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In recent years, deep learning has emerged as a highly active research field, achieving
great success in various machine learning areas, including image processing, speech recog-
nition, and natural language processing, and now rapidly becoming a dominant tool in
biomedicine [1]. In particular, a dramatically increasing number of deep learning-based
approaches have been proposed in biomedical image analysis and biosignal processing,
as well as medical prediction modeling. However, the application of deep learning to ge-
nomics and bioinformatics has been rather limited, perhaps due to the combined difficulties
of interpretation as well as steep data requirements.

One of the major challenges is that many approaches in deep learning and traditional
machine learning are based on the assumption that the number of samples is huge in order
to train models with a vast number of features. The situation in medicine is often reversed by
necessity: the number of features desired to be analyzed is often one or two orders of magnitude
greater than the number of samples. Researchers must contend with this fundamental issue,
and in the end must be content with models that are consistent with the data.

In this Special Issue entitled “Deep Learning and Machine Learning in Bioinformatics”,
submissions address the application of deep learning and novel machine learning methods
to diverse bioinformatic problems and provide practical guidance. These methods include
useful approaches that may improve predictive performance and separately enhance our
understanding of biological mechanisms of target diseases.

Among the 55 submissions reviewed, 21 were accepted, including 17 research articles
and 4 reviews, with 124 contributors. The contributions were global, for the accepted
papers originating from 12 countries, including Australia (2), China, France, Italy (3), Japan
(2), Poland, South Korea (2), Spain, Sweden, Taiwan, Thailand, and the United States (5).
Figure 1 shows the map of countries with the symbol F for the first or corresponding
authors of the accepted papers.
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In recent years, deep learning has emerged as a highly active research field, achieving 
great success in various machine learning areas, including image processing, speech 
recognition, and natural language processing, and now rapidly becoming a dominant tool 
in biomedicine [1]. In particular, a dramatically increasing number of deep learning-based 
approaches have been proposed in biomedical image analysis and biosignal processing, 
as well as medical prediction modeling. However, the application of deep learning to ge-
nomics and bioinformatics has been rather limited, perhaps due to the combined difficul-
ties of interpretation as well as steep data requirements. 

One of the major challenges is that many approaches in deep learning and traditional 
machine learning are based on the assumption that the number of samples is huge in order 
to train models with a vast number of features. The situation in medicine is often reversed 
by necessity: the number of features desired to be analyzed is often one or two orders of 
magnitude greater than the number of samples. Researchers must contend with this fun-
damental issue, and in the end must be content with models that are consistent with the 
data.  

In this Special Issue entitled “Deep Learning and Machine Learning in Bioinformat-
ics”, submissions address the application of deep learning and novel machine learning 
methods to diverse bioinformatic problems and provide practical guidance. These meth-
ods include useful approaches that may improve predictive performance and separately 
enhance our understanding of biological mechanisms of target diseases.  

Among the 55 submissions reviewed, 21 were accepted, including 17 research articles 
and 4 reviews, with 124 contributors. The contributions were global, for the accepted pa-
pers originating from 12 countries, including Australia (2), China, France, Italy (3), Japan 
(2), Poland, South Korea (2), Spain, Sweden, Taiwan, Thailand, and the United States (5). 
Figure 1 shows the map of countries with the symbol ★ for the first or corresponding 
authors of the accepted papers. 

 
Figure 1. A map of countries with the symbol ★ for the first or corresponding authors of the ac-
cepted papers. 
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Figure 1. A map of countries with the symbolF for the first or corresponding authors of the accepted papers.

Ten research papers demonstrated the application of deep learning to various kinds of
biological data. Le et al. proposed an ensemble neural network to identify essential genes
via word embedding features from genomic sequences [2]. Persson Hodén et al. developed
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a convolutional neural network (CNN) model capable of efficiently identifying true mRNA
cleavage sites, which was implemented as an R package called smartPARE [3]. Nosi et al.
proposed a neural network method to detect MET exon 14 skipping events using RNAseq
data from The Cancer Genome Atlas (TCGA) archive for lung cancer [4]. Alessandri et al.
developed a new autoencoder model, called Sparsely Connected Autoencoders, to improve
the traditional decoder model for better identifying biological features from single cell
data [5]. Al Mamun et al. developed a multi-run concrete autoencoder to identify a stable
set of features which was applied to TCGA genome-wide lncRNA expression profiles
in 12 cancers, resulting in the identification of key lncRNAs [6]. Lee et al. introduced a
peptide data augmentation method, which was employed to predict spider neurotoxic
peptides, showing improved predictive power when coupled with a CNN model [7].
Madani et al. developed a novel deep learning sequence-based solubility predictor, called
DSResSol, for fast, reliable, and inexpensive prediction of protein solubility [8]. Zulfiqar
et al. developed a 1D CNN-based model, named Deep-4mCGP, to identify 4mC sites in
Geobacter pickeringii [9]. Roethel et al. developed a deep learning architecture for a holistic
sequential and structural analysis of biomolecules [10].

Hazra et al. employed generative adversarial networks (GAN) to create synthetic
nucleic acid sequences of the cat genome [11].

Seven research papers used traditional (non-deep learning) machine learning ap-
proaches to analyze biological data. Two computational methods were introduced, PUP-
Fuse [12] and PredNTS [13], for the prediction of pupylation sites and nitrotyrosine sites,
respectively, by integrating multiple sequence representations coupled with a random for-
est approach. Rodin et al. proposed a novel computational pipeline to dissect the response
to cancer immunotherapy, employing systems biology and Bayesian network techniques on
flow cytometry data [14]. Campos et al. employed machine learning approaches to identify
essential genes common to both Caenorhabditis elegans and Drosophila melanogaster [15].
Charoenkwan et al. developed a sequence-based predictor, named iBitter-Fuse, to identify
bitter peptides by fusing multi-view features [16]. Jabeen et al. adopted a random forest
model to identify novel high activity agonists of human ectopic olfactory receptors [17].
Pouryahya et al. proposed a network-based clustering method coupled with optimal
mass transport theory to predict cell line-drug sensitivity, and showed that random for-
est modeling conducted on the resulting cell line-drug clusters outperformed alternative
computational methods in predicting in vitro drug responses [18].

Four papers reviewed the use of deep learning or machine learning approaches to
biological data analysis. Auslander et al. reviewed machine learning/deep learning ap-
proaches incorporated to establish bioinformatics and computational biology frameworks
in the areas of molecular evolution, protein structure analysis, systems biology, and disease
genomics [19]. Del Giudice et al. comprehensively reviewed machine learning/deep learn-
ing solutions for computational problems in bulk and single-cell RNA-sequencing data
analysis [20]. Banegas-Luna et al. discussed the interpretability of machine learning/deep
learning methods in cancer research [21]. Defresne et al. reviewed deep learning methods
used for protein design [22].

In summary, the articles in this Special Issue provide a range of reviews and updates
to the use of deep learning and machine learning in bioinformatics.
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