PLOS ONE

Check for
updates

G OPEN ACCESS

Citation: Kyrklund M, Bildo M, Akhi R, Nissinen AE,
Pussinen P, Horkké S, et al. (2020) Humoral
immune response to heat shock protein 60 of
Aggregatibacter actinomycetemcomitans and
cross-reactivity with malondialdehyde
acetaldehyde-modified LDL. PLoS ONE 15(3):
€0230682. https://doi.org/10.1371/journal.
pone.0230682

Editor: Paulo Lee Ho, Instituto Butantan, BRAZIL
Received: November 8, 2019

Accepted: March 5, 2020

Published: March 25, 2020

Copyright: © 2020 Kyrklund et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data are
within the manuscript and its Supporting
Information files.

Funding: This study was supported by the
Research Fund of the Medical Research Center,
University of Oulu and Oulu University Hospital,
and Research Fund of Qulu University Hospital/
special state support for research. The funders had
no role in study design, data collection and

RESEARCH ARTICLE

Humoral immune response to heat shock
protein 60 of Aggregatibacter
actinomycetemcomitans and cross-reactivity
with malondialdehyde acetaldehyde-modified
LDL

Mikael Kyrklund'-?, Mika Bildo', Ramin Akhi'-?, Antti E. Nissinen("?, Pirkko Pussinen?®,
Sohvi Hérkké'-?, Chunguang Wang @ '->4*

1 Research Unit of Biomedicine, Medical Microbiology and Immunology, Faculty of Medicine, University of
Oulu, Ouluy, Finland, 2 Medical Research Center and Nordlab Oulu, University Hospital and University of
Oulu, Ouluy, Finland, 3 Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital,
Helsinki, Finland, 4 Minerva Foundation Institute for Medical Research, Helsinki, Finland

* chunguang.wang @oulu. fi

Abstract

Atherosclerosis is a chronic inflammatory disease and major cause of mortality worldwide.
One of the crucial steps for atherosclerotic plaque development is oxidation of low-density
lipoprotein (LDL). Through the oxidation, highly immunogenic epitopes are created and the
immune system is activated. Association between atherosclerosis and periodontal diseases
is well documented, and one of the main oral pathogens common in periodontitis is Aggre-
gatibacter actinomycetemcomitans (Aa). Heat shock protein 60 (HSP60) is an important vir-
ulence factor for Aa bacteria and a strong activator of the immune system. Cross-reactivity
of HSP60 and oxidized LDL (OxLDL) antibodies could be a potential mechanism in the pro-
gression of atherosclerosis and one possible link between atherosclerosis and periodontitis.
Human plasma samples from neonates and mothers were analyzed to determine if antibody
titer to Aa-HSP60 protein is already present in newborns. Further objectives were to charac-
terize antibody response in Aa-HSP60 immunized mice and to determine possible antibody
cross-reaction with oxidized LDL. We demonstrated that newborns already have IgM anti-
body levels to Aa-HSP60. We also showed that in mice, Aa-HSP60 immunization provoked
IgG and IgM antibody response not only to Aa-HSP60 but also to malondialdehyde acetal-
dehyde-modified LDL (MAA-LDL). Competition assay revealed that the antibodies were
specific to Aa-HSP60 and cross-reacted with MAA-LDL. Our results suggest a possibility of
molecular mimicry between Aa-HSP60 and MAA-LDL, making it intriguing to speculate on
the role of HSP60 protein in atherosclerosis that manifests at young age.

Introduction

Atherosclerosis is a chronic inflammatory disease in which both innate and adaptive immune
systems play an important role. The disease starts early in life, becomes clinically manifest at
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older age, and associates strongly with cardiovascular disease (CVD), a major cause of death
worldwide [1]. Atherosclerosis narrows the arteries due to the formation of plaque that accu-
mulates in the arterial intima. Inside the intima, low-density lipoprotein (LDL) particles go
through oxidative modification which creates oxidized LDL particles (OxLDL). Through oxi-
dation, malondialdehyde-modified LDL (MDA-LDL) and further, malondialdehyde-acetalde-
hyde-modified LDL (MAA-LDL) particles are created [2]. The MAA adducts are highly
immunogenic and known to be a target for human natural antibodies already in newborns [3].

The exact role of antibodies to OxLDL in atherosclerosis remains elusive. IgM antibodies to
OxLDL are considered to have protective properties, whereas IgG antibodies to OxLDL are
more heterogeneous but mainly considered pro-atherogenic [3-7]. IgM antibodies to OxLDL
inhibit the cholesterol uptake of macrophages through scavenger receptors, explaining the
atheroprotective properties of IgM antibodies [8]. It is hypothesized that low levels of MAA
adduction are rapidly eliminated through the scavenger receptors with IgM stimulation. In
chronic conditions and constant tissue injuries the levels of MAA-adducts are elevated, which
could lead to a shift in the clearance of MAA adducts through the scavenger receptors by possi-
bly activating B-cells and switching Ig class to IgG, which would further enhance the local
inflammation [9].

Aggregatibacter actinomycetemcomitans (Aa) is one of the most studied oral pathogens
associated with periodontitis, a chronic inflammatory disease affecting tooth supporting tis-
sue and alveolar bone. Periodontitis is highly common in adult population and is known to
associate with atherosclerosis [10]. Treatment of periodontitis significantly diminish the
total load of oral pathogens that is associated with reduced serum inflammatory markers,
improvements in endothelial dysfunction and reduction of the carotid intima-media thick-
ness, which relate to the progression of atherosclerosis [11]. Although the exact mechanism
linking these two chronic infections is yet to be known, many mechanisms have been pro-
posed. Molecular mimicry and cross-reactivity of the antibodies is one of the hypotheses
linking these two diseases.

Heat shock protein 60 (HSP60) is one of the main virulence factors of A. actinomycetem-
comitans, a protein that has also been demonstrated to associate with atherosclerosis [12].
Under normal conditions, heat shock proteins have a variety of different functions: intracel-
lular folding, transportation, and working as chaperons [13]. These proteins are vastly upre-
gulated when cells are exposed to a stress factor, which leads further to T-cell activation.
Heat shock proteins activate the immune system but their exact role in atherosclerosis
remains unknown. In clinical studies, increased antibody titers to HSP60 have been shown
to be linked with the severity of atherosclerosis [14]. Antibodies to HSP60 could work as
autoantibodies accelerating the atherogenesis. Pre-existing immunity to HSP60 from vari-
ous pathogens could cross-react with host natural HSP60 proteins causing the autoimmune
reactions. HSPs are a group of proteins with high sequence similarity among species, from
humans to bacteria, which explains the cross-reaction possibilities between host and patho-
genic HSP60 proteins [15].

Antibodies to MAA-LDL and HSP60 are both associated with atherosclerosis and they are
both produced under similar stressed conditions [13,16]. In our previous study, we identified
natural IgM antibodies that recognize MAA-LDL from human umbilical cord blood [3]. We
also cloned natural mouse monoclonal IgM antibody to MAA-LDL that bound to HSP60 of
Aa bacteria [17]. In this study, we investigated whether human neonates have natural antibod-
ies to Aa-HSP60 and whether the antibodies to Aa-HSP60 cross-react with MAA-LDL. Mouse
experiments were also carried out to verify the possible cross-reactions between HSP 60 and
MAA-LDL antibodies as cross-reaction could be one possible mechanism in the progression
of atherosclerosis and a potential link between atherosclerosis and periodontitis.
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Materials and methods
Human samples

Blood samples from neonates were collected from the umbilical cord immediately after deliv-
ery. In total, 13 pre-term blood samples (< 32 weeks of gestation) and 36 full-term blood sam-
ples (> 36 weeks of gestation) were used in this study. Venous blood samples from mothers
were collected 24-48 h after delivery (48 samples). All the plasma samples were handled as
previously reported [3], and IgM and IgG antibodies’ binding characteristics to Aa-HSP60,
MAA-LDL and fish gelatin/phosphate-buffered saline (Fg-PBS) were tested and compared.
Specific binding of neonates’ plasma IgM antibodies to Aa-HSP60 and MAA-LDL was tested
with two points competitive chemiluminescence immunoassay. Aa-HSP60 and MAA-LDL (0
and 100 pg/mL) were incubated with plasma samples overnight at +4°C and immunoassay
was performed as described below. The study was approved by the ethical committee of the
Oulu University Hospital, Finland (195/2006) and informed written consent was obtained
from each participant.

Mice immunization

The study was approved by animal research ethics committee, Animal Experiment Board in
Finland (ELLA), with the permit number ESAV1/9168/04.10.07/2014. Female C57BL/6] mice
(n = 4, about 8 weeks-old) were used. The immunization was carried out as shown in supple-
mental Fig 1(S1 Fig) with the support of The Oulu Laboratory Animal Centre Research Infra-
structure, University of Oulu, Finland. Primary immunization was injected subcutaneously
with 50 pg of Aa-HSP60 protein diluted in 200 pL of saline. Intraperitoneal booster injections
were done with 25 pg of Aa-HSP60 protein. Boosters were first given three times every two
weeks, followed by three boosters given with 4-6 weeks intervals. No adjuvants were used in
this study. The mice were on regular chow diet (4.4% fat and 0.02% cholesterol) throughout
the study and were sacrificed one week after the last booster. At the endpoint of the study,
mice were euthanized by carbon dioxide (CO2) and cervical dislocation. Blood sampling was
performed with anesthesia by combination of Hypnorm™® (fentanyl citrate 0.079 mg/ml, flua-
nisone 2.5 mg/ml) and Dormicum™® (Midazolam 1.25 mg/ml) at 0.05-0.1ml/10g. Control
blood samples were taken before the primary immunization, followed by regular blood collec-
tions throughout the study. Blood samples were collected from saphenous vein and the final
blood samples were taken from vena cava after sacrifice. Pre-immunization blood samples are
referred to as “week 07, while “week 15” refers to the blood samples collected after the fourth
booster injection.

Production of recombinant Aa-HSP60 protein

The cDNA construct of Aa-HSP60 in pET28a(+) expression vector was purchased from
GenScript. The cDNA (nucleotides 529-2172 of the Aggregatibacter actinomycetemcomitans
groEL gene) was subcloned into the EcoRI-Xhol site of pET-28a(+) vector containing a
(His)s-tag at the amino terminus. The plasmid was transformed into BL21 (DE3) E. coli cells
(Agilent Technologies), and 0.5 mM isopropyl B-D-1-thiogalactopyranoside (IPTG, Sigma)
was used for protein expression. After the expression, bacterial cells were lysed (lysozyme 1
mg/mL, Sigma) and sonicated, followed by ultracentrifugation (48,000 x g for 30 min) at
+4°C. For protein purification, cell lysate was collected after ultracentrifugation, and His-
Pur™ Cobalt resin (Thermo Fisher Scientific) was used for binding of the protein. The purity
of the recombinant protein was analyzed with sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE, S2 Fig).
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Fig 1. Human plasma IgG and IgM antibodies binding to Aa-HSP60 and MAA-LDL. Plasma IgG (A) and IgM (B)
antibody levels to Fg-PBS (fish gelatin phosphate-buffered saline), Aa-HSP60, and MAA-LDL from mothers (n = 48)
and neonates (n = 49) were measured. Antibody levels are shown as box-plots, representing 25%, 50% and 75% of the
distribution, and whiskers representing 10% and 90% distribution of the values. The cross represents the maximum
and minimum values and the solid diamonds are the mean values. The competitive immunoassay of neonates’ plasma
IgM binding to MAA-LDL after competed with Aa-HSP60 (C) and IgM binding to Aa-HSP60 after competed with
MAA-LDL (D) were shown. Comparative binding specificity was demonstrated in the absence (0 ug/mL) or presence

(100 pg/mL) of the soluble competitors. The antibody binding is expressed in relative light units measured in 100

milliseconds (RLU/100ms). P-values less than 0.05 were considered statistically significant. * p < 0.05, ** p < 0.01, ***

p < 0.001.

https://doi.org/10.1371/journal.pone.0230682.g001
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Chemiluminescence immunoassay

Plasma antibody levels from human and mouse were measured with a chemiluminescence
immunoassay (enzyme-linked immunosorbent assay, ELISA). Antigen was dissolved in PBS
(5 pg/ml) and incubated at +4°C overnight in MicroFluor plates (Thermo Scientific, Rockford,
IL, USA). Automated plate washer was used to wash the plates three times with PBS containing
0.27mM ethylenediaminetetraacetic acid (EDTA). Plates were blocked with PBS-EDTA con-
taining 0.5% fish gelatin (Fg) and incubated for one hour at room temperature. Plasma sam-
ples were diluted with 0.5% Fg-PBS-EDTA and the antibody levels were measured with
alkaline phosphatase-labeled antibodies (anti-human-IgG, anti-human-IgM, anti-mouse-IgG,
anti-mouse-IgM) diluted according to manufacturer specifications (Sigma-Aldrich). Chemilu-
minescence was detected using LumiPhos 530 (33% Lumigen) substrate, measured with lumi-
nescence multilabel counter (PerkinElmer Victor’V), and expressed in relative light units
(RLU).

Specific binding of plasma antibodies to Aa-HSP60 and MAA-LDL was tested with com-
petitive chemiluminescence immunoassay. Aa-HSP60 and MAA-LDL (0-100 ug/mL) were
incubated with plasma samples overnight at +4°C. Incubated solutions were centrifuged at
16,000 x g at +4°C and the remaining antibody levels measured with ELISA as described
above.

Dot blot and Western blot analyses

Seven different strains of Aa bacteria (ATCC 29523, ATCC 43718, ATCC 33384, IDH 781,
IDH 1705, CU1000, C59A, representing six serotypes, A, B, C, D, E, F, and one nonserotype-
able strain X), Porphyromonas gingivalis (Pg), Tannerella forsythia (Tf), and Escherichia coli (E.
coli) were examined by Dot and Western blot analysis. For dot blot analysis (51 Raw images),
bacterial samples were diluted in Tris-buffered saline (TBS) and 200 pL of bacterial suspension
(0.1 mg/mL) was added to each well. Samples were loaded on pre-wetted nitrocellulose mem-
brane on vacuum-based dot blot apparatus (BioRad). For the western blot analysis (S1 Raw
images), the same bacterial samples were used and 20 ug of bacterial protein from each strain
was loaded. 15 pg of MAA-BSA and BSA as well as 0.2 pg of Aa-HSP60 protein were also used
in SDS-PAGE. After the proteins were separated, the nitrocellulose membrane was used for
blotting (BioRad). Membranes were blocked in 5% BSA-TBS buffer overnight at +4°C. All
plasma samples were combined and diluted at 1:1000 in 5% BSA-0.05%Tween 20 -TBS buffer
(5%-BSA-TBS-T). The samples were incubated for 1 h at room temperature. Goat-antimouse-
IgG-IRDye 800 (0.25 ug/mL) was used as the secondary antibody and incubated for 1 h at
room temperature. Dot blot and Western blots were visualized with Odyssey IR imager and
Image Studio™ Software (LI-COR Biosciences).

Flow cytometry analysis

Human Jurkat T cells were grown at +37°C with 5% CO, in RPMI-1640 (Sigma) containing
10% fetal bovine serum (Thermo Fisher Scientific Inc.), 100 U/mL penicillin and 100 pug/mL
streptomycin (Sigma), 10 mM Hepes, 2 mM L-glutamine, and 1 mM sodium pyruvate. Apo-
ptosis was induced by starving in serum-free RPMI-1640 for 24 hours. Cells (5 x 10°) were
washed with 0.1% BSA in PBS and centrifuged at 1,800 x g for 5 minutes at +4°C. The apopto-
tic cells were stained with SYTOX®™AADvanced™ Dead Cell Stain Kit (Life Technologies). Jur-
kat T cells were incubated with mouse plasma (1:100) before and after immunization and with
mouse plasma (1:100) pre-mixed with Aa-HSP60 (100 pg/mL) by shaking at +4°C for 45 min-
utes. Goat anti-mouse IgG (H+L) or IgM (p chain) Alexa Fluor 488 (Invitrogen) was used,
respectively, as secondary antibody at a concentration of 0.25 pug/mL. The washing was
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repeated after antibody incubation. Binding of the IgM and IgG antibodies to apoptotic cells
was analyzed with BD Accuri C6 Plus instrument (BD Biosciences) and FlowJo V10.1 software
(FlowJo LLC).

Statistical analyses

Statistical analyses were carried out with IBM SPSS statistic 25 software. In human study
Mann-Whitney U test was used to compare the variables in different groups and Wilcoxon
signed-rank test to compare the variables within the same groups. T-test was used in mouse
study. P-values less than 0.05 were considered significant (* p < 0.05, ** p < 0.01, ***

p < 0.001).

Results

Human umbilical cord blood contains natural IgM to Aa-HSP60 and
MAA-LDL

Human umbilical cord blood plasma and maternal plasma were tested for IgG and IgM anti-
bodies binding to MAA-LDL, Aa-HSP60 and Fg-PBS (Fig 1). The IgG antibody binding pat-
terns of mothers and neonates were very similar (Fig 1A). Not much difference was detected
between the IgG antibody levels of mothers and neonates, indicating placental transfer of
maternal IgG antibodies to the fetus, an important mechanism that provides protection to the
infant.

Neonates did have significant IgM levels to Aa-HSP60 and MAA-LDL when compared to
Fg-PBS background controls (Fig 1B), suggesting that the IgM antibodies to Aa-HSP60 and
MAA-LDL are already being produced by neonates before birth. Aa-HSP60 could compete
effectively with the IgM binding to MAA-LDL (Fig 1C), suggesting that Aa-HSP60 may share
molecular mimicry with MAA epitopes in OxLDL. However, the competitive binding of
plasma IgM antibodies to Aa-HSP60 could not be seen by using MAA-LDL as a competitor
(Fig 1D).

Prominent IgG and IgM, but not IgA, immune responses to Aa-HSP60

C57BL/6 female mice were immunized with the purified recombinant heat shock protein 60 of
Aggregatibacter actinomycetecomitans (Aa-HSP60). Strong IgG and IgM immune responses to
Aa-HSP60 were detected in all mice after immunization. IgG and IgM levels to Aa-HSP60
were remarkably increased at week 15 when compared to the antibody levels before immuni-
zation (Fig 2). However, no IgA response to immunization of Aa-HSP60 was observed
throughout the experimental period (Fig 2).

Plasma IgG and IgM antibody levels to MAA-LDL increased after Aa-
HSP60 immunization

To investigate the cross-reactivity of antibodies to Aa-HSP60 and MAA-LDL, plasma from
mice immunized with AaHSP60 was also tested for binding to MAA-LDL and MAA-BSA.
Unmodified natural LDL (nLDL) and bovine serum albumin (BSA) were used as controls.

The binding results of the IgG and IgM antibodies are presented in Fig 3. The antibody levels
against MAA-LDL were remarkably increased at week 15 when compared to the levels before
immunization (Fig 3A and 3B). The IgM antibody level to MAA-BSA was also notably elevated
(Fig 3B). Both IgG and IgM antibody levels to nLDL and BSA remained low throughout the
immunization period.
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Competitive chemiluminescence immunoassay shows specific binding of
IgG and IgM antibodies to Aa-HSP60

The specific binding to Aa-HSP60 and cross-reactivity with MAA-LDL of mouse plasma anti-
bodies was examined by outcompeting antibodies with increased levels of Aa-HSP60 and
MAA-LDL as competitors (Fig 4). Aa-HSP60 competed effectively with the whole plasma anti-
body binding, especially IgM, to Aa-HSP60 whereas MAA-LDL competed partially with the
binding (Fig 4A and 4B). Almost 70% of the IgG class antibody binding to Aa-HSP60 was-
outcompeted by liquid Aa-HSP60 competitor at less than 1 pg/mL concentrations (Fig 4C).
About 80% of the IgM antibody binding to Aa-HSP60 was also outcompeted by Aa-HSP60 at
very low concentrations (Fig 4D). The data suggest that both IgG and IgM class of antibodies
are generated specifically towards Aa-HSP60 with immunization. IgG and IgM specificity to
MAA-LDL was also tested (Fig 4E and 4F). Around 40 percent of both antibodies present in
plasma were outcompeted by liquid MAA-LDL competitor, implying that certain antibodies
produced after Aa-HSP60 immunization recognized MAA-LDL but could not be well com-
peted by MAA-LDL. Cross-reaction of the antibodies between Aa-HSP60 and MAA-LDL
could also be visualized in Fig 4A and 4B. Approximately 30 percent of the antibodies binding
to fixed Aa-HSP60 were outcompeted by liquid MAA-LDL competitor, implying that
MAA-LDL cross-reacts with antibodies against Aa-HSP60.
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Immunized mouse plasma antibodies recognized Aa bacteria in Dot and
Western blot analysis

To test whether mouse plasma has cross-reactivity with pathogenic microbes after Aa-HSP60
immunization, the antibody binding to Aggregatibacter actinomycetemcomitans (Aa), Porphyr-
omonas gingivalis (Pg), Tannerella forsythia (Tf), and Escherichia coli (E.coli) was examined by
Dot and Western blot analysis. Plasma samples taken before immunization were used as con-
trols. Dot blot showed strong plasma binding with all serotypes of Aa, E.coli, and recombinant
Aa-HSP (Fig 5A), whereas mild binding was observed from Pg, Tf, MAA-BSA and MAA-LDL
(Fig 5A). No binding was detected from BSA (Fig 5A). All Aa bacteria were strongly recognized
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competed with MAA-LDL or Aa-HSP60. (C) IgG binding to fixed Aa-HSP60 after competed with Aa-HSP60. (D) IgM
binding to fixed Aa-HSP60 after competed with Aa-HSP60. (E) IgG binding to fixed MAA-LDL after competed with
MAA-LDL. (F) IgM binding to fixed MAA-LDL after competed with MAA-LDL.

https://doi.org/10.1371/journal.pone.0230682.9004

on Western blot with a protein band at around 60-65 kDa, corresponding to the predicted size
of HSP60 (Fig 5B). A clear band was also visualized, respectively, with Pg, Tf, and E. coli. Cor-
rect-sized bands were also detected in both MAA-BSA- and Aa-HSP60-loaded lanes (Fig 5C).
BSA showed no visible bands. Plasma samples before immunization (week 0) did not recognize
any proteins in any of the tested bacterial lysates or protein controls (Fig 5B and 5C).

Plasma IgM binding to apoptotic cells can be competed by Aa-HSP60 in
immunized mice

To test if mouse plasma IgM or IgG bound to apoptotic cells after Aa-HSP60 immunization,
the binding to apoptotic Jurkat T cells was analyzed by flow cytometry (Fig 6). Mouse plasma
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Fig 5. Dot blot and Western blot assays. Seven different strains of Aa-bacteria (Aa-A, Aa-B, Aa-C, Aa-D, Aa-E, Aa-
F, Aa-X), Pg, Tfand E.coli bacteria are presented before (week 0) and after (week 15) immunization, together with
MAA-BSA, BSA, and Aa-HSP60. Dot blot results are presented in Fig 5A. Western blot results are presented in Figs 5B
and 5C. Samples were separated by SDS-PAGE and blotted by Western Blotting. Molecular weight marker in
kilodaltons (kDa) is shown on the left. Fragments of the same original image were spliced together to re-order lanes to
remove irrelevant lanes.

https://doi.org/10.1371/journal.pone.0230682.g005

without immunization was taken as control. Apoptotic and living cells were populated with
SYTOX™AADvanced™ Dead Cell Stain Kit (Fig 6A). No plasma IgM binding to living Jurkat
cells was observed whereas the binding to apoptotic cells was very strong (Fig 6B). The IgM
binding to apoptotic cells was also competed out by recombinant Aa-HSP60 at a concentration
of 100 pg/mL (Fig 6B). Mouse plasma IgM binding to apoptotic cells without immunization
showed weak competetion by Aa-HSP60 (S3 Fig). Flow cytometry analysis also revealed that
neither of the IgG antibodies from immunized or non-immunized mice bound to apoptotic
cells (54 Fig).
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https://doi.org/10.1371/journal.pone.0230682.9006

Discussion

The present study demonstrates the recognition of Aa-HSP60 and MAA-LDL by natural anti-
bodies from neonates and reveals the existence of cross-reactivity between Aa-HSP60 and
MAA-LDL. Mouse study confirms that humoral immune response against Aa-HSP60 also
generates antibodies cross-reacting with oxidized LDL molecule (MAA-LDL). Aa-HSP60
immunization provokes IgG and IgM antibody responses recognizing key periodontal patho-
gens without changing IgA antibody levels against Aa-HSP60 in C57BL/6] mice.

MAA adduction results from an ineffective clearance of reactive oxygen species. When
exposed to oxidative stress, cell walls may rupture and membrane lipids oxidize into malon-
dialdehyde (MDA) and break down spontaneously, forming acetaldehyde (AA). Both MDA
and AA are highly reactive and are able to modify e-amino groups of lysine residues of pro-
teins to produce stable malondialdehyde-acetaldehyde (MAA) protein adducts [3,18]. The
heat shock proteins are highly conserved proteins with important functions in protein homeo-
stasis and cell signaling. HSP60 is a “danger signal” to the immune system and is very immu-
nogenic [19]. MAA epitopes and HSP60 are both elevated under similar stressed conditions,
and antibodies to these structures are both associated with atherosclerosis [13,16].

We have previously cloned a natural mouse monoclonal IgM antibody against MAA epi-
tope, which cross-reacts with HSP60 of the Aa bacteria [17], indicating molecular mimicry
between MAA and HSP60. In this study, we show that immunization with Aa-HSP60 in mice
induced remarkable IgM and IgG responses to MAA-LDL. The data provide further evidence
showing the existence of molecular mimicry between the Aa-HSP60 and MAA epitope that
can be recognized via natural antibodies or antibodies from adaptive immunity. It is now clear
that both innate and adaptive immune responses are intimately related to atherogenesis. Both
IgG and IgM antibodies binding to fixed Aa-HSP in neonates and in immunized mice were
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effectively outcompeted by Aa-HSP, but partially competed by MAA-LDL, implying that the
induced antibodies are not ideally bound to MAA-LDL or are less specific to MAA-LDL. Oxi-
dation specific epitopes, including MAA-epitopes, have been shown to be a major target of
natural IgM antibodies in mice and humans. Studies in human and animal models have
shown that plasma levels of IgM antibodies to oxidized LDL are inversely correlated with ath-
erosclerosis [6]. IgM antibodies from the umbilical cord blood originate from the developing
fetus as a germline-encoded repertoire of natural IgM against the shared epitopes of MAA and
HSP60. The data imply that clearance of oxidized proteins plays an important physiological
role in protection from harmful changes to proteins. The mouse plasma IgM, but not IgG, in
immunized mice recognizes apoptotic Jurkat cells. The result is consistent with the opinion
that IgM antibodies to MAA-LDL may have a very important role in atheroprotection by
inhibiting the macrophages uptake of the oxidized LDL, and by enhancing apoptotic cell clear-
ance [3,4]. Little is known about the role of IgM antibodies to HSP60 in the development of
atherosclerosis. Our study is the first report demonstrating human natural IgM to Aa-HSP60
existing at birth and cross-reacting with MAA-LDL. It can be speculated that IgM antibodies
to Aa-HSP60 might be atheroprotective in newborns as they cross-react with MAA-LDL. The
exact reason why Aa-HSP60 is recognized by the natural repertoire of IgM is unknown. Fur-
ther investigations are needed to address the comprehensive physiological questions, e.g. why
natural IgM in the fetus recognizes the microbial pathological virulence factor before birth and
what the exact role of natural IgM to Aa-HSP60 plays in atherogenesis.

It is unknown what kinds of structures shared by the major protein component (ApoB-
100) of MAA-LDL and HSP60 lead to the similar immune responses. Sequence alignment
revealed only one region of 21 amino acids (amino acid 118-137 in Aa-HSP60 and amino acid
356-367 in ApoB100) at the N-terminus of both proteins sharing about 43% identities. Immu-
nization with ApoB-100 (amino acids 661-680) and HSP60 (amino acids 153-163) peptide
antigens together has been shown to exert synergetic atheroprotective effect [20]. A multiva-
lent vaccine combining immunogenic epitopes of HSP60, ApoB-100, and B2 glycoprotein I in
a chimeric protein has also been suggested as a potential candidate for modulation and reduc-
tion of atherosclerosis [21]. Nearly all naturally occurring antibody epitopes studied are com-
posed of amino acids that are sporadic in the primary sequence but brought together in space
by protein folding in the tertiary structure [22]. Approximately 50 variable amino acids build
up the potential binding area of an antibody [23], and only about one-third of them physically
contact a particular epitope. These contact residues define the structural paratope. Changes in
amino acids in both the epitope of an antigen and paratope of an antibody lead to a change in
spatial conformation of the binding region and affect the binding reaction. A particular epi-
tope can be recognized by two different paratopes with no sequence similarity [22]. Therefore,
it can be speculated that optimal 3D structure might be more preferred than primary amino
acid sequence for molecular mimicry between the two molecules. However, it is not clear
which amino acids were preferentially used by Aa-HSP60 to make the mimic to the MAA epi-
tope. Solving these questions in future by structure biology methods will reveal the impact of
Aa-HSP60 on the regulation of the immune system involved in the development of
atherosclerosis.

Periodontitis has been associated with atherosclerosis [24]. The most studied pathogenic
microbes are gram-negative bacteria, such as Aggregatibacter actinomycetemcomitans (Aa)
and Porphyromonas gingivalis (Pg). Previous studies suggest that vaccination against viru-
lence factors of the oral pathogens may confer disease resistance [4,25]. Similarly, OxLDL-
based vaccinations have been developed to modulate the progression of atherosclerosis [26].
The exact mechanism between atherosclerosis and periodontitis remains unknown but the
cross-reaction of antibodies provides a new insight into the pathogenesis of these diseases.
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We have previously cloned mouse monoclonal IgM antibodies to MDA- and MAA-LDL
[17,27]. They cross-react, respectively, with a hemagglutinin domain of gingipain protease
of Pg (Rgp44) and Aa-HSP60. We have also reported that immunization with Rgp44 reduces
atherosclerosis in LDL receptor-deficient (LDLR”") mice and that increased IgM levels to
MAA-LDL may contribute to atheroprotection [4]. Therefore, Aa-HSP60-induced antibody
response to MAA-LDL may cross-react with virulence factors, such as Rgp44, from Pg
bacteria.

We show in the current study that antibodies from mouse plasma recognized Aa, Pg, and
Tf periodontal pathogens after immunization. This suggests that the immunogenic property
or the ‘danger signal’ of Aa-HSP60 provoked strong IgG and IgM antibody responses, which
might be beneficial for elimination of invading pathogens possessing epitopes shared by
HSP60 and MAA-LDL. It is very interesting to notice the strong plasma antibody binding to
Escherichia coli (E. coli) bacteria. According to SmartBLAST search, chaperonin GroEL of E.
coli is found to be the closest relative to Aa-HSP60 among the matched sequences in the phylo-
gentic tree, which may explain the notable binding. Post-translational modifications (PTMs)
of proteins may contribute significantly to the mobility shift of HSP60 in our tested bacteria as
remarkable differences in expression and occupancy of PTMs sites under different growth
conditions have been found in bacteria [28].

In this study, we also expanded our interest to adaptive immune responses of mice to deter-
mine possible cross-reactions and similarities to innate immunity. We demonstrated that Aa-
HSP60 immunization significantly increased IgG and IgM antibody titer to MAA and HSP60,
both of which are strongly associated with the progression of atherosclerosis. However, IgA
antibody levels against Aa-HSP60 and MAA-LDL remained unchanged. It has been shown
that increased titers of different isotypes of anti-MAA antibodies (IgG, IgM, IgA) predict ath-
erosclerosis progression and cardiovascular events [16]. Also in acute myocardial infarction
(AMI), anti-MAA antibody titers are increased and correlate with the severity of the disease
[9]. In the isotype evaluation, there is a pathological association between IgG antibody titer
and AMI [9]. IgG and IgM antibody titers to MAA decrease after AMI, which is hypothesized
to be due to the release of MAA proteins and activation of complement system [9]. Similarly,
AMI leads to release of HSP60 protein, suppressing the humoral immune response to HSP60
via immune complex activation [29].

We used standard C57BL/6] laboratory mice that are not ideal for developing atherosclero-
sis compared to the apoE”" and the LDLR " mouse models [30], making it difficult to deter-
mine whether the Aa-HSP60 immunization is atheroprotective or pro-atherogenic. Our
objective in this study was not to determine the progression of atherosclerosis in mice but to
study the antibody responses after Aa-HSP60 immunization. It has been reported that admin-
istration route of HSP60 immunization could affect the progression of atherosclerosis [31].
The current understanding is that HSP60 oral administration protects from atherosclerosis
due to the HSP60-induced mucosal immune tolerance, whereas subcutaneous injection pro-
motes atherosclerosis progression [12,31-33]. Oral administrations of HSP60 increase MSDCs
(myeloid derived suppressor cells) that suppress the progression of atherosclerosis [31]. IgA is
the dominant immunoglobulin for mucosal defense and the second most abundant found in
the circulation. Great differences have been observed between the glycosylation of saliva and
plasma IgA. It is suggested that salivary IgA produced locally by plasma B cells in the glandular
stroma differs from the IgA in the circulation which is presumably produced by circulating
plasma cells [34]. It is unknown why plasma IgA antibodies to Aa-HSP60 and MAA-LDL
remained unchanged in this study after immunization. Oral administration might be a better
way to stimulate IgA production compared to intraperitoneal injection. A distinct regulatory
mechanism may be responsible for the phenomenon.
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In summary, this study provides the first evidence that natural IgM antibodies to Aa-
HSP60 exist in neonates even before birth. Aa-HSP60 shares molecular mimicry with oxidized
MAA epitopes, by which the spatial confirmation may be preferred to induce antibody cross-
reaction. The study gives new insights into understanding how the immune system responds
to virulence factors of periodontal pathogens. It may provide an opportunity for paving the
way towards an immune-modulatory strategy to restrain inflammatory diseases such as
atherosclerosis.
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