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ABSTRACT

Background: Acetaminophen (APAP) is a popular analgesic, but overdose causes acute liver injury 
and sometimes death. Decades of research have revealed that mitochondrial damage is central in the 
mechanisms of toxicity in rodents, but we know much less about the role of mitochondria in humans. 
Due to the challenge of procuring liver tissue from APAP overdose patients, non-invasive mechanistic 
biomarkers are necessary to translate the mechanisms of APAP hepatotoxicity from rodents to patients. 
It was recently proposed that the mitochondrial matrix enzyme glutamate dehydrogenase (GLDH) 
can be measured in circulation as a biomarker of mitochondrial damage. Early observations revealed 
that damaged mitochondria release their contents into the cytosol. It follows that those mitochondrial 
molecules become freely detectable in blood after cell death. On the other hand, intact mitochondria 
would not release their matrix contents and can be removed from serum or plasma by high-speed 
centrifugation. However, a recent study cast doubt on the interpretation of GLDH as a mitotoxicity 
biomarker by demonstrating that neither high-speed centrifugation nor repeated freezing and thawing 
to lyse mitochondria alter GLDH activity in serum from mice with drug-induced liver injury. 
Aim: Here, we briefly review the evidence for mitochondrial damage in APAP hepatotoxicity and 
demonstrate that removal of intact mitochondria by centrifugation does not alter measured GLDH 
activity simply because GLDH within the mitochondrial matrix is not accessible for measurement. In 
addition, we show that freezing and thawing is insufficient for complete lysis of mitochondria. 
Relevance for Patients: Our literature review and data support the interpretation that circulating 
GLDH is a biomarker of mitochondrial damage. Such mechanistic biomarkers are important to 
translate preclinical research to patients.

Acetaminophen (APAP) is a widely used drug, but overdose causes severe centrilobular 
hepatocyte necrosis. It is currently the leading cause of acute liver failure in the US [1]. 
Decades of research using rodent models of APAP hepatotoxicity have indicated that 
mitochondrial damage and dysfunction are central in the molecular mechanisms of injury 
[2-4]. Ultrastructural evidence of mitochondrial damage was observed by electron microscopy 
in the 1980s [5]. Soon after, biochemical assays demonstrated loss of mitochondrial 
respiration [6] and development of mitochondrial oxidative stress [7]. The 1990s brought 
data on mitochondrial protein alkylation [8], and imaging studies in the 2000s revealed loss 
of mitochondrial membrane potential [9], which linked to peroxynitrite formation inside 
of the mitochondria [10]. Later, it was demonstrated that rats, which are less susceptible 
to APAP hepatotoxicity than mice, have much lower mitochondrial protein alkylation than 
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mice even at higher doses [11]. Furthermore, an isomer of APAP, 
N-acetyl-m-aminophenol (AMAP), is less toxic in mice or mouse 
hepatocytes, correlating with the virtual absence of mitochondrial 
protein adducts after AMAP compared to APAP [12,13]. On the 
other hand, AMAP is more toxic to human hepatocytes than to 
mouse hepatocytes because the reactive metabolite of AMAP 
binds more to mitochondrial proteins in the human cells [13]. 
Those data demonstrate that mitochondrial protein binding is 
critical. More importantly, multiple interventions intended to 
either directly (cyclosporine A, Mito-Tempo, cyclophilin D KO) 
or indirectly (e.g., JNK inhibitors) reduce the mitochondrial 
dysfunction protect against APAP toxicity [9,14-20]. In addition, 
interventions designed to enhance the mitochondrial damage 
also increase injury [21]. Altogether, the data demonstrating that 
mitochondrial damage is necessary for APAP hepatotoxicity are 
clear and overwhelming. 

Before the 2010s, little effort was made to translate the basic 
mechanisms of APAP hepatotoxicity identified in animal models 
to humans, beyond the early glutathione depletion and protein 
binding. We attempted to do that beginning in 2010 using samples 
from APAP overdose patients [22]. However, we faced a major 
challenge: We only had access to blood samples from these 
patients. In most cases, a liver biopsy is not necessary to make 
a diagnosis of APAP hepatotoxicity, so it is rare in the USA. We 
developed an alternative strategy: We used mouse models of 
centrilobular hepatocyte necrosis with and without mitochondrial 
dysfunction (APAP and furosemide [FS] overdose, respectively) 
and compared mitochondrial macromolecules in circulation to 
identify some that were specific for mitochondrial damage. Our 
hypothesis was that during significant mitochondrial damage, 
molecules from the mitochondrial matrix are released into the 
cytosol and then, following necrotic cell death, into the circulation. 
When we analyzed blood samples from mice, we found that 
mitochondrial DNA (mtDNA) and glutamate dehydrogenase 
(GLDH) were significantly elevated in plasma or serum from 
APAP-treated animals but not from FS-treated mice [22]. These 
data are consistent with the idea that mtDNA and GLDH can serve 
as mechanistic biomarkers for mitochondrial damage in patients 
with APAP hepatotoxicity. We then measured those biomarkers in 
plasma or serum from APAP overdose patients with liver injury 
and found that they were dramatically elevated in those patients 
compared to healthy volunteers [22]. On that basis, we concluded 
that mitochondrial damage does indeed occur in humans, similar 
to our observations in mice. We then confirmed these findings 
in a larger cohort of patients and found that higher serum levels 
of these biomarkers are modestly predictive of poor outcome, 
indicating that mitochondria could be a driver of the injury in 
humans [23]. In addition, other groups detected GLDH and 
mtDNA in serum from APAP overdose patients as well [24,25]. 
Finally, we found additional evidence of mitochondrial damage 
in cultured primary human hepatocytes [26] and in metabolically 
competent human HepaRG cells [27]. Importantly, mitochondrial 
dysfunction followed reactive metabolite formation and protein 
binding on mitochondria and preceded cell death in both primary 
human hepatocytes and the HepaRG cells [26,27].

In a recent article, Church et al. [28] concluded that GLDH is 
not a biomarker of mitochondrial damage after all. They drew that 
conclusion primarily from three major observations. First, GLDH 
was significantly elevated in serum from FS-treated mice in their 
hands. Second, GLDH activities correlated with ALT levels in 
serum from both APAP- and FS-treated mice. Third, and most 
importantly, neither centrifugation to pellet intact mitochondria nor 
repeated freezing and thawing to disrupt mitochondrial membranes 
affected GLDH activity in their samples [28]. However, although 
the authors did detect an increase in circulating GLDH activity 
in FS-treated mice in contrast to our earlier results, that increase 
was still much less than the elevation in their APAP-treated mice, 
with a GLDH/ALT ratio five-fold lower in the FS mice [28]. 
Overall, that is consistent with our fundamental observation that 
GLDH is lower in FS hepatotoxicity than in APAP hepatotoxicity. 
Furthermore, it is not surprising that GLDH correlates with ALT, 
since release of both ALT and GLDH would require cell necrosis 
and loss of plasma membrane integrity regardless of whether or 
not the mitochondria are still intact. Finally, the idea that high-
speed centrifugation should reduce the measured GLDH activity 
if mitochondria are intact assumes that the GLDH assay can 
measure GLDH trapped within the mitochondrial matrix. In fact, 
the inner mitochondrial membrane tightly regulates movement 
of metabolic substrates in and out of the matrix, and one such 
substrate is α-ketoglutarate (αKG). Importantly, αKG is in most 
GLDH assay reagents (including the reagents used by Church 
et al.) and is required for measurement of GLDH activity. Thus, 
it is unlikely that the GLDH assay can detect matrix-localized 
GLDH in the first place. In addition, while repeated freezing and 
thawing is widely used to disrupt the plasma membrane of cells, it 
is less effective to disrupt sub-cellular organelles and the authors 
did not report that they verified breakage of the mitochondrial 
membranes in their experiments. 

To determine if common GLDH assays can detect GLDH within 
the mitochondrial matrix and to test the effect of freezing and 
thawing, we performed a simple experiment with freshly isolated 
mitochondria that we obtained from the liver of an untreated 
wild-type mouse by differential centrifugation, as we previously 
described [29]. We re-suspended the isolated mitochondria in 1× 
phosphate-buffer saline (PBS) with 4 g/dL bovine serum albumin 
(BSA) to mimic serum, divided the suspension into six equal 
aliquots, and then mixed the aliquots 1:1 with PBS-BSA with or 
without 0.25% Triton X-100 to disrupt mitochondrial membranes 
(3 aliquots each). After incubating the samples on ice for 30 min, 
we centrifuged them at 20,000×g for 10 min at 4°C to pellet any 
remaining intact mitochondria and verified mitochondrial lysis in 
the detergent-treated samples by visual inspection. We then re-
suspended the pellets again and measured GLDH in the suspensions 
using the same method that we use to measure GLDH in serum 
and plasma samples [22,23]. Importantly, incubation with detergent 
increased mean GLDH activity 332±30% (Figure 1), demonstrating 
that most GLDH within intact mitochondria cannot be measured 
using a standard GLDH assay. We then subjected these same 
samples to three freeze-thaw cycles and re-measured GLDH. While 
freezing and thawing further increased activity in the detergent-
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treated samples, the difference in values before and after freeze-
thaw in the absence of detergent was not statistically significant 
(Figure 1) (P = 0.159; one-way analysis of variance (ANOVA) with 
post-hoc Holm-Sidak test for multiple comparisons). Together, 
these data indicate that the methods used by Church et al. [28] may 
not be ideal to test their hypothesis. In addition, our results indicate 
that specimen processing to remove intact mitochondria may not be 
necessary before freezing even when using GLDH as a biomarker 
of mitotoxicity, as we suggested previously [30]. 

One caveat in our experimental design is that we used 
mitochondria isolated from the liver of a healthy mouse. It is 
possible that mitochondria from damaged tissue would yield 
somewhat different results. For example, stressed mitochondria 
may be more susceptible to lysis from freezing and thawing. In fact, 
the latter would be consistent with our data showing that freezing 
and thawing had a greater effect in the presence of detergent. On 
the other hand, the method of isolating mitochondria that we used 
is undoubtedly traumatic and may already stress the organelles 
to an extent that is similar to hepatotoxicity. Many additional 
experiments would be needed to test those possibilities in detail. 

Although we disagree with their conclusion that GLDH is 
not a mitochondrial damage biomarker based on our data, the 

study by Church et al. [28] is nevertheless very interesting. Their 
observations that some mitochondria develop ultrastructural 
changes consistent with damage in FS hepatotoxicity and that 
mitophagy may be even more extensive in the FS model than 
in the APAP model indicate that mitophagy may be another 
reason for the lower GLDH release after FS treatment. Far from 
invalidating our earlier observations, we interpret these results as 
providing additional evidence that GLDH is in fact a biomarker 
of damaged mitochondria, especially when taken together with 
the results we have presented here. Essentially, their data indicate 
that having more damaged mitochondria within hepatocytes leads 
to greater serum GLDH, while having less (whether that is due 
to less initial mitochondrial damage or more efficient removal 
of damaged mitochondria) results in lower GLDH values. These 
important data demonstrate that we need to consider both the initial 
mitochondrial damage and later mitochondrial turnover when 
developing and characterizing mechanistic mitochondrial damage 
biomarkers. They also indicate that FS-induced hepatotoxicity in 
mice could be a useful model to study the role of mitophagy in 
drug-induced liver injury. 

Together, our prior work and the results reported by Church 
et  al. [28] indicate that the ratio of GLDH to ALT can provide 
insight into the role of mitochondrial damage in liver injury. 
We believe this can be useful in translational research when 
investigating mechanisms of disease, and in early drug 
development to test if mitochondria are potential therapeutic 
targets. In clinical practice and for regulatory purposes, GLDH 
may also be useful to distinguish liver from muscle as a source of 
elevated ALT in patients with muscle disease [31], though it is not 
yet clear how the combination of ALT and GLDH compares with 
the combination of ALT and creatine kinase that is already widely 
used in clinical laboratories for that purpose. Overall, we conclude 
that serum GLDH remains a useful biomarker of mitochondrial 
damage for translational studies of acute liver injury. 
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