]), tumor necrosis
factor-alpha (TNF-α [17]), and insulin-like growth factor
(IGF-1)) and fibrogenic (transforming growth factor-beta
(TGF-β [18]) and interleukin-6 (IL-6)) cytokines; (2) re-
ceptor activation, including Toll-like receptors (TLRs [19]),
collagen receptors [20], liver X receptor [21], the nuclear
receptor Rev-erbα [22], the orphan nuclear receptor NR4A1
[23], vitamin D receptor [24], and G protein-coupled re-
ceptors, such as succinate dehydrogenase-G protein-coupled
receptor 91 (GPR91) [25, 26]; (3) autophagy, endoplasmic
reticulum (ER) stress, and oxidative stress [27–31]; and (4)
inflammatory cells, including macrophages, natural killer
cells, hepatocytes, and B cells [5, 16, 17, 32–34].

/e resolution of hepatic fibrosis requires the clearance
of activated HSCs, via apoptosis, or the reversion of HSCs
an inactivated phenotype [7–9]. /erefore, HSCs represent
an attractive target for antifibrotic therapy [35, 36]. /e
differentiation of HSCs into proliferative, fibrogenic
myofibroblasts is well-known to play a critical role during
hepatic fibrosis, as demonstrated by both experimental and
clinical human liver injuries [7]. Existing antifibrotic
strategies include decreasing the number of activated
HSCs via the inhibition of proliferation, the induction of
apoptosis, and the inhibition of excessive ECM deposition
[37]. /us, the suppression of HSC growth and/or the
induction of HSC apoptosis by natural products are
considered to be effective options for the amelioration of
liver fibrosis.

Wild bitter melon (WM; Momordica charantia L. var.
Abbreviata Seringe) is a wild variety of bitter melon
(Momordica charantia) [38, 39]. /e ethyl acetate (EA)
fraction from WM has been reported to exhibit strong
antioxidant activity, via the scavenging activity of 1, 1-
diphenyl-2-picryl-hydrazyl (DPPH), which can reduce
H2O2-induced DNA damage. Moreover, the EA fraction
effectively inhibited α-amylase activity and suppressed the
production of the proinflammatory mediator nitric oxide
(NO) in LPS-stimulated murine macrophage RAW 264.7
cells [40]. Similar results indicated that the EA extract of
WM suppressed Propionibacterium acnes-induced in-
flammation in THP-1 cells [41]. WM has been demon-
strated to have anticancer activities in various cancers
types, in vitro, including breast cancer [42–44], colon
cancer [45, 46], pancreatic cancer [47], liver cancer
[48, 49], prostate cancer [50, 51], cervical cancer [52], and
others [53]. However, the full impact of WM on human
health has not been thoroughly demonstrated, and sys-
tematic clinical studies remain necessary to establish the
efficacy and safety of WM extract use in patients. Both in
vitro and in vivo studies have demonstrated that bitter
melon may elicit toxic or adverse effects under various
conditions [53].

/is study aimed to investigate whether WM extracts
attenuated HSC T6 cell activation induced by LPS treatment.
Our data indicated that WM treatments increased ROS and
lipid ROS accumulation, induced ER stress, and triggered
ferroptosis in LPS-treated HSC T6 cells. We proposed that
WM treatment attenuated the LPS-induced HSC activation
via ER stress and ferroptosis.

2. Materials and Methods

2.1. Reagents. WM extract (WM) was purchased from
License Biotec, Co., Ltd. (Taipei, Taiwan). /e total phenolic
extract (TPE) was obtained as described by Huang et al. [54].

2.2. Antibodies. /e following antibodies were used for
immunofluorescence staining and Western blotting: rabbit
polyclonal antibodies against CHOP (#A0854, 1 :1000 dilu-
tion, ABclonal, MA, USA), p-JNK (#AP0808, 1 :1000 dilution,
ABclonal, MA, USA), JNK (#A4867, 1 :1000 dilution,
ABclonal, MA, USA), CTGF (#A11456, 1 :1000 dilution,
ABclonal, MA, USA), α-SMA (#A1011, 1 :1000 dilution,
ABclonal, MA, USA), integrin-β1 (#A11060, 1 :1000 dilution,
ABclonal, MA, USA), GPX4 (#A1933, 1 :1000 dilution,
ABclonal, MA, USA), SLC7A11 (#A13685, 1 :1000 dilution,
ABclonal, MA, USA), and β-actin (#AC026, 1 : 5000 dilution,
ABclonal, MA, USA).

2.3.CellCulture. HSC-T6, a rat HSC cell line, was purchased
from Millipore (MA, USA). HSC-T6 cells were cultured at
37°C in Dulbecco’s minimum essential medium (DMEM;
Gibco, NY, USA), supplemented with 10% fetal bovine
serum (FBS) and antibiotics (100U/ml penicillin, 100 µg/ml
streptomycin, and 2.5 µg/ml amphotericin B), in a humid-
ified atmosphere containing 5% CO2. /e culture medium
was replaced every other day. Once the cells reached 70–80%
confluency, they were trypsinized and seeded into 6-well or
24-well plastic dishes for further experiments.

2.4. Analysis of Cell Viability. Cell viability was measured
using WST-1 assay. Cells were seeded at a density of 5×104
cells/mL in 24-well plates and cultured in phenol red-free
DMEM, containing 0.5% heat-inactivated FBS, for 24 h.
Cells were then incubated with 20 µg/ml of WM or 10 µg/ml
of LPS, as indicated, for 24 h. WST-1 reagent was then added
to the medium and incubated at 37°C for 2 h./e absorbance
was measured at 450 nm using a microplate reader (/ermo
Labsystems, Waltham, MA, USA).

2.5. Western Blotting. Sodium dodecyl sulfate-polyacryl-
amide gel electrophoresis (SDS-PAGE) was performed using
10% acrylamide gels, with 20 µg of protein loaded into each
lane. After electrophoresis, the proteins were transferred
from the gel to a polyvinylidene fluoride (PVDF)membrane,
at 350mA for 2 hours, and the membrane was then blocked
with 5% nonfat milk for 1 hour. /e membranes were in-
cubated with primary antibodies, diluted 1 :1,000 in 5%
nonfat milk, overnight at 4°C. Membranes were washed in
TBST buffer (20mM Tris-HCl, pH 7.4, 137mM NaCl, and
0.1% Tween-20) 3 times, for 10 minutes each time, incubated
with secondary antibodies conjugated to horseradish per-
oxidase (HRP), at 1 :10,000 dilution, for 1 hour at room
temperature, washed again, and stained with aWestern HRP
substrate. Protein bands were visualized on X-ray film using
an enhanced chemiluminescence system (Kodak).
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2.6. Lipid ROS Detection. Cells were incubated with 2 µM
C11-BODIPY 581/591 (/ermo Fisher Scientific), in culture
medium for 1 h and then washed with phosphate-buffered
saline. After trypsinization, cells were collected and used for
flow cytometry (BD Biosciences, San Jose, CA, USA), using
an excitation wavelength of 488 nm and an emission
wavelength of 517–527 nm.

2.7. Statistical Analysis. Continuous data were expressed as
the mean± standard error of the mean. Statistical differences
among means from different groups were determined by
one-way or a two-way analysis of variance, followed by a
Bonferroni post hoc test for continuous variables. P values
<0.05 were considered significant differences.

3. Results

3.1. WM Treatment Caused ROS Accumulation and Cell
Death. /e acceleration ROS accumulation has been shown
to disrupt redox homeostasis and cause severe damage in
cancer cells, resulting in cancer cell death via the activation
of apoptosis, autophagic cell death, and necroptosis [55]./e
induction of apoptosis on HSCs via the stimulation of ROS
accumulation represents a potential strategy for addressing
liver fibrosis [56]. Our results showed that WM treatment
induced ROS overproduction in HSCs relative to untreated
cells (Figures 1(a) and 1(b)). Decreased HSC viability was
detected after treatment with 20 µg/ml WM for 24 h com-
pared with untreated cells (Figure 1(c)). /ese results in-
dicated that WM treatment induced ROS accumulation and
cell death.

3.2. WM Treatment Resulted in Lipid ROS Accumulation and
Cell Death in LPS-Activated HSCs. LPS is a well-known
activator of HSCs and LPS treatment results in the activation
of a proinflammatory, myofibroblast phenotype [57]. ROS-
induced lipid peroxidation and lipid ROS accumulation has
been reported to play critical roles in cell death pathways,
including apoptosis, autophagy, and ferroptosis [58]. As
shown in Figure 2, the results indicated that lipid ROS
accumulation decreased in LPS-activated HSCs compared
with untreated HSCs (Figures 2(a) and 2(b), column 1 vs.
column 2 but increased after the WM treatment of LPS-
activated HSCs (WM treatment in LPS-activated HSCs,
Figures 2(a) and 2(b), column 2 vs. column 4). In contrast,
cell viability significantly decreased after WM treatment in
quiescent HSCs compared with untreated cells (Figure 2(c),
column 1 vs. column 3). Interestingly,WM treatment caused
cell death in LPS-activated HSCs (Figure 2(c), column 2 vs.
column 4). /erefore, we proposed that WM treatment
resulted in lipid ROS accumulation and cell death in LPS-
activated HSCs.

3.3. WM Treatment Enhanced ER Stress, Attenuated In-
flammation, andTriggeredFerroptosis inLPS-ActivatedHSCs.
CHOP plays a critical role in ER stress-induced apoptosis
[59]. Oyadomari and Mori demonstrated that when severe

ER stress conditions persist, apoptotic signaling pathways
become activated, resulting in the induction of CHOP [60].
Our results showed that CHOP expression levels decreased
in LPS-activated HSCs (Figures 3(a) and 3(b), column 1 vs.
column 2) but increased following the WM treatment of
LPS-activated HSCs (WM treatment in LPS-activated HSCs,
Figures 3(a) and 3(b), column 2 vs. column 4). Additionally,
JNK is a well-known regulator of the inflammatory response
[61]. As shown in Figures 3(a) and 3(b), the expression levels
of p-JNK increased in LPS-activated HSCs, compared with
quiescent HSCs (Figures 3(a) and 3(b), column 1 vs. column
2) and decreased after the WM treatment of LPS-activated
HSCs (WM treatment in LPS-activated HSCs, Figures 3(a)
and 3(b), column 2 vs. column 4).

Ferroptosis is a newly identified cell death pathway, which
occurs in an iron-dependent manner and is characterized by
iron accumulation and lipid peroxidation during the cell
death process [62]. SLC7A11 is a key regulator of the anti-
oxidant system Xc−, which mediates the exchange of cysteine
and glutamate, and is widely distributed in the phospholipid
bilayer [63]. GPX4 (glutathione peroxidase 4) activity de-
creases with increasing system Xc− activity, resulting in de-
creased antioxidant capacity, lipid ROS accumulation, and
ultimately, oxidative damage and ferroptosis [62]. Friedmann
Angeli et al. reported that knockout of GPX4 caused cell death
via ferroptosis, both in vitro and in vivo [64]. In the present
study, the results showed that the expression levels of GPX4
and SLC7A11 increased in LPS-activated HSCs, compared
with untreated HSCs (Figures 3(c) and 3(d), column 1 vs.
column 2), but decreased after the WM treatment of LPS-
activated HSCs (WM treatment in LPS-activated HSCs,
Figures 3(c) and 3(d), column 2 vs. column 4). Altogether,
these results indicated that WM treatment sensitized LPS-
activated HSCs ER stress, attenuated inflammation, and
triggered ferroptosis.

3.4. WMTreatment Has Antifibrotic Effects on LPS-Activated
HSCs. Activated HSCs are well-known as potential thera-
peutic targets in liver fibrosis [65]. We investigated whether
WM treatments have any antifibrotic effects in LPS-activated
HSCs. As shown in Figures 4(a) and 4(b), the expression
levels of CTGF, α-SMA, and integrin-β1 increased in LPS-
activated HSCs, compared with untreated HSCs
(Figures 4(a) and 4(b), column 1 vs. column 2), but de-
creased after WM treatment (WM treatment in LPS-acti-
vated HSCs, Figures 4(a) and 4(b), column 2 vs. column 4).
/erefore, we suggested that WM treatment has great po-
tential for use to treat and prevent liver fibrosis through
effects on activated HSCs.

4. Discussion

Activated HSCs play major roles in the pathogenesis of liver
fibrosis [66]. Growing evidence has suggested that the in-
duction of HSC cell death and the inhibition of HSC growth
may represent potential strategies for the treatment and/or
prevention of liver fibrosis [9, 33, 67–70]. Furthermore,
natural fruits may be used as additional therapeutic
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Figure 1: WM treatment induced ROS production and decreased cell viability. (a) Cells treated with (WM+) or without (WM−) 20 µg/ml
WM for 24 h. /e levels of intracellular ROS were determined using DCF-DA, and fluorescence was detected using FACS Calibur analysis.
Control samples refer to cells without DCF-DA. (b) ROS levels are expressed as the mean fluorescence intensity. (c) Cells treated with either
the vehicle (0 µg/mlWM) orWM (20 µg/ml) for 24 h. After the incubation period, cell viability was determined usingWST-1 assay. All data
are presented as the mean± SD. ∗p< 0.05, ∗∗p< 0.01, n� 3.
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Figure 2: WM treatment reversed the decrease in lipid ROS production and increased cell viability in LPS-activated HSCs. (a) Changes in
cellular lipid ROS levels, associated with the indicated conditions in HSC-T6 cells. (b) ROS levels are expressed as mean fluorescence
intensity. (c) Cells cultured using the indicated conditions, for 24 h. After the incubation period, cell viability was determined using WST-1
assay. Controls refer cells without 2 µM C11-BODIPY 581/591. LPS 0 indicates cells without LPS treatment. LPS 10 indicates cells treated
with 10 µg/ml LPS. WM 20 indicates cells treated with 20 µg/ml WM. All data are presented as the mean± SD. ∗p< 0.05, n� 3.
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approaches to inhibit hepatic fibrogenesis. To our knowledge,
this study demonstrated, for the first time, that an extract
from the natural fruit WM could attenuate LPS-induced HSC
activation via the regulation of ER stress and ferroptosis.
However, the pharmacological effects of WM treatments in
HSCs remain unclear. Our results indicated that WM
treatment caused ROS accumulation, lipid ROS accumula-
tion, and cell death in LPS-activated HSCs (Figures 1 and 2).
WM treatment also increased ER stress-induced apoptosis
and attenuated inflammation and ferroptosis in LPS-activated
HSCs (Figure 3). We also detected the effects of WM treat-
ment on the expression of the following proteins: α-SMA, a
critical marker of HSC activation [71]; CTGF, a maker of liver
fibrosis [72, 73]; and integrin-β1, a hallmark of hepatic fibrosis
[74]. As shown in Figure 4, WM treatment decreased the
expression levels of these proteins (Figure 4). /erefore, these
data demonstrated that WM treatment may protect against
liver fibrosis via HSC inactivation or death.

Astaxanthin was shown to inhibit liver fibrosis via HSC
inactivation and the decreased formation of ECM in carbon
tetrachloride (CCl4) and bile duct ligation mouse models
[75]. Similar results were also reported for treatments with
curcumin [76], blueberry [77], silymarin [78], 3, 5-diethoxy-
3′-hydroxyresveratrol [79], quercetin [80], epigallocatechin-
3-gallate [81], coffee [82], and vitamins [83]. Additionally,
Kuo et al. suggested that the marine extract from a

gorgonian coral Pinnigorgia sp. (Pin) could induce apoptosis
in HSC-T6 cells via ROS-ERK/JNK-caspase-3 signaling and
may exhibit therapeutic potential for the clearance of HSCs
[84]. Other studies have reported similar results [85–87].
/ese studies further strengthen the evidence for the use of
bioactive food components and natural products with po-
tential antifibrotic effects in therapeutic approaches
designed to slow or reverse the development of liver fibrosis.

Huang et al. reported that the quantitative high-per-
formance liquid chromatography analysis of WM TPE
revealed gallic, chlorogenic, caffeic, ferulic, and cinnamic
acids, myricetin, quercetin, luteolin, apigenin, and thymol
and that WM TPE displayed an anti-inflammatory response
against Propionibacterium acnes-induced skin inflamma-
tion, in vivo [54]. Chen et al. showed that gallic acids at-
tenuated dimethylnitrosamine-induced fibrosis via the
regulation of Smad phosphorylation [88]. Chlorogenic acids
protect against CCL4-induced liver fibrosis through the
suppression of oxidative stress in the liver and HSCs [89].
Caffeic and ferulic acids have been shown to prevent liver
damage and ameliorate liver fibrosis in CCL4-treated rats
[90, 91]. Wang et al. demonstrated that trans-cinnamic acid
has antiobesity effects in oleic acid- (OA-) induced HepG2
cells and high-fat diet- (HFD-) fed mice [92]; however, the
role played by trans-cinnamic acid in HSCs remains unclear.
Myricetin modulated the polarization of macrophages via
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Figure 3: WM treatment induced ER stress, alleviated inflammation, and triggered ferroptosis in LPS-activated HSCs. (a) Changes in the
expression levels of CHOP and p-JNK. β-Actin was used as an internal control. (b) Quantitative evaluation of the levels of specific proteins,
assessed by ImageJ. All data are presented as the mean± SD. n� 3, ∗p< 0.05. (c) Changes in the expression levels of GPX4 and SLC7A11.
β-Actin was used as an internal control. (d) Quantitative evaluation of the levels of specific proteins, assessed by ImageJ. All data are
presented as the mean± SD. n� 3, ∗p< 0.05.
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the inhibition of TREM-1-TLR2/4-MyD88 signaling mol-
ecules in macrophages and attenuated liver inflammation
and fibrosis in a choline-deficient, L-amino acid-defined,
high-fat diet-induced nonalcoholic steatohepatitis model
[93]. Quercetin caused decreased oxidative stress and in-
flammation and prevented liver fibrosis via the induction of
HSC apoptosis [94]. Li et al. speculated that luteolin exhibits
antifibrotic effects in HSCs and liver fibrosis by targeting the

AKT/mTOR/p70S6K and TGFβ/Smad signaling pathways
in CCl4, dimethylnitrosamine, and bile duct ligation induced
animal models of fibrosis and rat HSCs and HSC-T6 cells
[95]. A computational approach indicated that apigenin was
predicted to have antifibrotic activity [96]. /ymol signifi-
cantly ameliorated liver injury due to endotoxicity in gastric
ulcer rat models [97]; however, the role played by thymol in
liver fibrosis remains uncertain.
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Figure 4: WM treatment attenuated fibrosis in LPS-activated HSCs. (a) Changes in the expression levels of CTGF, α-SMA, and integrin-β1.
β-Actin was used as an internal control. (b) Quantitative evaluation of the levels of specific proteins, assessed by ImageJ. All data are
presented as the mean± SD. n� 3, ∗p< 0.05, ∗∗p< 0.01.
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5. Conclusions

In summary, the present study demonstrated that the pre-
treatment of HSCs with WM prevented LPS-induced HSC-
T6 cell activation (as demonstrated by CTGF, α-SMA, and
integrin-β1 levels) and inflammation (as indicated by p-JNK
levels). WM treatment caused ROS/lipid ROS overpro-
duction, cell death, ER stress activation (as indicated by
CHOP expression), and ferroptosis (as indicated by GPX4
and SLC7A11 expression) in LPS-activated HSC-T6 cells
(Figure 5). /ese novel findings deepen our understanding
of the mechanistic actions underlying WM treatments.
Because WM showed potential antifibrotic effects in acti-
vated HSCs, further in vivo studies should be performed to
determine the potential effects of WM treatment on various
liver fibrosis models.
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