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Abstract 31 

Genome wide association studies (GWAS) have identified over 100 signals associated with type 32 

1 diabetes (T1D). However, translating any given T1D GWAS signal into mechanistic insights, 33 

including putative causal variants and the context (cell type and cell state) in which they function, 34 

has been limited. Here, we present a comprehensive multi-omic integrative analysis of single-35 

cell/nucleus resolution profiles of gene expression and chromatin accessibility in healthy and 36 

autoantibody+ (AAB+) human islets, as well as islets under multiple T1D stimulatory conditions. 37 

We broadly nominate effector cell types for all T1D GWAS signals. We further nominated higher-38 

resolution contexts, including effector cell types, regulatory elements, and genes for three 39 

independent T1D risk variants acting through islet cells within the pancreas at the DLK1/MEG3, 40 

RASGRP1, and TOX loci. Subsequently, we created isogenic gene knockouts DLK1-/-, RASGRP1-
41 

/-, and TOX-/-, and the corresponding regulatory region knockout, RASGRP1Δ, and DLK1Δ  hESCs. 42 

Loss of RASGRP1 or DLK1, as well as knockout of the regulatory region of RASGRP1 or DLK1, 43 

increased β cell apoptosis. Additionally, pancreatic β cells derived from isogenic hESCs carrying 44 

the risk allele of rs3783355A/A exhibited increased β cell death. Finally, RNA-seq and ATAC-seq 45 

identified five genes upregulated in both RASGRP1-/- and DLK1-/- β-like cells, four of which are 46 

associated with T1D. Together, this work reports an integrative approach for combining single cell 47 

multi-omics, GWAS, and isogenic hESC-derived β-like cells to prioritize the T1D associated 48 

signals and their underlying context-specific cell types, genes, SNPs, and regulatory elements, to 49 

illuminate biological functions and molecular mechanisms.   50 



4 

Introduction 51 

Type 1 diabetes (T1D) is a complex autoimmune disease that represents 5-10% of all diagnosed 52 

diabetes cases 1. The primary manifestation of this disease is the targeting of pancreatic β cells by 53 

the immune system, likely mediated by T-cells, resulting in loss of β cells and insulin deficiency2. 54 

During T1D progression, the process of β cell destruction is marked by the production of 55 

autoantibodies (AAB+) to the β cell, occurs over many years and ultimately results in metabolic 56 

abnormalities first manifested as impaired glucose tolerance and then progressing to symptomatic 57 

hyperglycemia. The AAB+ patients cover both pre- and onset- T1D groups. The emergence of 58 

genotyping and imputation has significantly increased the power and accuracy for genome-wide 59 

association studies (GWAS) of T1D genetic risk3,4. It is widely accepted that immune cells are the 60 

primary mediators of T1D genetic risk2, which is supported by the strong genetic association of 61 

the major histocompatibility complex (MHC) in T1D GWAS3,5. However, mounting evidence 62 

suggests that other cell types, including pancreatic cells, also play critical roles in T1D etiology 63 

and genetic risk3,4,6. For example, one proposed mechanism for T1D risk variants acting through 64 

β cells is to modulate their susceptibility to immune-mediated apoptosis7. Two recent studies using 65 

functional genomics at the single-cell level have helped clarify some of the biology driving T1D 66 

genetic risk and contributing to T1D progression4,8. Both studies identified a role for non-immune 67 

cell types in the pancreas, particularly acinar and ductal cells, in mediating T1D genetic signals4 68 

or contributing to T1D onset and progression8. Moreover, one of these studies reported that cis-69 

regulatory elements active in β cells significantly overlapped with T1D GWAS variants4, 70 

indicating that β cells play a role in T1D genetic risk. However, there remains a lack of a systematic 71 

approach to prioritize and functionally characterize these genetic variants in human pancreatic β 72 

cells.  73 
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 74 

Several experiments have been performed to examine healthy and T1D human islets at single cell 75 

level. Early studies performed single cell RNA-seq (scRNA-seq) of T1D islets8-10. Additionally, 76 

combining T1D GWAS and chromatin accessibility profiling of pancreas and peripheral blood 77 

mononuclear cells using single-nucleus assay for transposase-accessible chromatin with 78 

sequencing (snATAC-seq) showed that risk variants for T1D were enriched in T cell open 79 

chromatin, as well as acinar and ductal cells4. Furthermore, recent studies using single-cell 80 

transcriptional profiling and in situ imaging mass cytometry identified a subset of exocrine ductal 81 

cells that acquires a signature of tolerogenic dendritic cells in an apparent attempt at immune 82 

suppression in T1D donors8. However, most of these previous studies have focused on the analysis 83 

of profiling data under basal conditions and without functional validation.  84 

 85 

Human pluripotent stem cells (hPSCs), which includes human embryonic stem cells (hESCs) and 86 

induced pluripotent stem cells (iPSCs), have been used to model human diseases. Several studies 87 

have utilized hPSC-derived β-like cells to investigate pancreatic β cell dysfunction in diabetes. 88 

These studies have largely focused on maturity-onset diabetes of the young (MODY)11-22, and 89 

neonatal diabetes (NDM)20,23,24. In addition, isogenic hPSCs have been utilized to study genes 90 

implicated in T2D-implicated genes, such as KCNQ1, KCNJ11, CDKAL1, GATA6, SIX2, and 91 

ABCC8, in β cells25. Furthermore, isogenic GLIS3-/- hESCs showed the defective differentiation 92 

toward pancreatic β cells and the derived β cells showed increased cell death both in vitro and in 93 

vivo26.  By combining high-throughput epigenome and single-cell nuclear sequencing with the 94 

hPSC-derived β cell platforms, researchers have been able to identify more diabetes risk genes or 95 

loci, such as LAMA1, CRB2, and rs23136127.  96 
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 97 

In this study, we performed single-cell resolution multi-omic integration of high-throughput 98 

molecular profiles of paired gene expression and chromatin accessibility of human islets from both 99 

healthy and AAB+ donors. Although T1D is a complex disease, researchers have used various in 100 

vitro conditions to mimic cytokine- or virus-induced beta cell damage. For example, a 101 

proinflammatory cytokine cocktail that includes interferon gamma (IFN-γ), interleukin 1b (IL-1β), 102 

and tumor necrosis factor α (TNF-α) has been used to stimulate inflammatory signaling28. 103 

Additionally, several viruses have been associated with T1D, including enteroviruses such as 104 

Coxsackievirus B (CVB), rotavirus, mumps virus, and cytomegalovirus29. Here, we used two in 105 

vitro models, including cytokine cocktail (TNF-α, IFN-g and IL-1β) treatment and coxsackievirus 106 

B4 virus (CVB4) infection30,31 to simulate the stressed environment β cells are exposed to during 107 

T1D. We used both AAB+ islets and cytokine- or CVB4-treated islets to characterize mechanisms 108 

of T1D genetic risk, focusing on identifying variants acting through islet endocrine cells. We 109 

prioritized three independent T1D risk variants acting through pancreatic islet endocrine cells at 110 

the TOX, RASGRP1, and DLK1/MEG3 loci. Subsequently, we created isogenic gene knockout, 111 

region knockout, and SNP knockin hESC lines to characterize the biological functions of these 112 

genes, regulatory elements, and SNPs in human β cell survival. 113 

 114 

Results 115 

Integrative analysis of single cell gene expression and chromatin accessibility profiles of 116 

human islets. 117 

We performed single cell gene expression (scRNA-seq) and single nucleus chromatin accessibility 118 

(snATAC-seq) profiling on human pancreatic islets from healthy (n=8) and AAB+ donors (n=3). 119 
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Considering the large donor-to-donor variation, we also performed scRNA-seq and snATAC-seq 120 

on islets from a subset of healthy donors (n=3) under cytokine stimulation (TNF-α, IFN-g and IL-121 

1β) and CVB4 infection (Fig. 1a, Supplementary Table 1). After stringent quality control (QC; 122 

Methods), we profiled 121,272 cells (49,897 snATAC-seq nuclei and 71,375 scRNA-seq cells; 123 

Extended Data Fig. 1a-d, Supplementary Table 2). We performed joint clustering of the 124 

molecular profiles across samples and modalities (n=34 libraries) using Seurat32. We identified ten 125 

major distinct cell types based on the gene expression of known marker genes and the chromatin 126 

accessibility of their gene bodies (Fig. 1b-d, Extended Data Fig. 1e). The identified cell types 127 

represent the endocrine (α, β, δ, and γ cells), exocrine (acinar and ductal), stellate (activated and 128 

quiescent), endothelial, and immune lineages. Cell type representation ranged from 1.4% (immune) 129 

to 35% (ductal) of all cells. We profiled 41,569 islet endocrine cells and nuclei, corresponding to 130 

34.3% of all profiled cells and nuclei. α cells were the most abundant endocrine cells (n=21,151), 131 

followed by β (n=15,577), δ (n=2,703), and γ cells (n=2,138). All cell types were well-represented 132 

across samples and modalities, and we did not identify any sample- or modality-specific clusters 133 

after QC (Fig. 1c, Extended Data Fig. 1d). Importantly, we observed during the initial QC steps 134 

that the ambient RNA contamination (RNA “soup”) was a source of technical variation across 135 

libraries and could lead to misinterpretation of results if not correctly accounted for (Methods, 136 

Extended Data Fig. 1g-j). Our findings are consistent with a recent study indicating that ambient 137 

RNAs can confound single-cell analyses. 138 

 139 

Transcriptional changes in experimental models of T1D recapitulate disrupted pathways in 140 

T1D. 141 
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Aiming to identify pathways and regulatory programs associated with T1D, we first performed 142 

differential expression analyses across disease states and experimental perturbations. We 143 

accounted for biological and technical covariates that could influence results to quantify 144 

differential expression across conditions accurately. After adjusting for technical variation, we 145 

detected 2,272 differentially expressed genes (DEGs) at 10% false discovery rate (FDR) across all 146 

cell types and conditions combined (ranging from 1 to 883 per cell type and condition, mean = 98; 147 

Supplementary Table 3). We observed lower transcriptional changes associated with CVB4 148 

infection compared to cytokine stimulation in all cell types, which could be due to heterogeneity 149 

in the CVB4 infection efficiency across samples. Indeed, we observed differences in the number 150 

of detectable CVB4 mRNAs in each CVB4-treated sample (Extended Data Fig. 2a). This 151 

variability may explain why the CVB4 infection DEG effect sizes were generally smaller.  152 

 153 

To determine if the experimental perturbations recapitulated functional aspects of progression 154 

towards T1D in pancreatic cells, we performed pathway enrichment analyses using the DEGs from 155 

disease state and perturbations. Due to the low number of AAB+ samples in our data, we opted to 156 

use the beta cells AAB+ DEGs reported by a recent, more well-powered study33. We found overall 157 

high concordance between the pathway enrichments in AAB+ compared to cytokine stimulation 158 

and CVB4 infection in β cells (Fig. 2a).  These findings suggest cytokine stimulation and CVB4 159 

infection affect similar pathways in β cells compared to the AAB+ cell state environment. In 160 

addition, we found a high agreement between the DEGs and pathways enriched in cytokine 161 

stimulation and CVB4 infection in the other cells types, suggesting that they elicit similar 162 

transcriptional changes (Extended Data Fig. 2b, c). 163 

 164 
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Transcription factors regulating the epigenomic landscape of pancreatic cells. 165 

To characterize the epigenomic landscape of the different pancreatic cell types, we used the BMO 166 

tool34 to predict bound transcription factor (TF) sites using a non-redundant collection of 540 167 

motifs along with chromatin accessibility profiles in each cell type and calculated their 168 

corresponding chromatin information patterns. The observed chromatin information patterns 169 

around a given motif reflect the impact of specific TFs in organizing local chromatin architecture 170 

and establishing cell identity34 (Fig. 2d). We identified common and cell-type-specific TFs driving 171 

the epigenomic landscape for each cell type (Fig. 2e, f). The TFs CTCF, AP-1, and NFE2 172 

consistently scored highest in chromatin information across cell types (Supplementary Table 4), 173 

likely reflecting their constitutive roles in chromatin organization35,36. On the other hand, a subset 174 

of TF families had a higher impact on chromatin organization in a cell-specific manner. These TF 175 

families include RFX and FOXA in endocrine cells, HNF in exocrine cells, and SPI1 (PU.1) in 176 

immune cells (Fig. 2f). The identified TF families have previously been characterized as cell fate 177 

determinants and play functional roles in their respective lineages37-39. This observation, therefore, 178 

underscores the specificity and rigor of our epigenomic analyses. Importantly, we observed 179 

changes in the underlying chromatin organization associated with a subset of TFs when comparing 180 

conditions (Fig. 2g). The IRF motif family was associated with increased chromatin organization 181 

in β cells under cytokine treatment, consistent with previous studies showing that cytokine 182 

stimulation induces IRF-1 activation in β cells and results in subsequent apoptosis40,41. In 183 

agreement with these results, we observed a significant up-regulation of IRF1 in cytokine-treated 184 

β-cells compared to control (log2 fold-change = 5.37, adj. p = 1.12e-4; Supplementary Table 3) 185 

Similarly, cytokine treatment induced changes in chromatin organization at the SPI1, MAF, and 186 

ETS family TF motifs in immune cells, which are well-known mediators of cytokine response in 187 
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these cells42,43. Notably, the chromatin organization changes in AAB+ cells were less pronounced 188 

than the environmental perturbations, which suggest that the experimental models of T1D 189 

associate with acute changes in cellular state occurring in a shorter time frame. Together, these 190 

results highlight the dynamic landscape of chromatin accessibility in pancreas cell types and 191 

identify TFs likely driving cellular identity and environmental response in islets and other 192 

pancreatic cells. 193 

 194 

Enrichment of T1D GWAS variants nominates cell types likely mediating T1D genetic risk. 195 

In order to investigate the mechanisms involved in T1D genetic risk, we used fGWAS44 to 196 

calculate the enrichment of the accessible chromatin of the different cell types captured by our 197 

snATAC-seq experiments using the summary statistics of a recent T1D GWAS4. As expected, we 198 

observed the highest T1D GWAS enrichment in the immune cluster (log enrichment = 2.78; Fig. 199 

3a). The other significantly enriched cell types were acinar, quiescent stellate, β, ductal, and α cells 200 

(log enrichments ranging from 1.53 to 2.12). These results suggest that multiple pancreatic cell 201 

types, including islet endocrine cells, contribute to T1D genetic risk. These enrichments, however, 202 

represent the baseline (unperturbed) state of these cells and, therefore, may miss specific 203 

environmental contexts of T1D genetics. To contextualize these results, we tested the enrichment 204 

of accessible chromatin using the summary statistics of type 2 diabetes from the Diabetes Meta-205 

Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium45 and fasting glucose 206 

from the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC)46 GWAS 207 

studies. We observed the strongest enrichments for these two traits in accessible chromatin regions 208 

from β cells and other islet endocrine cell types (Fig. 3a), which is consistent with previous 209 

studies45-48, and highlights the quality of the underlying data and analyses in this current work. 210 
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 211 

We next investigated the context-specific roles of the studied cell types in T1D predisposition. To 212 

this end, we used fGWAS to calculate the enrichment of T1D GWAS summary statistics in 213 

differentially accessible regions (DARs) across disease states and experimental perturbations. 214 

Because of data sparseness and inflation of p-values associated with differential analyses in single-215 

cell data49, we developed a stringent effect-size-based approach for detecting DARs in our 216 

snATAC-seq data (Extended Data Fig. 2d, Methods). As expected, DARs for AAB+ and 217 

cytokine treatment in immune cells were more highly enriched for T1D GWAS compared to non-218 

DARs (Fig. 3b). In addition, the enrichment point estimates increased as we used more stringent 219 

DAR thresholds. This result is consistent with a substantial component of T1D genetic risk 220 

encoded by responsive elements in immune cells, such as the MHC locus4. We also observed a 221 

similar trend in DARs for CVB4 infection in immune cells, but it did not reach significance, 222 

potentially due to the difference in CVB4 infection efficiency across replicates (Extended Data 223 

Fig. 2a). Interestingly, we found that DARs in AAB+ β cells are more enriched for T1D GWAS 224 

than non-DARs. Similar to the previous results in immune cells, the enrichment point estimates 225 

for the β-cell DARs increased with more stringent DAR thresholds (Fig. 3b). This result suggests 226 

that the environmentally responsive regulatory elements in β cells also mediate T1D genetic risk 227 

and, therefore, indicate a role for islet endocrine cells in mediating T1D progression. 228 

 229 

Regulatory elements in β and other islet endocrine cells mediate T1D genetic risk. 230 

Next, we aimed to understand regions and regulatory elements that are responsible for driving the 231 

observed T1D GWAS enrichments in pancreatic cells. To this end, we developed a novel approach 232 

to quantify the relative contributions of each cell type to T1D genetic risk and prioritize candidate 233 
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cell types mediating genetic risk at a given locus. This approach is based on the cell-type-specific 234 

chromatin accessibility levels at each variant in a T1D genetic credible set, weighted by the 235 

posterior probability of association (PPA) of the variant (Methods). As a proof of concept, the 236 

three independent T1D GWAS signals at the INS locus were prioritized to act through β cells (Fig. 237 

3c). A broader analysis of all 136 T1D GWAS signals showed that genetic risk is partitioned across 238 

all the cell types analyzed in this study (Fig. 3d). Immune cells contribute to most of the T1D 239 

genetic risk, as expected. However, we observed multiple signals prioritized to act through 240 

pancreatic endocrine (β, α, δ, γ), exocrine (acinar, ductal), stellate, and endothelial cells. 241 

Importantly, we identified several signals with β- or islet-specific accessibility, indicating that 242 

these genetic signals are likely mediated by islet endocrine cells in the pancreas. These islet 243 

endocrine loci include the three independent signals at the INS locus, the primary and secondary 244 

signals at DLK1/MEG3, and the signals at TOX, RASGRP1, and GLIS3 (Fig. 3d). 245 

 246 

We next attempted to prioritize T1D risk loci likely acting through β or other islet endocrine cells 247 

for functional validation. In addition to the PPA-weighted chromatin accessibility for each locus, 248 

we accounted for the number of variants in the 99% credible set (CS) and the PPA distribution 249 

across variants to nominate candidate loci where functional validation experiments were feasible. 250 

We prioritized loci with either a few variants in the 99% CS or loci where the PPA distribution 251 

was highly skewed towards a small number of variants. In addition, we used CICERO50 to 252 

calculate co-accessibility between variant-harboring regulatory elements and gene promoters to 253 

help identify candidate target genes. To further reduce the search space for candidate variants, we 254 

performed functional fine-mapping (FFM) with fGWAS using a joint model accounting for the 255 

chromatin accessibility peaks from cell types enriched for T1D GWAS (Supplementary Table 4; 256 
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Methods). Using these criteria, we nominated the main signals at TOX (99% CS size = 28) and 257 

RASGRP1 (99% CS size = 66) and the secondary signal DLK1/MEG3 (10 variants with PPA > 258 

0.01; 99% CS size = 2,053) as the most compelling candidate loci likely acting through β or islet 259 

endocrine cells (Fig. 3e, f). 260 

 261 

At the TOX locus, our FFM analyses prioritized rs367116 and rs1947178, with the latter being the 262 

lead variant at the locus. The intronic β-cell regulatory element containing rs1947178 was co-263 

accessible with the TOX promoter region, making TOX the candidate gene for this locus (Fig. 3e). 264 

At the RASGRP1 locus, FFM prioritized rs55728265, which is in strong linkage disequilibrium (r2 
265 

= 0.93) with the lead variant, rs35134214. The regulatory element harboring rs55728265 overlaps 266 

the RASGRP1 promoter region and was not co-accessible with any other promoter, making 267 

RASGRP1 the candidate gene at this locus (Fig. 3f). The lead variant at this locus (rs35134214) 268 

did not overlap ATAC-seq peaks in any pancreatic cell types we observed, therefore highlighting 269 

the validity of using FFM approaches to prioritize the cell specificity of genetic signals. At the 270 

DLK1/MEG3 locus, our FFM analyses prioritized the lead variant for the primary signal 271 

(rs56994090), despite this variant not overlapping any features used in the FFM model (Fig. 3g). 272 

We also prioritized the lead variant at the secondary signal at DLK1/MEG3 (rs3783355; PPA = 273 

0.56) because it had a 7-fold higher PPA compared to the second highest variant in the 99% CS 274 

(rs10145648; PPA = 0.08) and overlapped a highly accessible chromatin region in β, α, and ductal 275 

cells. Interestingly, we observed increased co-accessibility between the regulatory element 276 

harboring rs3783355 and the DLK1 and MEG3 promoter regions in AAB+ or cytokine-stimulated 277 

β cells compared to healthy β cells (MEG3–rs3783355 CICERO scores 0, 0.0001, and 0.013 for 278 

healthy, AAB+, and cytokine, respectively; DLK1–rs3783355 CICERO scores 0.002, 0.0001, and 279 
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0.144 for healthy, AAB+, and cytokine, respectively). These results suggest that the regulatory 280 

element harboring rs3783355 acts in a context-dependent manner to mediate T1D risk in 281 

pancreatic islet endocrine cells. 282 

 283 

T1D risk variants are predicted to disrupt islet endocrine cell regulatory elements. 284 

We next characterized the functional mechanisms through which the variants of interest at the TOX, 285 

RASGRP1, and DLK1/MEG3 loci act to mediate T1D risk. We aimed to characterize the impact 286 

of the risk and non-risk alleles and because we had genotype information for 10 of the donors, we 287 

calculated the cell type-specific ATAC-seq allelic bias at each heterozygous SNP with enough 288 

coverage (Extended Data Fig. 3a, b). In parallel, we trained a predictive model of sequence 289 

features associated with chromatin accessibility in β cells using LS-GKM and DeltaSVM51,52 to 290 

predict β-cell allelic effects associated with any base-pair change in the genome (Methods; 291 

Extended Data Fig. 3c, d). We used the observed allelic bias to validate our predictive model. 292 

The predicted allelic effects from the model were highly concordant (87.1% effect direction 293 

agreement; binomial test p = 1.36e-99) with the observed allelic effects (ATAC-seq allelic bias) 294 

at heterozygous SNPs, indicating that the model correctly captured allelic regulatory changes 295 

associated with increased chromatin accessibility in β cells (Fig. 3h). The predictions from the 296 

model trained in β cells had a higher agreement with the observed allelic effects calculated using 297 

the entire dataset (92.6% effect direction agreement; binomial test p < 1e-323), which we attribute 298 

to increased statistical power to detect allelic bias effects when combining data across all cell types. 299 

Alternatively, this also can be interpreted as the model trained in β cells also capturing sequence 300 

features associated with chromatin accessibility more broadly.  301 

 302 
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To further gain information from our predictive model, we applied GkmExplain53 to the variants 303 

of interest and predicted the regulatory effects associated with each allele within the entire 304 

sequence context around the variants (Fig. 3i). At the TOX locus, the risk allele at the lead variant, 305 

rs1947178 (risk = A; non-risk = G), was predicted to increase chromatin accessibility. The 306 

predicted impact for the risk allele at rs1947178 was also higher than that of the other nominated 307 

SNP, rs367116 (risk = C; non-risk = T). At the RASGRP1 locus, the FFM-nominated SNP, 308 

rs55728265 (risk = T; non-risk = C), was predicted to decrease accessibility. Finally, at the 309 

DLK1/MEG3 locus, we predicted stronger effects in chromatin accessibility associated with the 310 

risk allele at the secondary signal lead variant, rs3783355 (risk = G; non-risk = A) compared to the 311 

lead variant at the primary signal (rs56994090; risk = T, non-risk = C). Consistent with the 312 

predicted effects in dysregulating chromatin accessibility, we identified multiple predicted bound 313 

TF motifs overlapping these risk variants, including PAX4 and HNF4 (RASGRP1), ITGB2, and 314 

ZBTB6 (DLK1/MEG3), and CPHX (TOX) (Supplementary Table 6). Together, these results 315 

implicate rs1947178 (TOX), rs55728265 (RASGRP1), and rs3783355 (DLK1/MEG3) as likely 316 

causal variants mediating T1D genetic risk through islet cell types. 317 

 318 

Isogenic DLK1-/- and RASGRP1-/- hESC -derived pancreatic β-like cells show increased 319 

apoptosis.  320 

To confirm the genetic variants and loci identified from our single cell RNA-seq analysis, we 321 

firstly created DLK1-/-, RASGRP1-/- and TOX-/- hESC cells based on INSGFP/W MEL1 cells, which 322 

enables us to purify INS-GFP+ cells. In brief, INSGFP/W MEL1 cells were electroporated with a 323 

vector expressing CAS9, sgRNAs targeting DLK1, RASGRP1 and TOX exons (Supplemental 324 

Table 7). Following puromycin selection and sub-cloning, multiple independent clones were 325 
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expanded. Two clones of each isogenic line (#1 and #2) were used for further analysis to control 326 

for potential clone-to-clone variation. Successful knockout of all three genes were confirmed with 327 

genomic DNA sequencing (Extended Data Fig.4a). The deletion of DLK1, RASGRP1, and TOX 328 

were reaffirmed in DLK1-/-, RASGRP1-/- and TOX-/- hESCs by western blot (Extended Data 329 

Fig.4b). Immunocytochemistry staining confirms the typical colony morphology and the 330 

expression of pluripotency markers of all WT, DLK1-/-, RASGRP1-/- and TOX-/- hESC lines 331 

(Extended Data Fig.4c-e).  332 

 333 

To systemic exam the role of DLK1, RASGRP1, and TOX in human pancreatic β cell generation, 334 

isogenic WT, DLK1-/-, RASGRP1-/-, and TOX-/- hESC lines were differentiated into pancreatic β-335 

like cells following our previous published protocol5. Flow cytometry analysis using antibodies 336 

against definitive endoderm (DE) markers, SOX17+/FOXA2+, confirmed DLK1-/-, RASGRP1-/- and 337 

TOX-/- hESC lines do not show impaired differentiation efficiency at definitive endoderm stage 338 

(Extended Data Fig. 4f-l). However, flow cytometry analysis with antibodies against pancreatic 339 

progenitor (PP) marker, PDX1, revealed that loss of DLK1, RASGRP1, or TOX led to the impaired 340 

PP differentiation (WT#1: 52±0.1%, WT#2: 46±0.1%, DLK1-/-#1: 16±0.2%, DLK1-/-#2: 26±0.1%, 341 

P < 0.0001; WT#1: 50±0.1%, WT#2: 43±0.2%, RASGRP1-/-#1: 15±0.3%, RASGRP1-/-#2: 342 

28±0.1%, P < 0.0001; WT#1: 48±0.3%, WT#2: 59±0.1%, TOX-/-#1: 22±0.1%, TOX-/-#2: 12±0.1%, 343 

P < 0.0001) (Extended Data Fig. 4m-s). Furthermore, flow cytometry analysis demonstrated that 344 

deletion of any gene led to a lower percentage of INS-GFP+ cells (WT#1: 9.3±0.1%, WT#2: 345 

9.1±0.1%, DLK1-/-#1: 6.9±0.2%, DLK1-/-#2: 4.7±0.1%, P < 0.0001; WT#1: 7.1±0.1%, WT#2: 346 

7.4±0.2%, RASGRP1-/-#1: 1.0±0.1%, RASGRP1-/-#2: 1.9±0.1%, P < 0.0001; WT#1: 4.3±0.1%, 347 

WT#2: 4.3±0.1%, TOX-/-#1: 0.9±0.1%, TOX-/-#2: 0.7±0.1%, P < 0.0001) (Fig.  4a-d and Extended 348 
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Data Fig. 4t-u). Collectively, these findings suggest that DLK1, RASGRP1, and TOX play crucial 349 

roles in regulating PP generation and pancreatic β cell differentiation. 350 

 351 

To further investigate whether the decreased percentage of INS-GFP+ in DLK1-/-, RASGRP1-/- and 352 

TOX-/- hESC-derived pancreatic β-like cell is solely due to impaired differentiation of PP and 353 

pancreatic β cells or a result of both impaired differentiation and β apoptosis, we examined the 354 

early apoptotic rate of DLK1-/-, RASGRP1-/- and TOX-/- β-like cells (the percentage of Annexin 355 

V+DAPI- cells in INS-GFP+ cells). Under the regular culture condition, the early apoptotic rate of 356 

DLK1-/- and RASGRP1-/- INS-GFP+ cells is significantly higher than that of WT INS-GFP+ cells 357 

(WT#1: 3.2±0.1%, WT#2: 5.1±0.2%, DLK1-/-#1: 5.8±0.2%, DLK1-/-#2: 7.3±0.3%, P < 0.0001; 358 

WT#1: 3.2±0.3%, WT#2: 2.9±0.1%, RASGRP1-/-#1: 7.2±0.2%, RASGRP1-/-#2: 5.6±0.2%, P < 359 

0.0001) (Fig. 4e-h). Immunostaining further validates the increased apoptosis (the percentage of 360 

cleaved caspase 3/CASP3+ cells in INS+ cells) in DLK1-/- and RASGRP1-/- hESC-derived INS-361 

GFP+ cells (Fig. 4i-l). However, we did not observe the similar phenotype in TOX-/- INS-GFP+ 362 

cells (Extended Data Fig.4v, w). To further study the role of DLK1 and RASGRP1 in regulating 363 

β cell apoptosis in T1D condition, we also examined the early apoptotic rate of DLK1-/- and 364 

RASGRP1-/- β-like cells treated with cytokine cocktail (TNFα, IL1β and IFNγ). DLK1-/- and 365 

RASGRP1-/- INS-GFP+ cells showed significantly increased apoptotic rate than WT INS-GFP+ cells 366 

(WT#1: 5.3±0.1%, WT#2: 4.6±0.1%, DLK1-/-#1: 22±0.1%, DLK1-/-#2: 22±0.5%, P < 0.0001; 367 

WT#1: 5.5±0.1%, WT#2: 7.2±0.2%, RASGRP1-/-#1: 30±0.2%, RASGRP1-/-#2: 13±0.1%, P < 368 

0.0001) upon cytokine cocktail treatment (Fig. 4m-p). Immunocytochemistry staining further 369 

confirmed the increased apoptotic rate in DLK1-/- and RASGRP1-/- β-like cells in cytokines 370 

treatment conditions (Fig. 4q-4t). Taken together, this suggested that the deletion of TOX mainly 371 
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impairs pancreatic β cell differentiation, whereas the deletion of DLK1 and RASGRP1 might 372 

contribute to T1D progression through both impairing pancreatic β cell differentiation and 373 

elevating apoptosis. 374 

 375 

Deletion of DLK1 and RASGRP1 regulatory region led to increased β cell apoptosis. 376 

To determine the impact of SNP contain regulator regions, we knocked out the regulatory region 377 

(chr14:101306805-101311032) containing rs3783355 related to DLK1 and region 378 

(chr15:38854520-38859072) containing rs55728265 related to RASGRP1 based on the analysis 379 

with human GWAS data mentioned above. We created DLK1Δ and RASGRP1Δ hESC cells based 380 

on INSGFP/W MEL1 cells using two sgRNAs targeting the upstream and downstream of the 381 

regulatory regions of DLK1 or RASGRP1, respectively (Supplemental Table 7). Successful 382 

knockout of the regulatory regions of DLK1 or RASGRP1 were confirmed with PCR (Extended 383 

Data Fig.5a and Supplemental Table 8). Immunocytochemistry staining validates the colony 384 

morphology and the expression of hESC pluripotency markers in DLK1Δ, RASGRP1Δ and their 385 

WT(WT_Δ) clones (Extended Data Fig.5b, c).  qRT-PCR confirmed the decreased expression of 386 

DLK1 or RASGRP1 in DLK1Δ or RASGRP1Δ hESC-derived INS-GFP+ cells (Fig. 5a and 387 

Supplemental Table 9). Flow cytometry analysis with antibodies against stepwise differentiation 388 

markers were applied to exam the differentiation efficiency of isogenic DLK1Δ, RASGRP1Δ and 389 

the corresponding WT_Δ hESCs. DLK1Δ and RASGRP1Δ hESCs do not show impaired 390 

differentiation efficiency at DE (Extended Data Fig.5d-h) and PP stages (Extended Data Fig.5i-391 

m), suggesting that deletion of the regulatory region showed milder phenotype than gene knockout. 392 

Flow cytometry analysis showed a significantly lower percentage of INS-GFP+ cells in DLK1Δ and 393 

RASGRP1Δ hESC-derived population than those of WT_Δ hESC-derived population (WT_Δ#1: 394 



19 

4.1±0.1%, WT_Δ#2: 6.8±0.2%, DLK1Δ#1: 1.1±0.1%, DLK1Δ#2: 1.6±0.1%, P < 0.0001; WT_Δ#1: 395 

2.2±0.1%, WT_Δ#2: 1.7±0.1%, RASGRP1Δ#1: 0.6±0.1%, RASGRP1Δ#2: 1.4±0.1%, P < 0.0001) 396 

(Fig. 5b-e). Consistently with DLK1-/- and RASGRP1-/-  β-like cells, both flow cytometry analysis 397 

(WT_Δ#1: 10±0.1%, WT_Δ#2: 11±0.6%, DLK1Δ#1: 14±0.1%, DLK1Δ#2: 16±0.2%, P < 0.0001; 398 

WT_Δ#1: 6.6±0.2%, WT_Δ#2: 6.8±0.1%, RASGRP1Δ#1: 30±0.4%, RASGRP1Δ#2: 36±0.6%, P < 399 

0.0001, Fig. 5f-i) and immunostaining (Fig. 5j-m) showed that the early apoptotic rate of DLK1Δ 400 

and RASGRP1Δ INS-GFP+ cells is significantly higher than their WT_Δ INS-GFP+ cells under 401 

regulator culture condition. Upon the cytokines-treated condition, the apoptotic rates are higher in 402 

DLK1Δ and RASGRP1Δ INS-GFP+ cells than WT_Δ INS-GFP+ cells as indicated by both flow 403 

cytometry (WT_Δ#1: 13±0.1%, WT_Δ#2: 18±0.1%, DLK1Δ#1: 29±0.1%, DLK1Δ#2: 25±0.1%, P 404 

< 0.0001; WT_Δ#1: 15±0.4%, WT_Δ#2: 12±0.2%, RASGRP1Δ#1: 26±0.8%, RASGRP1Δ#2: 405 

27±0.6%, P < 0.0001, Fig. 5n-q) and immunostaining (Fig. 5r-u). 406 

 407 

rs3783355G>A mutation led to increased β cell apoptosis.  408 

Next, we tried to apply isogenic knockin hESC lines to examine the SNPs identified in the GWAS 409 

studies (Fig. 3). We successfully created isogenic rs3783355G/G and rs3783355A/A hESC lines, but 410 

failed in rs3783355 isogenic hESC lines due to the high GC content of the region containing 411 

rs55728265. Similar to the description above, INSGFP/W MEL1 cells were electroporated with a 412 

vector expressing CAS9, an sgRNA targeting the rs3783355 site and a DNA-repairment template 413 

with rs3783355A/A (Supplemental Table 7). After selection, sub-cloning and expansion, two 414 

rs3783355G/G and rs3783355A/A clones (#1 and #2) were used for further analysis. Successful 415 

knockin of risk A allele was confirmed with genomic DNA sequencing (Extended Data Fig.6a 416 

and Supplemental Table 8). Immunocytochemistry staining confirms the colony morphology and 417 
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expression of pluripotency markers in rs3783355G/G and rs3783355A/A hESC lines (Extended 418 

Data Fig.6b). qRT-PCR analysis proved that rs3783355 G>A mutation caused the decrease of 419 

DLK1 expression in the purified INS-GPF+ pancreatic β-like cells (17.3±2.6%, Fig. 6a and 420 

Supplemental Table 9). Flow cytometry analysis showed that rs3783355A/A hESCs exhibited 421 

similar DE differentiation as rs3783355G/G hESCs (Extended Data Fig.6c, d), but decreased PP 422 

differentiation compared to rs3783355G/G hESCs (G/G#1: 90±0.1%, G/G#2: 81±0.1%, A/A#1: 423 

68±0.5%, A/A#2: 72±0.3%, P < 0.0001) (Extended Data Fig.6e, f). Flow cytometry analysis also 424 

confirmed a significantly lower percentage of INS-GFP+ cells in rs3783355A/A than that of 425 

rs3783355G/G hESC-derived cells (G/G#1: 4.2±0.1%, G/G#2: 7.7±0.3%, A/A#1: 2.6±0.1%, A/A#2: 426 

1.5±0.1%, P < 0.0001) (Fig. 6b, c). Both flow cytometry analysis (G/G#1: 10±0.1%, G/G#2: 427 

11±0.2%, A/A#1: 18±0.2%, A/A#2: 17±0.2%, P < 0.0001, Fig. 6d, e) and immunostaining (Fig. 428 

6f, g) showed that the apoptotic rate of rs3783355A/A INS-GFP+ cells is significantly higher than 429 

rs3783355G/G INS-GFP+ cells in regular culture condition. Consistently, in cytokines-treated 430 

condition, the apoptotic rate of rs3783355A/A INS-GFP+ cells is significantly higher than 431 

rs3783355G/G INS-GFP+ cells as indicated by both flow cytometry and (G/G#1: 13±0.1%, G/G#2: 432 

17±0.1%, A/A#1: 20±0.1%, A/A#2: 20±0.1%, P < 0.0001, Fig. 6h, i) and immunostaining (Fig. 433 

6j-k). 434 

 435 

Absence of DLK1 and RASGRP1 induce pancreatic β cell apoptosis through different 436 

pathways but also share common targets. 437 

Finally, we performed bulk RNA-seq and ATAC-seq to identify the potential downstream target 438 

genes or pathways of DLK1 and RASGRP1. PCA (RNA-seq: Fig. 7a; ATAC-seq: Fig. 7b) and 439 

clustering analysis (RNA-seq: Extended Data Fig.7a; ATAC-seq: Extended Data Fig.7b) 440 
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showed that WT and DLK1-/- hESC-derived INS-GFP+ cells clustered separately based on either 441 

RNA-seq or ATAC-seq. Further analysis of ATAC-seq data reveals that more than 75% of 442 

differentially accessible chromatin regions between WT and DLK1-/- were located in the promoter 443 

region (Fig. 7c). The chromosome is more open in DLK1-/- than WT hESC-derived INS-GFP+ cells 444 

(Fig. 7d). IPA analysis with genes (up or down-regulated) and regions (open or closed chromatins) 445 

commonly regulated in both RNA-seq and ATAC-seq identified the upregulation of cell stress 446 

associated pathways, including EIF2, oxidative phosphorylation, mitochondrial dysfunction, and 447 

production of NO and ROS (Fig. 7e). 448 

 449 

Similarly, PCA (RNA-seq: Fig. 7f; ATAC-seq: Fig. 7g) and clustering analysis (RNA-seq: 450 

Extended Data Fig.7c; ATAC-seq: Extended Data Fig.7d) showed that WT and RASGRP1-/- 451 

hESC-derived INS-GFP+ cells clustered separately based on either RNA-seq or ATAC-seq. 452 

Further analysis of ATAC-seq data reveals that most differentially accessible chromatin regions 453 

between WT and RASGRP1-/- located in promoter regions and some are in intron regions (Fig. 7h). 454 

Different from DLK1-/- cells, the chromosome of RASGRP1-/- INS-GFP+ cells are more closed than 455 

WT INS-GFP+ cells (Fig. 7i). IPA analysis with genes and regions commonly regulated in both 456 

RNA-seq and ATAC-seq identified the downregulation of pathways associated with cytoskeleton, 457 

such as axonal guidance signaling, reelin signaling in neurons, signaling by Rho Family GTPases, 458 

etc (Fig. 7j), suggesting that loss of RASGRP1 might induce the pancreatic β cell apoptosis by 459 

decreasing the stability of cytoskeletons and increase the disassembles of cytoskeletons. Finally, 460 

five genes, including ITGB1, KTI12, TOMD1, PLAG1 and c7orf50, were found to be upregulated 461 

in both DLK1-/- and RASGRP1-/- INS-GFP+ cells (Fig. 7k). Four of the genes (marked with *) have 462 

been identified as related or risk genes for diabetes 54-57. In particular, ITGa5/ITGB1 has been 463 
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found to be the binding target of IL1B. This discovery has shed light on how DLK1-/- and 464 

RASGRP1-/- can make pancreatic β cells more susceptible to T1D or cytokine-induced apoptosis, 465 

by increasing the levels of ITGB1. 466 

 467 

Discussion. 468 

Although GWAS have identified many T1D associated loci/genetic variants, the biological 469 

functions of these functions/genetic variants are largely unknown. In this study, we reported an 470 

integrative pipeline combining single-cell multiomics analysis, GWAS, and isogenic hESCs to 471 

prioritize the genes/loci/genetic variants and examine the biological function and mechanism. First, 472 

we integrated epigenomic and transcriptomic profiles of human pancreas samples from healthy 473 

and AAB+ donors to gain a better understanding of how T1D risk variants act across different cell 474 

types in the pancreas and cause changes in gene regulation. Our findings indicate that T1D genetic 475 

risk variants overlap with active regulatory elements in every pancreatic cell type analyzed, rather 476 

than being mediated by only one or a few cell types. These results are consistent with growing 477 

evidence linking non-immune cells to mediating T1D risk3,4,6. Specifically, our work identifies 478 

three loci - DLK1/MEG3, TOX, and RASGRP - expressed in β cells and other islet cell types as 479 

putative causal genes for three independent T1D risk variants. DLK1/MEG3 and TOX loci, 480 

mediated through islet endocrine cells, is supported by a previous scATAC-seq study that observed 481 

a higher overlap of high-PPA variants in these loci with β-cell regulatory elements4. We expand 482 

on these findings by predicting rs1947178 and rs3783355 as causal variants at these loci and 483 

further prioritize rs55728265 at the RASGRP1 locus as an additional variant mediating T1D 484 

genetic risk through islet endocrine cells. 485 

 486 
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Next, we employed three types of isogenic hESC systems, including gene knockout, regulatory 487 

region knockout and SNP knockin to systematically examine the biological function of the 488 

identified genes, regulatory regions, and SNP in human pancreatic β cell generation and survival. 489 

Since previous studies have reported the function of LncRNA MEG3 in pancreatic β cells58, we 490 

decided to focus on three protein coding genes, DLK1, RASGRP1 or TOX. Our findings indicate 491 

that loss of DLK1, RASGRP1 or TOX leads to impaired differentiation toward PP and pancreatic 492 

β-like cells, while loss of DLK1 or RASGRP1 causes increased β cell death. Knockout of the 493 

regulatory region of DLK1 or RASGRP1leads to the decreased expression of the associated genes, 494 

leading to increased β cell death. Furthermore, rs3783355 risk allele causes decreased DLK1 495 

expression and increased β cell death. Delta-like non-canonical Notch ligand 1 (DLK1), also 496 

known as preadipocyte factor 1 (PREF-1) is a cleavable single-pass transmembrane protein and a 497 

member of the Notch/δ/Serrate family. Previous studies of miRNA profiling on T2D islets also 498 

identified DLK1-MEG3 miRNA clusters that are downregulated in T2D condition, which further 499 

highlighting the important role of DLK1-MEG3 loci in human β cell biology59. The overexpression 500 

of DLK1 in pancreatic β cells in mice causes the increased islet mass and insulin secretion60. Dlk1 501 

null mice display a partially penetrant neonatal lethality and a complex pattern of developmental 502 

and adult phenotypes. However, the β cell specific DLK-/- mice are viable61. Here, we found that 503 

loss of DLK causes the defective pancreatic differentiation and increased β cell death. This 504 

discrepancy of mouse and human data highlighting the significance to study T1D associated 505 

gene/loci using human cells. RAS guanyl nucleotide-releasing protein (RASGRP) functions as a 506 

diacylglycerol DAG-regulated nucleotide exchange factor specifically activating Ras through the 507 

exchange of bound GDP for GTP. Although the genetic variants associated with RASGRP1 have 508 

been linked to both T1D and T2D62,63, the role of RASGRP1 in human β cells is largely unknown. 509 
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Here, we found that loss of RASGRP1, knockout of the regulatory region of RASGRP1, and risk 510 

allele of rs55728265 leads to increased β cell death. RNA-seq and ATAC-seq suggested that loss 511 

of RASGRP1 leads to the downregulation of cytoskeleton-associated pathway, which is consistent 512 

with a previous study that showed RASGRP1 deficiency causes impaired cytoskeletal dynamics 513 

in immune cells64. Finally, five genes were identified to be upregulated in both DLK1-/- and 514 

RASGRP1-/- INS-GFP+ cells, four of which have been identified as related or risk genes for diabetes, 515 

which highlights the powerful tools to apply isogenic hESCs to dissect the biological functions 516 

and molecular mechanism of T1D associated SNPs.  517 

 518 

While the role of immune cells mediating T1D genetic risk is generally understood, it is still 519 

unclear how other pancreatic cell types contribute to T1D risk. One hypothesis is that risk variants 520 

at these other cell types lead to disease predisposition by promoting the recruitment of self-reactive 521 

T-cells or creating a harsher cellular microenvironment that further predisposes β-cell death. 522 

Support for this hypothesis is provided by a previous snRNA-seq study from healthy, AAB+, and 523 

T1D human pancreas, which suggested that T1D ductal cells may help promote CD4+ T cell 524 

tolerance through the expression of MHC molecules and other surface receptors8. Our work 525 

indicates that the immune cells indeed have the highest individual contribution to T1D genetic risk. 526 

However, this contribution is relatively small compared to all the other cell types combined. In 527 

addition to multiple variants acting through islet endocrine cells, we identified a role for acinar, 528 

stellate, endothelial, and to a lesser degree, ductal cells as likely mediators of T1D genetic risk. 529 

This unexpected finding agrees with and expands on other studies of T1D at the single-cell level 530 

identifying the contributions of other pancreatic cell types to T1D genetic risk and onset4,8. 531 
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Therefore, an important question for future studies is understanding how T1D risk variants act 532 

through non-immune cell types, particularly β cells.  533 

 534 

Although our studies showed the proof of principle to combine the single cell multiomics, GWAS 535 

and isogenic hESC lines-derived cells to prioritize and study GWAS identified genes/loci/genetic 536 

variants, one limitation is that we jointly analyze pre-diabetic (AAB+ without symptomatic 537 

presentation) and diabetic donors due to the low sample size. While our results suggest that this is 538 

a valid approach to detecting disease-relevant biology, this design would miss molecular signatures 539 

associated with different stages of the disease. Therefore, separately studying β cells from T1D 540 

donors is an important future direction that can provide essential clues for new therapeutic 541 

strategies. 542 
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Figure. Legends. 556 

Fig. 1: Integrative single cell multi-omics analysis of AAB+ human islets and islets cultured 557 

in T1D conditions. 558 

a, Experimental design for multi-omic library generation. b, Uniform Manifold Approximation 559 

and Projection (UMAP) representation of the fully integrated dataset. Bottom panel is the same 560 

data faceted by modality. c, scRNA average expression values for marker genes across the cell 561 

types identified via joint modality clustering. d, Normalized aggregate ATAC-seq signal tracks 562 

across marker genes for each cell type. e, Overview of the representation of all cell types (top), 563 

islet endocrine cell types (middle), and conditions (bottom) across the combined scRNA-seq and 564 

snATAC-seq libraries for each sample pool.   565 
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Fig. 2: Transcriptomic changes associated with T1D and experimental models and TF 566 

regulatory landscape of pancreatic cell types.  567 

a, Significantly enriched pathways across AAB+ and experimental models. b, Chromatin 568 

information enrichment calculation overview (adapted from34). c, V-plots showing aggregate 569 

ATAC-seq fragment midpoints distribution around predicted bound sites for three TFs (top facets) 570 

and their associated chromatin information enrichment (bottom facets) in β cells and immune cells. 571 

d, Chromatin information Z-scores for a subset of TFs across all cell types indicate differential 572 

regulatory activity. e, Similar to D, but directly comparing across conditions for β and immune 573 

cells.  574 
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Fig. 3: The regulatory landscape associated with T1D genetics in pancreatic cells.  575 

a, fGWAS enrichments for GWAS summary statistics of three traits in accessible chromatin 576 

regions from each cell type in our data. b, fGWAS enrichments for T1D summary statistics in 577 

immune and β cells across progressively stringent thresholds to identify differentially accessible 578 

regions (DARs) and their non-significant counterparts. c, Example of our PPA-weighted chromatin 579 

accessibility score strategy to identify cell types likely mediating three independent T1D GWAS 580 

signals at the INS locus. d, PPA-weighted chromatin accessibility scores across all T1D loci and 581 

cell types and candidate loci likely mediated by islet and immune cell types. e-g, T1D signals at 582 

the TOX, DLK1/MEG3, and RASGRP1 loci. Left panels represent the broad locus overview, and 583 

the insets highlight the regions and variants of interest and their associated genetic and functional 584 

fine-mapping PPA values. For simplicity, only β-cell co-accessibility tracks are shown. h, 585 

Agreement between predicted and observed ATAC-seq allelic imbalance (allele-specific 586 

accessibility; ASA) in β cells and all cells using a predictive model trained in β cells. i, Predicted 587 

regulatory impact of T1D risk variants of interest in β cell chromatin accessibility using 588 

GkmExplain.   589 
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Fig. 4. Isogenic DLK1-/- and RASGRP1-/- hESC-derived β cells show increased apoptosis.  590 

a, b, Representative flow cytometry analysis (a) and the quantification (b) of the percentage of 591 

GFP+ cells in WT and DLK1-/- hESC-derived cells. N=3 biological replicates. c, d, Representative 592 

flow cytometry analysis (c) and the quantification (d) of the percentage of GFP+ cells in WT and 593 

RASGRP1-/- hESC-derived cells. N=3 biological replicates. e, f, Representative flow cytometry 594 

analysis (e) and the quantification of the percentage of Annexin V+DAPI- cells (f) in WT and DLK1-
595 

/- hESC-derived INS-GFP+ cells under regular culture condition. N=3 biological replicates. g, h, 596 

Representative flow cytometry analysis (g) and the quantification of the percentage of Annexin 597 

V+DAPI- cells (h) in WT and RASGRP1-/- hESC-derived INS-GFP+ cells under regular culture 598 

condition. N=3 biological replicates. i, j, Representative images (i) and the quantification of the 599 

percentage of CASP3+ cells (j) in WT and DLK1-/- hESC-derived INS-GFP+ cells under regular 600 

culture condition. N=3-5 biological replicates. k, l, Representative images (k) and the 601 

quantification of the percentage of CASP3+ cells (l) in WT and RASGRP1-/- hESC-derived INS-602 

GFP+ cells under regular culture condition. N=3 biological replicates. m, n, Representative flow 603 

cytometry analysis (m) and the quantification of the percentage of Annexin V+DAPI- cells (n) in 604 

WT and DLK1-/- hESC-derived INS-GFP+ cells under cytokines-treated condition. N=3 biological 605 

replicates. o, p, Representative flow cytometry analysis (o) and the quantification of the percentage 606 

of Annexin V+DAPI- cells (p) in WT and RASGRP1-/- hESC-derived INS-GFP+ cells under 607 

cytokines-treated condition. N=3 biological replicates. q, r, Representative images (q) and the 608 

quantification of the percentage of CASP3+ cells (r) in WT and DLK1-/- hESC-derived INS-GFP+ 609 

cells under cytokines-treated condition. N=3 biological replicates. s, t, Representative images (s) 610 

and the quantification of the percentage of CASP3+ cells (t) in WT and RASGRP1-/- hESC-derived 611 

INS-GFP+ cells under cytokines-treated condition. N=3 biological replicates. Scale bar = 40 μm. 612 
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CASP3: cleaved caspase-3. P values were *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 613 

The center value is “mean”. Error bar is SEM.  614 
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Fig. 5. Knockout of the regulatory region of DLK1 or RASGRP1 causes the increased β cell 615 

apoptosis.  616 

a, qRT-PCR analysis of DLK1 or RASGRP1 mRNA level in isogenic DLK1Δ, RASGRP1Δ and their 617 

WT_Δ hESC-derived INS-GFP+ cells. b, c, Representative flow cytometry analysis (b) and the 618 

quantification (c) of the percentage of GFP+ cells in WT_Δ and DLK1Δ hESC-derived cells. N=3 619 

biological replicates. d, e, Representative flow cytometry analysis (d) and the quantification (e) of 620 

the percentage of GFP+ cells in WT_Δ and RASGRP1Δ hESC-derived cells. N=3 biological 621 

replicates. f, g, Representative flow cytometry analysis (f) and the quantification of the percentage 622 

of Annexin V+DAPI- cells (g) in WT_Δ and DLK1Δ hESC-derived INS-GFP+ cells under non-623 

treated condition. N=3 biological replicates. h, i, Representative flow cytometry analysis (h) and 624 

the quantification of the percentage of Annexin V+DAPI- cells (i) in WT_Δ and RASGRP1Δ hESC-625 

derived INS-GFP+ cells under non-treated condition. N=3-6 biological replicates. j, k, 626 

Representative images (j) and the quantification of the percentage of CASP3+ cells (k) in WT_Δ 627 

and DLK1Δ hESC-derived INS-GFP+ cells under non-treated condition. N=5 or 6 biological 628 

replicates. l, m, Representative images (l) and the quantification of the percentage of CASP3+ cells 629 

(m) in WT_Δ and RASGRP1Δ hESC-derived INS-GFP+ cells under non-treated condition. N=6 or 630 

8 biological replicates. n, o, Representative flow cytometry analysis (n) and the quantification of 631 

the percentage of Annexin V+DAPI- cells (o) in WT_Δ and DLK1Δ hESC-derived INS-GFP+ cells 632 

under cytokines-treated condition. N=3 biological replicates. p, q, Representative flow cytometry 633 

analysis (p) and the quantification of the percentage of Annexin V+DAPI- cells (q) in WT_Δ and 634 

RASGRP1Δ hESC-derived INS-GFP+ cells under cytokines-treated condition. N=3 biological 635 

replicates. r, s, Representative images (r) and the quantification of the percentage of CASP3+ cells 636 

(s) in WT_Δ and DLK1Δ hESC-derived INS-GFP+ cells under cytokines-treated condition. N=5 or 637 
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6 biological replicates. t, u, Representative images (t) and the quantification of the percentage of 638 

CASP3+ cells (u) in WT_Δ and RASGRP1Δ hESC-derived INS-GFP+ cells under cytokines-treated 639 

condition. N=6 or 8 biological replicates. Scale bar = 40 μm. CASP3: cleaved caspase-3. P values 640 

were **P < 0.01, ****P < 0.0001. The center value is “mean”. Error bar is SEM.  641 
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Fig. 6. rs3783355G>A mutation results in the increased β cell apoptosis.  642 

a, qRT-PCR analysis of DLK1 mRNA level in isogenic rs3783355G/G and rs3783355A/A hESC-643 

derived INS-GFP+ cells. b, c, Representative flow cytometry analysis (b) and the quantification (c) 644 

of the percentage of GFP+ cells in rs3783355G/G and rs3783355A/A hESC-derived cells. N=3 645 

biological replicates. d, e, Representative flow cytometry analysis (d) and the quantification of the 646 

percentage of Annexin V+DAPI- cells (e) in rs3783355G/G and rs3783355A/A hESC-derived INS-647 

GFP+ cells under regular culture condition. N=3 biological replicates. f, g, Representative images 648 

(f) and the quantification of the percentage of CASP3+ cells (g) in rs3783355G/G and rs3783355A/A 649 

hESC-derived INS-GFP+ cells under regular culture condition. N=6 biological replicates. h, i, 650 

Representative flow cytometry analysis (h) and the quantification of the percentage of Annexin 651 

V+DAPI- cells (i) in rs3783355G/G and rs3783355A/A hESC-derived INS-GFP+ cells under 652 

cytokines-treated condition. N=3 biological replicates. j, k, Representative images (j) and the 653 

quantification of the percentage of CASP3+ cells (k) in rs3783355G/G and rs3783355A/A hESC-654 

derived INS-GFP+ cells under cytokines-treated condition. N=6 biological replicates. Scale 655 

bar = 40 μm. CASP3: cleaved caspase-3. P values were ***P < 0.001, ****P < 0.0001. The center 656 

value is “mean”. Error bar is SEM.  657 
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Fig. 7. DLK1 and RASGRP1 induce β cell apoptosis through different pathways but share 658 

common target genes.  659 

a, PCA plot of RNA-seq result of WT versus DLK1-/- INS-GFP+ cells. b, PCA plot of ATAC-seq 660 

result of WT versus DLK1-/- INS-GFP+ cells. c, Pie chart of ATAC-seq result of WT versus DLK1-
661 

/- INS-GFP+ cells. d, Profile heatmap plot showing the enrichment of Gain/Loss sites in the DLK1-
662 

/- versus WT INS-GFP+ cells. e, IPA pathway analysis of upregulated or downregulated pathways 663 

in the DLK1-/- versus WT INS-GFP+ cells. f, PCA plot of RNA-seq result of WT versus RASGRP1-
664 

/- INS-GFP+ cells. g, PCA plot of ATAC-seq result of WT versus RASGRP1-/- INS-GFP+ cells. Pie 665 

chart of ATAC-seq result of WT versus RASGRP1-/- INS-GFP+ cells. h, Pie chart of ATAC-seq 666 

result of WT versus RASGRP1-/- INS-GFP+ cells. i, Profile heatmap plot showing the enrichment 667 

of Gain/Loss sites in the RASGRP1-/- versus WT INS-GFP+ cells. j, IPA pathway analysis of 668 

upregulated or downregulated pathways in the RASGRP1-/- versus WT INS-GFP+ cells. k, Diagram 669 

shows the list of genes that are consistently upregulated in the DLK1-/- versus WT and RASGRP1-
670 

/- versus WT INS-GFP+ cells.  671 
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Methods 672 

Tissue processing and sample preparation. Human pancreatic islets were isolated in the Human 673 

Islet Core at the University of Pennsylvania following the requirements of the Clinical Islet 674 

Transplantation consortium procedure. The pancreatic islets were grown in CIT culture medium 675 

and maintained in a humidified incubator with 5% CO2 at 37℃. Single-cell RNA-seq and single-676 

nucleus ATAC-seq were performed using 10X Chromium platform at genomics resources core 677 

facility at Weill Cornell Medicine. 678 

 679 

Single-nucleus ATAC-seq processing. Single-nucleus ATAC-seq data was processed using the 680 

Parker Lab snATAC-seq pipeline (https://github.com/porchard/snATACseq-NextFlow). Briefly, 681 

after performing adapter trimming with cta (v. 0.12; https://github.com/ParkerLab/cta), reads were 682 

aligned to the hg19 reference genome using bwa mem (v. 0.7.15-r114065) using -I 200,200,5000 683 

to avoid large fragments being artificially assigned low MAPQ scores. Barcode sequences were 684 

corrected for sequence mismatches by calculating the Hamming distance between all barcodes and 685 

fixing all barcodes with a Hamming distance smaller or equal to 2 to a barcode sequence in the 686 

10X Genomics barcode list. After mapping, we identified barcodes using Picard MarkDuplicates 687 

(v. 2.8.1; https://broadinstitute.github.io/picard). We used ataqv 688 

(https://github.com/ParkerLab/ataqv66) to obtain barcode-level QC metrics, such as the number of 689 

high-quality autosomal alignments (HQAA) and transcription start site (TSS) enrichment. For 690 

downstream analyses, we retained only barcodes with HQAA ≥ 5,000, TSS enrichment between 3 691 

and 20, and no more than 15% of all reads originating from a single autosome. The latter metric 692 

helps to remove barcodes associated with low-integrity nuclei. Doublets were flagged and removed 693 

using ArchR (v. 0.9.5)67. Because the ambient signal (soup) from the snATAC-seq library is 694 
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mainly from chrM, which was filtered for our analyses, we did not perform ambient DNA 695 

correction. For integration with the scRNA-seq data (described below), we generated count 696 

matrices for each library encoding the number of ATAC-seq fragments overlapping promoter (5 697 

Kb upstream of most upstream transcription start site) and gene body regions of autosomal, 698 

protein-coding genes using bedtools (v2.26.0).  699 

 700 

Single-cell RNA-seq. Single-cell RNA-seq data were processed with the Parker Lab snRNA-seq 701 

pipeline (https://github.com/porchard/snRNAseq-NextFlow). Reads were aligned to the hg19 702 

reference genome and GENCODE v1968 using STARsolo (STAR v. 2.5.469). Barcode sequences 703 

were corrected for mismatches using the same approach as in the snATAC-seq data. We then 704 

calculated QC metrics for each barcode (number of UMIs, % mitochondrial reads, etc.). We 705 

selected for downstream analyses barcodes that had at least 1,000 UMIs and were called non-706 

empty (1% FDR) by EmptyDrops70. For each library, we calculated the % mitochondrial reads 707 

rank distribution and identified the inflection (knee) using the uik function of the inflection 708 

package in R (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3043076). We only kept 709 

barcodes with % mitochondrial reads smaller than the inflection value, ranging from 6.6% to 710 

20.2%. Doublets were flagged and removed using DoubletFinder (v2.0.2)71 with default 711 

parameters. After removing doublets and barcodes that failed QC, we used DecontX (Celda 712 

v1.2.4)72 to control for ambient RNA (soup RNAs). We performed a first-pass clustering of the 713 

barcodes that passed QC using Seurat (Extended Data Fig. 1) to identify broad cell identities. We 714 

then used the first-pass clustering information with DecontX with stringent parameters (delta 1 = 715 

10 and delta 2 = 20) to obtain the ambient-subtracted count matrices for each library. We used the 716 

ambient-subtracted count matrices of autosomal, protein-coding genes for downstream analyses. 717 
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 718 

Sample genotyping. Samples were genotyped using the Illumina Infinium 2.5M exome chip 719 

(InfiniumOmni2-5Exome-8v1.3_A2). The genotyping call rates for the 16 samples ranged from 720 

99.0% to 99.7%. The SNP probe sequences were remapped to GRCh37 and all problematic SNPs 721 

were discarded. This process resulted in a total of 2,522,105 SNPs with genotypes. Next, SNPs 722 

that have genotype missingness in >=2 out of our samples and duplicate SNPs with the same 723 

genomic coordinates with another one were removed. Further, we merged our genotypes with that 724 

of the 1000G phase 3v5 samples73. Subsequently, the SNPs with HWE p-value < 1e-4, and 725 

palindromic SNPs (A/T, or G/C SNPs) with MAF>0.4 in the merged data set were removed. 726 

Phasing was performed on the joint data set of 1,609,033 SNPs using Eagle (v2.4)74. Genotypes 727 

were imputed using 1000 genomes phase 3 panel in the Michigan Imputation Server using 728 

Minimac4 (v1.5.7)75 and the 1000G phase 3v5 (GRCh37) reference panel. No sex discrepancy was 729 

found by assessing the SNP genotypes using verifybamID76 with the reported gender. Sample 730 

ICRH135 did not have sufficient DNA for genotyping and was dropped from the genetic analyses. 731 

 732 

CVB4-hg19 alignments. In order to quantify CVB4 infection efficiency, we aligned scRNA-seq 733 

and snATAC-seq reads to a hybrid hg19-CVB4 genome, where the CVB4 genome (GenBank 734 

AF311939.1) is appended to hg19 as a separate chromosome. Similarly, we built a hybrid GTF 735 

file with the human genes and the CVB4 genome as an additional gene. We generated STAR and 736 

bwa indices for the hybrid hg19-cvb4 genome and mapped reads using the same pipeline described 737 

below. To quantify the CVB4 infection efficiency, we counted the fraction of reads mapping to 738 

the CVB4 portion of the hybrid genome. To independently confirm that our pipeline worked as 739 

expected, we used SANDY (https://github.com/galantelab/sandy) to generate hybrid paired-end 740 
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reads from both genomes using the command sandy genome with flag --741 

id=” %i.%U__read=%c:%t-%n__mate=%c:%T-%N__length=%r” and verified that the 742 

snATAC-seq and scRNA-seq pipelines aligned these simulated reads to the correct coordinates on 743 

both assemblies. 744 

 745 

Cross-modality integration of snATAC-seq and scRNA-seq profiles. In order to integrate all 746 

34 libraries, we used Seurat (v.4.0.3)31. After exhaustively testing different pipelines, we obtained 747 

the best results for this dataset using Seurat's standard workflow. After running the principal 748 

component analysis (PCA) step, we extracted the first 30 PC embeddings for each barcode and 749 

calculated the Spearman correlation with technical variables (sequencing depth, % mitochondrial 750 

reads, etc.) to identify PCs driven by technical aspects. We used PCs 1,3-30 for the FindNeighbors 751 

and RunUMAP steps because PC 2 was correlated with sequencing depth. We used options 752 

resolution=1, algorithm=2, n.start=1000, and n.iter=1000 for FindClusters and parameters 753 

n.neighbors=50 and n.epochs=500 for RunUMAP. This approach yielded 30 clusters in the 754 

integrated data. We next identified and removed clusters that could not be unambiguously assigned 755 

to any cell type (i.e., loaded on more than one cell-type-specific marker) or had aberrant QC 756 

metrics. After filtering these low-quality barcodes, we iteratively merged the remaining clusters 757 

based on similar gene express/accessibility patterns to obtain the final cluster assignments used in 758 

this study. A subset of the snATAC barcodes assigned to the UMAP region corresponding to the 759 

acinar cells could not be unambiguously classified as acinar cells and was removed. This resulted 760 

in a higher fraction of scRNA-seq barcodes in the acinar cluster compared to the other clusters. 761 

Despite the relatively smaller fraction of acinar snATAC-seq barcodes, the number of barcodes 762 
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was still higher than most clusters and, therefore, did not substantially affect our chromatin 763 

accessibility analyses for the acinar cells.  764 

 765 

Peak calling. We generated BAM files for each cluster by combining data from all barcodes in 766 

that cluster (pseudo-bulk analyses). We also generated BAM files for each cluster/library 767 

combination. We used MACS2 (v. 2.1.1.20160309) to call summits on each cluster bam file, and 768 

we extended each summit by 150 bp in both directions. The set of extended summits called on the 769 

cluster-level bam file (all libraries combined) was labeled as the primary summit list. We assessed 770 

the reproducibility of each extended summit in the primary list using bedtools intersect (v2.26.0) 771 

to count the number of intersections in the per-library extended summits. We retained for 772 

downstream analyses the extended summits from the primary list that 1) overlapped extended 773 

summits from at least two different libraries and 2) did not overlap any regions with known 774 

mappability issues.  775 

 776 

Differential gene expression analyses. For each cell type, we tested for association of gene 777 

expression with cytokine treatment and CVB4 treatment using DESeq2 v1.34.077 and a pseudo-778 

bulk approach. We filtered lowly expressed genes (DecontX-corrected counts ≥ 1 in ≤ 5 cells 779 

across all samples and cell types) using the pp.filter_genes function with min_cells=5 from scanpy 780 

v1.5.178, retaining 16,871 genes. To generate the pseudo-bulk count matrix, for each gene, we 781 

summed the DecontX-corrected counts across cells within each sample and cell type. Using the 782 

rounded pseudo-bulk matrix as input, we modeled the gene expression for each cell type using 783 

DESeq2’s DESeq function with default options except type=’LRT’ and sfType=’poscounts’. We 784 

included condition status (i.e., cytokine treated or CVB4 treated), donor ID, sex, age, body mass 785 
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index (BMI), proportion of donor cells identified as alpha cells (which is a proxy of islet content 786 

and accounts for any differences in background RNA persisting after DecontX correction; 787 

Extended Data Fig. 2), and mean cell complexity (the average of number of genes detected per 788 

cell within each sample79,80) as fixed effect covariates. Age, BMI, alpha cell proportion, and cell 789 

complexity were standardized to unit variance (mean-centered and scaled). For each model, we 790 

performed the likelihood ratio test (LRT) to test for association between gene expression and 791 

condition status. Finally, we controlled for the number of tests performed across all cell types using 792 

the Benjamini-Hochberg (BH) procedure81 and LRT-derived p-values. 793 

 794 

Gene set enrichment. Gene sets enriched in differentially expressed genes in beta cells. We 795 

performed gene set enrichment in differentially expressed genes (FDR<10%) in beta cells across 796 

the cytokine and CVB4 treatment in the present study, as well as AAB+ status from a larger, more 797 

well-powered study33. We tested for enriched gene sets from the Gene Ontology (GO) biological 798 

processes gene set database82,83 using the compareCluster function from clusterProfiler v4.2.284 799 

with OrgDb = org.Hs.eg.db::org.Hs.eg.db, ont=’BP’, and the rest as default parameters. To 800 

simplify results and identify the broader biological processes enriched in each condition, we used 801 

the R package rrvgo v1.9.1 to collapse redundancy in GO terms. We generated a similarity matrix 802 

across all GO terms nominally significant (p < 0.05) in at least one comparison using the 803 

calculateSimMatrix function. We then reduced the significant terms for each analysis using the 804 

reduceSimMatrixfunction with a threshold parameter of 0.95. For each group of terms under a 805 

parent term, we reported the p-value of the most significant term. 806 

 807 
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Gene sets enriched in differentially expressed genes in other cell types. We also tested for enriched 808 

gene sets in the full differential expression results (described in Differential gene expression 809 

analyses) for each cell type. We used the fgseaMultilevel function from fGSEA v1.20.085 with 810 

eps=0, scoreType=’std’, and the rest as default parameters. We used the LRT statistic weighted by 811 

the direction of the log2(fold changes (FCs)) from the DESeq2 results (see Differential gene 812 

expression analyses) to pre-rank the genes. We tested gene sets found in the following databases, 813 

which were downloaded via the molecular signatures database (MSigDB) v2023.186,87: Kyoto 814 

Encyclopedia of Genes and Genomes (KEGG) pathways88, BioCarta pathways, and GO biological 815 

processes (January 2023 release)82,83. This approach is more well-powered than the clusterProfiler 816 

approach described above for beta cells as it leverages the full statistics of the DE analyses. 817 

However, full summary statistics were not available for the larger AAB+ study33, precluding the 818 

use of clusterProfiler.  819 

 820 

For both approaches, we controlled for the number of tests performed per cell type using the BH 821 

procedure. 822 

 823 

Transcription factor binding prediction and chromatin information analyses. We used BMO 824 

and our previously described chromatin information analysis pipeline34 available at 825 

https://github.com/ParkerLab/BMO/tree/pre-1.1 to predict bound TF motifs and estimate the 826 

impact of TFs in their local chromatin architecture. Briefly, we used the hg19 motif scans from a 827 

non-redundant position weight matrices collection corresponding to 540 TF motifs34. For each cell 828 

type pseudo-bulk snATAC-seq BAM file, we calculated the distribution of ATAC-seq fragments 829 

overlapping each TF motif instance and the number of co-occurring motifs from the same TF motif 830 
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within 100 bp to use as input for BMO. BMO predicts TFs using a simple premise that highly 831 

accessible motif clusters will be more likely bound by TFs, as the vast majority of TFs cannot 832 

induce open chromatin based on DNA sequence alone34. BMO fits two negative binomial 833 

distributions for the ATAC-seq signal and the number of co-occurring motifs per motif instance 834 

and calculates the probability of a given motif instance being bound based on the combined p-835 

value for these two distributions. 836 

  837 

Chromatin information for each TF motif was estimated using the feature V-plot information 838 

content enrichment (f-VICE) score described in our previous study34. Briefly, we generated V-839 

plots (aggregate ATAC-seq fragment midpoint distributions around TF binding sites) for non-840 

overlapping (within 500 bp) BMO-predicted bound instances of a given TF motif (Fig. 3b, top 841 

plots). We then calculated the chromatin information (f-VICE score) for each motif by quantifying 842 

the log2 information content enrichment at TF-adjacent (-25 to +25 from motif) and TF-proximal 843 

(-70 to -50 and 50 to 70 bp from motif) regions compared to a randomly shuffled ATAC-seq 844 

midpoint distribution (Fig. 3b, bottom signal tracks). These regions are expected to have high 845 

information content when the TF induces nucleosome phasing. We then normalized f-VICE scores 846 

for each cell type by calculating the residuals of the linear model f-VICE ~ log10(total fragments) 847 

+ log10(total co-occurring motifs), which controls for the abundance and overall accessibility of 848 

the predicted bound instances for each TF motif.  849 

 850 

In order to compare chromatin information across conditions (Fig. 3d), we calculated the f-VICE 851 

scores separately for the pseudo-bulk snATAC-seq BAM files obtained from each cell type and 852 

donor combination (i.e., Donor 1 β cells, Donor 2 β cells, etc.). First, we calculated f-VICEs 853 
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separately per donor and cell type to avoid confounding by the different number of nuclei. We then 854 

converted each donor and cell type normalized f-VICE distribution into Z-scores. Finally, we 855 

calculated the median Z-score for each TF motif to obtain a single value for a TF motif per 856 

condition and cell type. For visualizing this data in Fig. 3c, d heatmaps, we calculated row-wise 857 

(per motif) Z-scores. 858 

 859 

Differential accessibility analyses. We used DESeq2 (1.3.2) to perform differential accessibility 860 

analyses. We used as input the pseudo-bulk counts from each library for the reproducible extended 861 

summits called on each cluster. For the AAB+ versus healthy comparisons, we controlled for age, 862 

sex, BMI, median TSS enrichment, and log10(HQAA). We scaled and centered age and BMI. For 863 

the CVB4 and cytokine versus control comparisons, we opted for a paired design that accounted 864 

for donor ID and median TSS enrichment per library, but not age and BMI due to collinearity. 865 

Because of statistical instability observed in single-cell approaches for differential analyses in this 866 

dataset, we designed an alternative approach to calculate significance based on effect sizes. For 867 

each comparison, we removed features with a mean number of reads < 3 and divided the remaining 868 

features into 50 equally spaced bins of mean chromatin accessibility using the chop_evenly 869 

function from the Santoku R package (https://github.com/hughjonesd/santoku). We removed 870 

regions with log2 fold-change > 10, as these likely represented technical artifacts from low ATAC-871 

seq coverage. For each of the 50 chromatin accessibility bins, we identified the features in the 80th, 872 

85th, 90th, 95th, and 99th percentiles of absolute log2 fold-change, which were used for the fGWAS 873 

enrichments described below. A summary of this approach is included in Extended Data Fig. 2d. 874 

 875 
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Co-accessibility analyses. Co-accessibility between accessible regions were calculated for each 876 

cell type separately by condition using CICERO50 with default parameters. We generated count 877 

matrices for each pseudo-bulk BAM file representing a cell type and condition (e.g. healthy β cells) 878 

for the accessible regions of that cell type (reproducible extended summits, described above). We 879 

used as input for CICERO the count matrix and the corresponding UMAP coordinates of each 880 

barcode. We annotated the resulting connections based on whether each connected peak 881 

overlapped a T1D credible set SNP or a gene TSS from GENCODE V19. 882 

 883 

GWAS enrichments and functional fine-mapping using fGWAS. We calculated GWAS 884 

enrichments in features of interest using fGWAS (commit 0b6533d)44. For the GWAS enrichments 885 

of the accessible regions per cluster, we ran fGWAS with the -print flag using as input the summary 886 

statistics from each GWAS study and a reproducible list of extended summits per cluster. For the 887 

DARs T1D GWAS enrichments, we used similar steps as above. However, instead of splitting the 888 

genome into windows of 5,000 variants based on their order of occurrence (fGWAS default), we 889 

generated a bed file of custom 5,000 variant windows where the window corresponding to each 890 

T1D loci was centered on the lead variant of the primary signal using the flag -bed. The remaining 891 

genomic windows were either left unchanged or shortened in case they overlapped a T1D locus 892 

chunk. This step was necessary due to the sparseness of the genomic territory covered by DARs. 893 

For the functional fine-mapping, we assigned a 0 or 1 value for each T1D variant encoding whether 894 

they overlapped a reproducible extended summit in each cell type. We ran fGWAS using the option 895 

-fine and including all clusters with significant enrichment in the T1D GWAS. 896 

 897 
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PPA-weighted chromatin accessibility Z-scores. To identify which cell types likely mediate 898 

T1D genetic risk in each locus, we developed an approach based on the chromatin accessibility for 899 

each cell type at the locus. First, we extended each variant in the genetic fine-mapping credible 900 

sets (calculated by Chiou et al.) by 50 bp in each direction. Next, we counted how many snATAC-901 

seq reads overlapped the extended variant region in the pseudo-bulk data from each cell type. We 902 

then normalized the snATAC-seq signal by the sequencing depth and multiplied it by the genetic 903 

fine-mapping PPA. When two or more variants overlapped in the extended region, we calculated 904 

the ATAC-seq signal for the merged region and used the highest PPA. We retained for analysis 905 

only loci where at least one credible set variant overlapped a reproducible (minimum of 2 samples) 906 

ATAC-seq broad peak. We then summed each locus's PPA-weighted chromatin accessibility 907 

values to obtain a single score per cell type. Finally, we applied a Z-score transformation for each 908 

locus across cell types. 909 

 910 

GWAS variants regulatory impact prediction. We used LS-GKM 89 to train a predictive model 911 

of 11-mers for each cell type using as positive regions the extended summits. We used the 912 

genNullSeqs function from the gkmSVM R package90 to obtain the negative set of GC- and repeat-913 

content matched regions per cell type. To predict the regulatory impact of the SNPs of interest, we 914 

used GkmExplain53 using as input the ±25 bp flanking each allele and calculated the predicted 915 

importance scores for each base. In order to validate the LS-GKM model, we separately calculated 916 

the ATAC-seq allelic imbalance at heterozygous SNPs and compared it to the Delta-SVM scores 917 

for each allele. Using the genotype data from each donor, we used WASP (v. 0.2.1, commit 918 

5a52185; python version 2.7) 91 to diminish reference bias using the same mapping and filtering 919 

parameters described for the initial mapping and filtering. Duplicates were removed using WASP’s 920 
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rmdup_pe.py script. To avoid double-counting alleles, overlapping read pairs were clipped using 921 

bamUtil clipOverlap (v. 1.0.14; http://genome.sph.umich.edu/wiki/BamUtil:_clipOverlap). We 922 

counted the number of reads containing each allele for each heterozygous autosomal SNP, using 923 

only bases with a base quality of at least 10. We further split each donor’s BAM file per cell type 924 

to calculate allelic imbalance per cell type separately and for the entire library. We used a two-925 

tailed binomial test that accounted for reference allele bias to evaluate the significance of the allelic 926 

bias at each SNP. The observed allelic bias was then correlated with the Delta-SVM score, which 927 

was obtained by scoring the 11-mers centered on the REF and ALT alleles for the 1,000 Genomes 928 

(Phase 3). We used all SNPs with an absolute Delta-SVM score ≥ 2 to compare with the observed 929 

allelic imbalance. 930 

 931 

Genome visualizations. We used pyGenomeTracks (version 3.7)92 to generate genome 932 

visualizations of snATAC-seq signals, co-accessible regions, and GWAS variants. 933 

 934 

Maintenance of hESCs. INSGFP/W MEL-1 hESCs were grown on Matrigel-coated plates in 935 

StemFlex medium (Thermo Fisher), supplemented with 50 µg/mL normocin (InvivoGen). The 936 

cells were maintained at 37°C with 5% CO2, and were passaged every 4–6 days at a ratio of 1:13 937 

with RelesR (STEM CELL Technologies). All lines were regularly tested for mycoplasma 938 

contamination, and all hESC studies were approved by the Tri-Institutional Embryonic Stem Cell 939 

Research Committee (ESCRO). 940 

 941 

Stepwise Differentiation. WT and isogenic INSGFP/W MEL-1 cells were cultured on Matrigel-942 

coated 6-well plates in StemFlex medium (Thermo Fisher) and maintained at 37℃ with 5% CO2. 943 

hESCs were differentiated using a previously reported strategy48. On day 0, cells were exposed to 944 
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basal medium RPMI 1640 (Corning) supplemented with 1× glutamax (Thermo Fisher), 50 μg/mL 945 

normocin, 100 ng/mL Activin A (R&D systems), and 3 μM of CHIR99021 (Cayman Chemical) 946 

for 24 hours. The medium was changed on day 2 to basal RPMI 1640 medium supplemented with 947 

1× glutamax, 50 μg/mL normocin, 0.2% FBS (Corning), 100 ng/mL Activin A for 2 days. On day 948 

4, the resulting definitive endoderm cells were cultured in MCDB131 medium supplemented with 949 

1.5 g/L sodium bicarbonate, 1× glutamax, 10 mM glucose, 2% BSA, 50 ng/ml FGF7, 0.25 mM 950 

ascorbic acid for 2 days. On day 6, the cells were differentiated in MCDB131 medium 951 

supplemented with 2.5 g/L sodium bicarbonate, 1× glutamax, 10 mM glucose, 2% BSA, 0.25 mM 952 

ascorbic acid, 2 μM retinoic acid, 0.25 μM SANT1, 50 ng/ml FGF7, 200 nM TPB, 200 nM LDN 953 

and 0.5× ITS-X supplement for 2 days. On day 8, the cells were induced to differentiate to 954 

pancreatic progenitor stage 2 cells in MCDB131 medium supplemented with 2.5 g/L sodium 955 

bicarbonate, 1× glutamax, 10 mM glucose, 2% BSA, 0.25 mM ascorbic acid, 0.2 μM retinoic acid, 956 

0.25 μM SANT1, 2 ng/ml FGF7, 100 nM TPB, 400 nM LDN and 0.5× ITS-X supplement for 3 957 

days. On day 11, the cells were induced to differentiate to insulin expressing cells in MCDB131 958 

medium supplemented with 1.5 g/L sodium bicarbonate, 1× glutamax, 20 mM glucose, 2% BSA, 959 

0.1 μM retinoic acid, 0.25 μM SANT1, 200 nM LDN, 1 μM T3, 10 μM ALKi5, 10 μM zinc sulfate, 960 

10 μg/mL heparin and 0.5× ITS-X for 3 days. On day 14, the cells were further maturated in 961 

MCDB131 medium supplemented with 1.5 g/L sodium bicarbonate, 1× glutamax, 20 mM glucose, 962 

2% BSA, 100 nM LDN, 1 μM T3, 10 μM zinc sulfate, 10 μg/mL heparin, 100 nM GS inh XX and 963 

0.5× ITS-X for 9 days for apoptosis analysis. For apoptosis analysis, cells were harvest on day 23.  964 

 965 

Generation of isogenic DLK1-/-, RASGRP1-/-, TOX-/-, DLK1Δ, RASGRPΔ,and rs3783355A/A 
966 

hPSC lines. To create DLK1-/-, RASGRP1-/- and TOX-/- hESC lines, three sgRNA targeting exons 967 
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of DLK1, RASGRP1 and TOX were designed and cloned into a vector carrying a CRISPR-Cas9 968 

gene with puromycin gene (Addgene plasmid #42230). The sgRNAs were validated using the 969 

surveyor assay in 293T cells. The constructs containing validated sgRNAs were electroporated 970 

into dissociated INSGFP/W MEL-1 cells suspended in Human Stem Cell Nucleofector solution 971 

(Lonza) following the manufacturer’s instructions. After replating, the electroporated cells were 972 

selected with 500 ng/mL puromycin. After 2 days of puromycin selection, hESCs were dissociated 973 

by Accutase (Innovative Cell Technologies) and replated at single cells. The single cell culture 974 

was supplemented with 10 µM Y-27632 for the first two days. After approximately 10 days, 975 

individual colonies were picked, mechanically disaggregated, and replated into two individual 976 

wells of 96-well plates. A portion of the cells was lysed and analyzed by Sanger sequencing. DLK1-
977 

/-, RASGRP1-/- and TOX-/- hESC lines were confirmed by Sanger sequencing.  WT clonal lines from 978 

the targeting experiment were included as WT controls to account for potential non-specific effects 979 

associated with the gene-targeting process. 980 

 981 

To create DLK1Δ and RASGRP1Δ hESC lines, four sgRNAs targeting the upstream and downstream 982 

of the targeted regions were designed and cloned into a vector carrying a CRISPR-Cas9 gene 983 

(Addgene plasmid #42230). The constructs containing validated sgRNAs were electroporated into 984 

dissociated INSGFP/W MEL-1 cells. After puromycin selection and subcloning as described above, 985 

DLK1Δ and RASGRP1Δ hESC lines were confirmed by Sanger sequencing. WT clonal lines from 986 

the targeting experiment were included as WT controls to account for potential non-specific effects 987 

associated with the gene-targeting process. 988 

 989 



50 

To create rs3783355A/A hESC lines, one sgRNA targeting the regions close to SNP rs3783355 was 990 

designed and cloned into a vector carrying CRISPR-Cas9 gene (Addgene plasmid #42230). The 991 

construct containing validated sgRNA with puromycin gene and the mutant template to convert G 992 

to A, were co-electroporated into the dissociated INSGFP/W MEL-1 cells. After puromycin selection 993 

and subcloning as described above, rs3783355G/G clones from the same targeting experiment were 994 

included as controls. 995 

 996 

Immunocytochemistry analysis. Cells were fixed in 4% paraformaldehyde solution (Affymetrix) 997 

for 20 mins, then washed three times in PBS with 5 mins incubation each. The cells were blocked 998 

and permeabilized in PBS solution containing 5% horse serum and 0.3% Triton for 1 hour at room 999 

temperature. The cells were incubated with primary antibodies overnight at 4°C, followed by three 1000 

times wash in PBS with 5 mins incubation each. After 1 hour incubation with fluorescence-1001 

conjugated secondary antibodies (Alexafluor, ThermoFisher Scientific) at RT, cells were washed 1002 

with PBS for three times and imaged with LSM 800 confocal microscope (Zeiss). The primary 1003 

antibodies used were anti-SOX2, anti-OCT4 (1:500-1:1000 according to manufacture instructions, 1004 

Cell signaling), anti-insulin (1:500, DAKO), and anti-cleaved caspase-3 (1:1000, BD Biosciences). 1005 

The detailed antibody information has been included as Supplemental Table 10. 1006 

 1007 

Flow cytometry and intracellular FACS analysis. hESC-derived cells were dissociated using 1008 

Accutase. To analyze GFP expression, the cells were resuspended in PBS and used directly for 1009 

analysis.  1010 

 1011 
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For intracellular staining, the cells were fixed and permeabilized using Fixation/Permeabilization 1012 

Solution Kit (BD Biosciences) according to the manufacturer’s instructions. Briefly, cells were 1013 

first fixed with fixation/permeabilization buffer for 30 mins at 4°C in the dark and then washed 1014 

twice with washing buffer with 10 mins incubation each time at room temperature. The fixed cells 1015 

were incubated with primary antibody overnight at 4°C, washed twice with washing buffer with 1016 

10 mins incubation each time at RT. After 30 mins incubation with fluorescence-conjugated 1017 

secondary antibody at 4°C, cells were washed twice with washing buffer with 10 mins incubation 1018 

each time at room temperature and re-suspended in PBS buffer for analysis. The following primary 1019 

antibodies were used: anti-FOXA2, (1:500, Millipore), anti-SOX17 (1:500, R&D) and anti-PDX1 1020 

(1:500, R&D). The detailed antibody information was included in Supplemental table 10. Samples 1021 

were analyzed with an Accuri C6 flow cytometry instrument and the data were processed using 1022 

Flowjo v10 software.  1023 

 1024 

Annexin V cellular apoptosis analysis. hESC-derived cells were dissociated by Accutase and 1025 

washed with cold PBS. The cells were then stained with the APC/Annexin V apoptosis detection 1026 

Kit (BD Bioscience, 550474) according to manufacturer’s instructions, the samples were the 1027 

analyzed by Attune NxT Flow Cytometer (Thermo Fisher) within 30 mins.  1028 

 1029 

RNA-seq. Sample QC analysis, cDNA library synthesis, and RNA sequencing were carried out 1030 

by the Weill Cornell Genomics Core. In brief, the quality of RNA samples was examined by 1031 

Agilent bioanalyzer (Agilent). cDNA libraries were generated using TruSeq RNA Sample 1032 

Preparation (Illumina). Each library was sequenced using paired-end 51bp reads on the 1033 

NovaSeq6000 (Illumina). The sequencing reads were cleaned by trimming adapter sequences and 1034 
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low-quality bases using cutadapt v3.5, and were aligned to the human reference genome (GRCh37) 1035 

using STAR v2.7.9a. Read counts per gene were extracted using HTSeq-count v0.13.5. 1036 

Differential expression analysis was performed using R DESeq2 package v1.26.0. The counts data 1037 

were subjected to a regularized logarithm transformation using the rlog function within the 1038 

DESeq2 package. The transformed data were utilized to perform a principle component analysis 1039 

(PCA) using the plotPCA function within the DESeq2 package. Additionally, an unsupervised 1040 

hierarchical clustering on samples was conducted using the Euclidean distance metric, and the R 1041 

pheatmap package v1.0.12 was employed to visualize the clustering result.  1042 

 1043 

ATAC-Seq. Samples are prepared according to Weill Cornell Medicine Epigenetics Core facility 1044 

protocol. In brief, 50,000 cells are sorted in Weill Cornell Medicine Flow Cytometry Core Facility. 1045 

Then cells were washed with 1000 μl of ice-cold PBS and resuspend the pellet in 25 μl of ice cold 1046 

1X ATAC Buffer [20mM Tris-HCl (pH 7.4), 20mM NaCl and 6mM MgCl2]. Incubate for 5 min 1047 

on ice. Add 25 μl of ice cold ATAC-Detergent-buffer [20mM Tris-HCl (pH 7.4), 20mM NaCl and 1048 

6mM MgCl2, 0.2% Igepal CA-630, 0.2% Tween 20 and 0.02% Digitonin]. Mix throughout well. 1049 

Incubate the samples on ice for another 3 min. Then samples are centrifuged and pellets are 1050 

collected. Resuspend the pellet in the following transposase mixture (Per reaction): 25 μl 2X TD 1051 

Buffer (Illumina 15027866), 2.5 μl TDE1 (Illumina 15027865), 16.5 ul PBS, 0.5 ul 1% Digitonin, 1052 

0.5 ul, 10% Tween-20 and 5 ul H2O. Incubate the reaction at 37°C for 30 min in thermomixer 1053 

(Benchmark) set to 500 rpm. Add 250 uls of Zymo DNA binding buffer to samples (5-fold). 1054 

Tagmented DNA are purified with Zymo DNA clean and concentrator (Zymo research) according 1055 

to manufacture instruction. Then samples are submitted to Weill Cornell Medicine Epigenetics 1056 

Core facility for library preparation and sequencing with paired-end 51 bps on the NovaSeq6000. 1057 
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The sequencing reads underwent a preprocessing step including adapter sequence and low-quality 1058 

base trimming using cutadapt v3.4. The trimmed reads were aligned to the human GRCh37 1059 

reference genome using Bowtie2 v2.4.4. with the parameters -X 2000 --very-sensitive -k 5. 1060 

Duplicate reads were discarded using Picard v2.26.2. Genrich v0.6.1 was utilized to identify peaks 1061 

in each replicate sample with the parameters -j -q 0.05 -a 200.0, -e to remove mitochondrial 1062 

genome and regions not assembled into chromosomes, and -E to exclude ‘N’ homopolymers or 1063 

high mappability regions in the genome. The identified peaks were loaded into the R DiffBind 1064 

package v3.2.1 for downstream differential binding analysis. Briefly, consensus peaks were 1065 

determined for the WT and DLK1-/- conditions, as well as for the WT and RASGRP1-/- conditions, 1066 

by combining peaks that overlapped in at least two replicate samples within each condition. The 1067 

resulting consensus peak set was generated by taking a union of peaks from both conditions and 1068 

filtering peaks located in the ENCODE blacklisted regions. Counts of reads overlapping the 1069 

consensus peak set were calculated for each sample and background normalization was applied. 1070 

The sample-to-sample correlation heatmap plot was generated using the plotHeatmap function 1071 

within the DiffBind package. The PCA plot was generated using the plotPCA function within the 1072 

DiffBind package. Differential binding sites between WT and DLK1-/- conditions and between WT 1073 

and RASGRP1-/- conditions were identified with false detection rate (FDR) < 0.05. Annotation of 1074 

the differential binding sites were performed using the annotatePeak function, and visualization 1075 

was achieved in the form of a pie chart using the plotAnnoPie function from the R ChIPseeker 1076 

package v.1.34.1. A profile heatmap plot was generated using the plotProfile function within the 1077 

DiffBind package to illustrate differential binding site with FDR < 0.01 and absolute log2 fold 1078 

change > 0.5. 1079 
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To identify potential common downstream targets regulated by DLK1 and RASGRP1, we 1080 

incorporated RNA-seq and ATAC-seq data. Specifically, we screened for genes that either 1081 

exhibited increased chromatin accessibility and gene expression or decreased chromatin 1082 

accessibility and gene expression in DLK1-/- and RASGRP1-/- conditions, respectively, compared 1083 

to their corresponding WT. Subsequently, we selected the intersection of genes from the DLK1-/- 1084 

and RASGRP1-/- conditions. 1085 

 1086 

Western blot analysis. Whole-cell lysates were generated by scraping cells in cold PBS, and re-1087 

suspending in RIPA buffer with Thermo Scientific HALT protease inhibitor cocktail (1:100). 1088 

Lysates were loaded onto 10% NuPage Bis-Tris gels (Invitrogen), resolved by electrophoresis, and 1089 

transferred to PVDF membranes (Bio-Rad). Membranes were blocked with 3% bovine serum 1090 

albumin in TBS + 0.05% Tween for 30 mins and then probed overnight with primary antibody. 1091 

The antibodies were mouse anti-DLK1 (1:100, Santa cruz), mouse anti-RASGRP (1:100, Santa 1092 

cruz), rabbit anti-TOX (1:1000, cell signaling) and rabbit anti-GAPDH (1:1000, Cell Signaling). 1093 

Membranes were washed and incubated for 1 h with HRP anti-rabbit/mouse IgG secondary 1094 

antibody (1:5000, Bio-rad) in 3% milk-TBS-0.05% Tween and picture were taken with Azure 1095 

biosystem C600. 1096 

 1097 

Statistical analysis. Data are presented as mean±SEM derived from at least three independent 1098 

biological replicates. Data on biological replicates (n) is described in the Fig. legends. All 1099 

statistical analysis in this paper is two-way Anova. Statistical analysis was performed using 1100 

GraphPad Prism 8 software. P values reflect genotype effect in two-way Anova analysis and were 1101 

*P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001. 1102 
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GWAS data. T1D summary statistics were downloaded from the EBI Catalog (accession number 1103 

GCST90012879) 1104 

 1105 

Data availability. The RNA-seq data has been deposited to GEO database at GSE233476 with 1106 

Reviewer token (exepckkuntalfmp). 1107 

 1108 

Code availability. All code used for this manuscript is publicly available at 1109 

(http://github.com/ParkerLab/albanus_2020_nih_islets_sn_t1d). We use snakemake to facilitate 1110 

reproducibility.  1111 
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Extended Data Fig.1. Functional genomics at the single-cell/nucleus QC and integration.  1112 

a, UMAP representation of the first-pass scRNA-seq-only integration and clustering used as input 1113 

for DecontX. b, UMAP representation split by samples. c, Marker gene expression in the first-pass 1114 

scRNA-seq clustering. d, UMAP representation of integrated scRNA-seq and snATAC-seq data 1115 

faceted by sample (columns) and modality (rows). e, Marker gene expression across clusters. f, 1116 

Distribution of ATAC and RNA barcodes that passed QC for each cell type. g, Estimated ambient 1117 

RNA (“RNA soup”) composition for a subset of scRNA-seq libraries, obtained by combining all 1118 

barcodes with less than 10 UMIs (i.e. empty droplets). Right plot is the same as the left, but without 1119 

INS for visibility. h, Agreement of the RNA contamination estimated by DecontX to ambient RNA 1120 

fraction estimated directly from empty droplets. Clusters of off-diagonal genes correspond to 1121 

ribosomal proteins. i, Comparison of ambient RNA fraction for each gene in the facets to the 1122 

estimated islet proportion (fraction of barcodes assigned to the islet clusters) per library. j, DEGs 1123 

in β cells between HPAP055 (AAB+) versus controls with and without a covariate accounting for 1124 

ambient RNA. HAPAP055 has a higher fraction of α cells compared to the other samples, which 1125 

leads to higher levels of GCG in the ambient RNA. This, in turn, leads to erroneous assignment of 1126 

GCG as a DEG (left plot, black circle). This technical artifact is mitigated once we include the 1127 

estimated alpha cells proportion in the sample as a proxy of ambient RNA (right plot, black circle). 1128 

Differential expression performed using the negative binomial test from Seurat with number of 1129 

UMIs, percent mitochondrial reads, age, and sex used as covariates.  1130 
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Extended Data Fig.2. Differential analyses.  1131 

a, Estimation of CVB4 infection efficiency per library using RNA-seq reads mapped to the CVB4 1132 

genome using a hybrid hg19-CVB4 genome. b, Pathway enrichments agreements between DEGs 1133 

in cytokine stimulation and CVB4 infection across all cell types. c, DEG effect size correlation 1134 

(Spearman) of nominally significant genes between cytokine stimulation and CVB4 infection. d, 1135 

Example DAR significance calculation using effect sizes. Each color in the rainbow plots in the 1136 

middle and right panels correspond to one of the 50 ATAC-seq signal bins.  1137 
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Extended Data Fig.3. Predicting the regulatory impact of prioritized variants.  1138 

a, b, Allele-specific accessibility (ASA) distribution in β cells and all cells for all heterozygous 1139 

SNPs to estimate reference bias in WASP. c, DeltaSVM score distribution for all heterozygous 1140 

SNPs. d, Effect size comparison between SNPs with significant ASA and DeltaSVM scores. 1141 
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Extended Data Fig.4. Characterization and stepwise differentiation of DLK1-/-, RASGRP1-/-, 1142 

TOX-/- and WT hESCs.  1143 

a, DNA sequencing of DLK1-/-, RASGRP1-/- and TOX-/- hESCs. Blue color highlighted the deleted 1144 

nucleotides. Red color highlighted the inserted nucleotides. b, Western blotting analysis of DLK1, 1145 

RASGRP1 or TOX expression level in their wildtype (WT) and DLK1-/-, RASGRP1-/- and TOX-/- 1146 

hESC-derived cells. c-e, Immunostaining of pluripotency markers of DLK1-/- (c), RASGRP1-/- (d), 1147 

TOX-/- (e) and their WT hESCs. Scale bar=100 μm. f-h, Isotype control (f), representative flow 1148 

cytometry analysis (g) and the quantification (h) of the percentage of SOX17+ and FOXA2+ cells 1149 

in WT and DLK1-/- hESC-derived cells. N = 3 biological replicates. i, j, Representative flow 1150 

cytometry analysis (i) and the quantification (j) of the percentage of SOX17+ and FOXA2+ cells 1151 

in WT and RASGRP1-/- hESC-derived cells. N = 3 biological replicates. k, l, Representative flow 1152 

cytometry analysis (k) and the quantification (l) of the percentage of SOX17+ and FOXA2+ cells 1153 

in WT and TOX-/- hESC-derived cells. N = 3 biological replicates. m-o, Isotype control (m), 1154 

representative flow cytometry analysis (n) and the quantification (o) of the percentage of PDX1+ 1155 

cells in WT and DLK1-/- hESC-derived cells. N = 3 biological replicates. p, q, Representative flow 1156 

cytometry analysis (p) and the quantification (q) of the percentage of PDX1+ cells in WT and 1157 

RASGRP1-/- hESC-derived cells. N = 3 biological replicates. r, s, Representative flow cytometry 1158 

analysis (r) and the quantification (s) of the percentage of PDX1+ cells in WT and TOX-/- hESC-1159 

derived cells. N = 3 biological replicates. t, u, Representative flow cytometry analysis (t) and the 1160 

quantification (u) of the percentage of GFP+ cells in WT and TOX-/- hESC-derived cells. N=3 1161 

biological replicates. v, w, Representative flow cytometry analysis (v) and the quantification of 1162 

the percentage of Annexin V+DAPI- cells (w) in WT and TOX-/- hESC-derived INS-GFP+ cells 1163 



60 

under non-treated condition. N=3 biological replicates. P values were ****P < 0.0001. The center 1164 

value is “mean”. Error bar is SEM.  1165 
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Extended Data Fig.5. Characterization and stepwise differentiation of DLK1Δ, RASGRP1Δ 1166 

and their WT_Δ hESCs.  1167 

a, PCR verification of DLK1Δ, RASGRP1Δ and their WT_Δ hESCs. b, c, Immunostaining of 1168 

pluripotency markers of DLK1Δ (b), RASGRP1Δ (c), and their WT hESCs. Scale bar=100 μm. d-f, 1169 

Isotype control (d), representative flow cytometry analysis (e) and the quantification (f) of the 1170 

percentage of SOX17+ and FOXA2+ cells in WT_Δ and DLK1Δ hESC-derived cells. N = 3 1171 

biological replicates. g, h, Representative flow cytometry analysis (g) and the quantification (h) of 1172 

the percentage of SOX17+ and FOXA2+ cells in WT_Δ and RASGRP1Δ hESC-derived cells. N = 5 1173 

biological replicates. i-k, Isotype control (i), representative flow cytometry analysis (j) and the 1174 

quantification (k) of the percentage of PDX1+ cells in WT and DLK1Δ hESC-derived cells. N = 3 1175 

biological replicates. l, m, Representative flow cytometry analysis (l) and the quantification (m) 1176 

of the percentage of PDX1+ cells in WT and RASGRP1Δ hESC-derived cells. N = 3 biological 1177 

replicates. The center value is “mean”. Error bar is SEM.  1178 
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Extended Data Fig.6. Characterization and stepwise differentiation of rs3783355G/G and 1179 

rs3783355A/A hESCs.  1180 

a, DNA sequencing of rs3783355G/G and rs3783355A/A isogenic hESC clones. b, Immunostaining 1181 

of pluripotency markers of rs3783355G/G and rs3783355A/A isogenic hESC clones. Scale bar=100 1182 

μm. c, d, Representative flow cytometry analysis (c) and the quantification (d) of the percentage 1183 

of SOX17+ and FOXA2+ cells in rs3783355G/G and rs3783355A/A hESC-derived cells. N = 3 1184 

biological replicates. e, f, Representative flow cytometry analysis (e) and the quantification (f) of 1185 

the percentage of PDX1+ cells in rs3783355G/G and rs3783355A/A hESC-derived cells. N = 3 1186 

biological replicates. P values were ****P < 0.0001. The center value is “mean”. Error bar is SEM. 1187 
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Extended Data Fig.7. Cluster analysis of samples of RNA-seq and ATAC-seq. 1188 

a, Diagram of RNA-seq result of WT versus DLK1-/- INS-GFP+ cells. b, Diagram of ATAC-seq 1189 

result of WT versus DLK1-/- INS-GFP+ cells. c, Diagram of RNA-seq result of WT versus 1190 

RASGRP1-/- INS-GFP+ cells. d, Diagram of ATAC-seq result of WT versus RASGRP1-/- INS-1191 

GFP+ cells.  1192 
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Supplemental Tables. 1193 

Table 1. Sample metadata. 1194 

Sample ID ID Age Sex Condition Condition_detailed BMI 

HPAP036 Healthy_5 23 F NORM NORM 16 

HPAP038 AAB+_1 13 M T1D preT1D 18.3 

HPAP039 Healthy_7 5 F NORM NORM 16.3 

HPAP040 Healthy_4 35 M NORM NORM 23.98 

HPAP044 Healthy_8 3 F NORM NORM 12 

HPAP045 AAB+_2 27 F T1D preT1D 26.2 

HPAP055 AAB+_3 24 M T1D T1D 27.9 

ICRH122 Healthy_3 46 F NORM NORM 18.2 

HPAP059-Mock Healthy_6-Mock 35 M mock mock 37.96 

HPAP059-CVB4 Healthy_6-CVB4 35 M CVB4 CVB4 37.96 

HPAP059-Cyto Healthy_6-Cyto 35 M Cytokine Cytokine 37.96 

ICRH134-Mock Healthy_2-Mock 27 M mock mock 25.3 

ICRH134-Cyto Healthy_2-CVB4 27 M Cytokine Cytokine 25.3 

ICRH134-CVB4 Healthy_2-Cyto 27 M CVB4 CVB4 25.3 

ICRH135-Mock Healthy_1-Mock 52 M mock mock 24.5 

ICRH135-Cyto Healthy_1-CVB4 52 M Cytokine Cytokine 24.5 

ICRH135-CVB4 Healthy_1-Cyto 52 M CVB4 CVB4 24.5 

   1195 
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Table 2. Overview of snATAC and scRNA-seq libraries. 1196 

Cell type ATAC nuclei RNA nuclei Both 

Acinar 6,646 18,987 25,633 

α 9,742 11,409 21,151 

β 6,000 9,577 15,577 

δ 1,197 1,506 2,703 

Ductal 19,088 23,108 42,196 

Endothelial 1,009 928 1,937 

Gamma 1,273 865 2,138 

Immune 930 816 1,746 

Stellate activated 3,032 2,944 5,976 

Stellate quiescent 980 1,235 2,215 

Total 49,897 71,375 121,272 

 1197 

Table 3. Differentially expressed genes. 1198 

Table 4. Chromatin information patterns. 1199 

Table 5. Functional fine-mapping. 1200 

Table 6. Predicted bound TF motifs are the prioritized loci.  1201 
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Table 7. The sequences of sgRNAs used for gene targeting. 1202 

Gene sgRNA Sequence (5’-3’) 

DLK1-/- GTCCTTTCCCGAGTACCCGG 

RASGRP-/- GTGCAACGGCATCTCCCAGT 

TOX-/- TGCGCCCGACGCTCCCTGTC 

DLK1 Δ upstream CAGCGCCTCTGTTGGCACGG 

DLK1 Δ downstream TCAGAGGCGGGTGCTTTGTT 

RASGRP1 Δ upstream TCCAGGCATAGGTATCTCAG 

RASGRP1 Δ downstream CTACACCCACCGACGCCAGG 

  1203 
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Table 8.  PCR and sequencing primers used for genotyping the gene knockout, regulatory 1204 

region knock and SNP knockin hESC lines. 1205 

Gene Primer Sequence (5’-3’) 

DLK1-/- (PCR) 
F CCTCTTACTCCAGACCCCAC 

R CCCGTGAATACTCCCATCCA 

DLK1-/- (Sequencing) R GGGTTAGGCTGAAAGGGTCT 

RASGRP-/- (PCR) 
F TCCCTCCCATCATGCTTGTT 

R AAGCTGGAGGAAAAGGGGAT 

RASGRP-/- (Sequencing) F AGCCATCAACTGAGCAGACT 

TOX-/- (PCR) 
F CACCTCACTCTGTTCCGTCT 

R AATCGTGTCACTTTCCGCAC 

TOX-/- (Sequencing) F GTTCCGTCTAAGCTTGTTTTGC 

DLK1 Δ (PCR) 
F TCTGTCGTTTGTTTGCTGGG 

R TGATCAGTGCATGGGTGACT 

RASGRP1 Δ (PCR) 
F CCGTCCTCTTCCCCTTACAA 

R CCAGGCAGCTTTGAGTTTGT 

rs3783355A/A (PCR+Sequencing) 
F CCTCACAAAGGTACAGGAAA 

R AGAAAGCATTGGTGAACACT 

1206 
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 Table 9.  QPCR primers sequence. 1207 

Gene Primer Sequence (5’-3’) 

DLK1 
F CCCTGTGTGATCAACGGCT 

R AGGTCTTGTCGATGAAGCCG 

RASGRP1 
F TGGGTGTGCATCTCAAGGAC 

R CCGGGCATAGGAAAGCTCAT 

ACTB 
F CAATGTGGCCGAGGACTTTG 

R CATTCTCCTTAGAGAGAAGTGG 

  1208 
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Table 10. Antibodies used for immunocytochemistry and/or intracellular flow cytometry 1209 

analysis. 1210 

Usage Antibody Clone 

# 

Host Catalog 

# 

Vendor Dilution 

Immunostaining Anti-Insulin Polyclonal Guinea 

Pig 

#A0564 Dako 1:500 

Immunostaining Anti-Caspase 3 Monoclonal Rabbit 559565 BD 

Bioscienc

es 

1:1000 

Flow cytometry Anti-PDX1 Polyclonal Goat AF2419 R & D 

Aquatics 

1:500 

Immunostaining Anti-SOX2 Monoclonal Rabbit 3579S Cell 

Signaling 

1:400 

Immunostaining Anti-OCT4 Monoclonal Mouse Sc-5279 Santa 

Cruz 

1:200 

Flow cytometry Anti-FOXA2 Polyclonal Rabbit 07-633 Millipore 1:500 

Flow cytometry Anti-SOX17 Polyclonal Goat AF1924 R & D 

Systems 

1:500 

Immunostaining Alexa Fluor 488 

AffiniPure Anti-

Guinea Pig IgG 

(H+L) 

Polyclonal Donkey #706-545-

148 

Jackson 

ImmunoR

esearch 

Labs 

1:500 

Flow cytometry anti-Goat IgG 

(H+L) Highly 

Cross-Adsorbed 

Secondary 

Antibody, Alexa 

Fluor 488 

Polyclonal Donkey #A-11055 Thermo 

Fisher 

Scientific 

1:500 

Immunostaining anti-Rabbit IgG 

(H+L) Highly 

Cross-Adsorbed 

Secondary 

Antibody, Alexa 

Fluor 594 

Polyclonal Donkey #A-21207 Thermo 

Fisher 

Scientific 

1:500 
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Flow cytometry anti-Rabbit IgG 

(H+L) Highly 

Cross-Adsorbed 

Secondary 

Antibody, Alexa 

Fluor 647 

Polyclonal Donkey #A-32795 Thermo 

Fisher 

Scientific 

1:500 

Immunostaining/ 

Flow cytometry 

anti-Mouse IgG 

(H+L) Cross-

Adsorbed 

Secondary 

Antibody, Alexa 

Fluor 647 

Polyclonal Donkey #A-32787 Thermo 

Fisher 

Scientific 

1:500 

Flow Cytometry APC Annexin V  unknown unknown 

 

550475 BD 

Bioscienc

es 

 

1:20 

Western blot Anti-DLK1 Monoclonal Mouse Sc-376755 Santa cruz 1:100 

Western blot Anti-RASGRP1 Monoclonal Mouse Sc-365358 Santa cruz 1:100 

Western blot Anti-TOX Monoclonal Rabbit E6I3Q Cell 

signaling 

1:1000 

  1211 
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