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Abstract

Background: Systems biology refers to multidisciplinary approaches designed to uncover
emergent properties of biological systems. Stem cells are an attractive target for this analysis, due
to their broad therapeutic potential. A central theme of systems biology is the use of computational
modeling to reconstruct complex systems from a wealth of reductionist, molecular data (e.g., gene/
protein expression, signal transduction activity, metabolic activity, etc.). A number of deterministic,
probabilistic, and statistical learning models are used to understand sophisticated cellular behaviors
such as protein expression during cellular differentiation and the activity of signaling networks.
However, many of these models are bimodal i.e., they only consider row-column relationships. In
contrast, multiway modeling techniques (also known as tensor models) can analyze multimodal
data, which capture much more information about complex behaviors such as cell differentiation.
In particular, tensors can be very powerful tools for modeling the dynamic activity of biological
networks over time. Here, we review the application of systems biology to stem cells and illustrate
application of tensor analysis to model collagen-induced osteogenic differentiation of human
mesenchymal stem cells.

Results: We applied Tucker |, Tucker3, and Parallel Factor Analysis (PARAFAC) models to identify
protein/gene expression patterns during extracellular matrix-induced osteogenic differentiation of
human mesenchymal stem cells. In one case, we organized our data into a tensor of type protein/
gene locus link x gene ontology category X osteogenic stimulant, and found that our cells expressed
two distinct, stimulus-dependent sets of functionally related genes as they underwent osteogenic
differentiation. In a second case, we organized DNA microarray data in a three-way tensor of gene
IDs x osteogenic stimulus X replicates, and found that application of tensile strain to a collagen |
substrate accelerated the osteogenic differentiation induced by a static collagen | substrate.

Conclusion: Our results suggest gene- and protein-level models whereby stem cells undergo
transdifferentiation to osteoblasts, and lay the foundation for mechanistic, hypothesis-driven
studies. Our analysis methods are applicable to a wide range of stem cell differentiation models.
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Background

Design optimization of tissue structure and function: a
systems biology approach

The structure/function relationship dogma is central to
understanding how biological systems function. The idea
is deceptively simple: understanding the structural organ-
ization of biological systems, from massive ecological sys-
tems to the shape of a single protein, reveals the function
of the system. The concept is powerful enough to have
inspired a 200+ year-long effort to describe the compo-
nents of our biological universe in ever finer detail, begin-
ning with the Linnean taxonomic system of cataloging
organisms based on their structural similarities, and cul-
minating with microscale descriptions such as the com-
plete genomes of several organisms, including humans
[1]. The reductionist approach to biological research has
thus reigned supreme for generations, and as a result we
now understand how the linear arrangement of nucle-
otides encodes the linear arrangement of amino acids,
how proteins interact to form functional groups such as
signal transduction and metabolic pathways, etc.

But at each level of biological organization, we reach a
wall- having reduced the complex biological universe to a
myriad of minute parts, we encounter new forms of com-
plexity: data overload and the "curse of dimensionality
[2]." Simply put, we've taken our biological machines
apart but can't put them back together again- our ability
to accumulate reductionist data has outstripped our abil-
ity to understand it. Thus, we encounter a gap in the struc-
ture/function relationship: having accumulated an
extraordinary amount of detailed information about bio-
logical structures, we can't assemble it in a way that
explains the correspondingly complex biological func-
tions these structures perform.

This gap is especially evident at the level of tissues, where
most diseases and injuries are manifest. Heart disease and
cancer remain the top two causes of death in the United
States. One fundamental characteristic of both diseases is
tissue failure: namely, errors in the structural organization
and function of cells in the affected tissues. Likewise, it is
estimated that one in six US residents requires medical
treatment for an injury each year [3], yet the process of
wound healing is so complex it is difficult to accurately
predict how quickly most serious wounds will heal [4,5].
Existing models of wound healing rely on clinically rele-
vant, but somewhat superficial, measures of tissue state
such as reduction in wound area, linear advancement of
wound edge, pain, and ease of use [4-6]. In fact, despite a
multitude of genetic screens, biochemical assays, and
imaging techniques, the "gold standard" for diagnosis and
evaluation remains the expert opinion of highly trained
pathologists who scan samples of the tissues in histopa-
thology slides. In other words, the human eye is currently
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the most accurate tool we have available for identifying
telltale alterations in the structure and function of dis-
eased and damaged tissues. And it is clear that human
judgment is not fail-proof: thousands of diseases are mis-
diagnosed every year, costing hundreds of millions of dol-
lars in wasted or ineffective medical treatment.

To improve diagnosis and treatment of diseases and
wounds, we need a better understanding of how the tre-
mendous numbers of cellular and subcellular parts are
organized into functional tissues. One strategy for achiev-
ing this is to employ robust methods for describing com-
plex systems, adapted from math and engineering
disciplines far outside traditional biomedical fields [7].
Viewed from this perspective, tissue organization and
function can be treated as a design optimization problem:
what is the optimal arrangement of cellular constituents
that achieves the best tissue performance?

When applied to problems of biological complexity, this
design optimization approach is sometimes called sys-
tems biology. If one begins with the assertion that
healthy, native tissues represent a design optimum, the
task of systems biology is to identify the "control knobs"
that govern tissue structure and function, and the specific
"settings" of these knobs that yield an optimally func-
tional (i.e., healthy) tissue. A second important assertion
is that tissues are "self-correcting," in that when damaged,
they are capable of generating an appropriate response
that restores them to their optimal condition (i.e., wound
healing): how are the control knobs "turned" to restore
optimal function in a wounded tissue? All systems biol-
ogy approaches therefore focus on defining three charac-
teristics common to self-correcting systems: robustness
(ability to maintain phenotypic stability in response to
perturbation), modularity (clustering of components into
functional "teams"), and, most importantly, emergent
properties (behaviors unique to the entire system, and not
found in any of its constituents)[8]. Systems biology
approaches also share a concept known as iterative refine-
ment, meaning that they cycle between perturbing a bio-
logical system, analyzing the data thus generated, and
predicting how the system will respond to a new perturba-
tion; these cycles learn relationships.

Applications of tissue structure and function principles:
tissue engineering

Since the late 1980s engineering design principles have
been applied to living systems to create replacement tis-
sues de novo [9]. In its most basic sense, an engineered tis-
sue construct (ETC) is a three-dimensional assembly of
one or more cell types suspended in an extracellular scaf-
fold material and fed by soluble molecules, including growth
factors, hormones, and nutrients [10]. Once assembled,
the ETCs are intended to be implanted as replacements for
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damaged or diseased tissues. The results thus far have
been promising [11], and some enjoy widespread use in
the clinic [12].

Stem cells are very popular sources for the cellular compo-
nent in these ETCs because they have the ability to prolif-
erate (thereby populating the ETC with a high density of
cells) and undergo differentiation once they reach their
desired location and cell density. While embryonic stem
cells retain the ability to differentiate into all tissues found
in the adult, adult stem cells isolated from a number of
different organs retain a more limited differentiation
capacity. In either case, the promise is the same: stem cells
offer the potential to define and manipulate fundamental
principles of cell and tissue behavior, which in turn will
uncover a new set of therapeutic targets for correcting
errors in cell and tissue function [13].

Due to our very limited understanding of the principles
governing tissue structure and function, most current tis-
sue engineering typically follows a trial-and-error
approach to design [14]. While persistence can pay off in
the long run, the inefficiency of this approach remains
one of the major barriers to widespread clinical applica-
tion of ETCs [15]. Some stem cells used in ETCs also have
the capacity to form tumors in vivo[16]. Until it is known
how these cells decide which phenotype to adopt, this too
presents a significant clinical challenge.

Human stem cells: attractive targets for systems biology
analysis

Systems biology approaches have been employed to help
uncover the mechanisms governing differentiation and
function of tissue stem cells [17-25] Comparatively little
is known about the molecular control of human mesen-
chymal stem cells (hMSC). Originally described by
Friedenstein [26], hMSC are a popular choice for muscu-
loskeletal tissue engineering. hMSC are multipotent, self-
renewing cells that can be isolated from the adult bone
marrow [27]. They are capable of differentiating into at
least three (osteogenic, chondrogenic, adipogenic) and
perhaps as many as eight distinct lineages [28].

Due to its complex nature, unraveling stem cell differenti-
ation requires a multi-stage approach. Reductionist stud-
ies have thus far identified a small number of potential
regulators of this process [29-31], but fail to capture the
global effects of these candidates on stem cell behavior.
High-throughput, macro-scale studies (genomics, pro-
teomics, etc.) are much better equipped to capture global
changes in a complex system, and are the preferred choice
for sampling dynamic changes in stem cell "state." But by
themselves, these methods are typically not equipped to
develop rigorous, testable hypotheses concerning the
mechanisms governing this behavior [32].
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The second stage of a systems biology approach to cell dif-
ferentiation is to model the observed protein activity/gene
expression changes as a function of the input stimuli. This
is where so-called "traditional" biologists collaborate with
experts in mathematics and computer science. Several
modeling approaches have been applied. For example,
Janes and Lauffenburger [33] illustrate how deterministic,
probabilistic, and statistical learning models can be used
to extract information about proteomic networks. The
random nature of proteomic, genomic, and signaling data
suggests that machine learning methods can also be used
to model complex behavior such as protein-protein inter-
actions [34,35]. For a compherensive review on this topic,
we refer the reader to [20,36].

Application of tensor analysis to stem cell systems biology:
multiway models

Faced with analyzing a wealth of data points as inputs,
systems biologists turn to dimension reduction tech-
niques using linear algebra. In linear algebra, a matrix is a
two-way model used to describe linear relationships
between the variables in two dimensions (e.g., rows and
columns in a table). For example, in a gene expression
experiment, the concentration of a chemical stimulant can
serve as the row variables, and the resulting gene expres-
sion values can be the column variables. An entry in such
a table would describe the gene expression level associ-
ated with a particular chemical stimulant concentration.
However, it is now quite straightforward to generate data
with three or more variables (also known as modes) (e.g.,
concentration of stimulant, protein phosphorylation
level, gene expression level, duration of stimulant expo-
sure, etc.) that cannot be represented by matrices.

Standard two-way dimension reduction techniques such
as Singular Value Decomposition (SVD) [37,38] (see Fig-
ure 1), which organize data in a matrix form that incorpo-
rates time (e.g., concentration of stimulant x duration,
protein phosphorylation x duration, or gene expression x
duration), identify the linear relationships between
modes in a pairwise fashion but cannot analyze three or
more modes simultaneously. Uncovering meaningful pat-
terns in a process as complex as cell differentiation, which
obviously has far more than two modes, requires a more
complex modeling approach.

This requirement can be satisfied by generalizing matrices
to higher order models (e.g., moving from tables to n-
dimensional cubes) to discover the multilinear relation-
ships among data in datasets that have more than two dif-
ferent modes (i.e., multimodal data). Tensors are
multidimensional arrays (also called n-dimensional
cubes) ideally suited for multiway analysis of multimodal
data. Figure 2 (top) illustrates the rows (X axis), columns
(Y axis) and tubes (Z axis) of a sample of 3-way data array
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Columns of U are the
Left Singular Vectors
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Rows of VTare the
Diagonal Matrix for Right Singular Vectors

Duration (Gene expression levels) mode amplitudes ~ (Duration)
Gene
expression _
A = u S Vi
Anxp = U nxn X S nxp X VTpxp
Figure |

Matrix A is decomposed using singular value decomposition as A = USVT, where U and V are orthogonal
matrices containing the left and right singular vectors, respectively and S is a diagonal matrix with the singular

values on the diagonal.

[39] while Figure 2 (bottom) illustrates the "slices"
(known as elements) of the cube that correspond to the
different modes in the data. In this way, one can generate
several different matrices in the 3-way data cube. Though
it is difficult to visualize, this approach can also be used to
represent four, five, or more different modes simultane-
ously.

Having generated an "n-dimensional cube" data structure
to represent the data, we now turn to the problem of how
to fit a multiway model to the data and analyze the mul-
tilinear relationships between the modes. Two common
models in multiway data analysis are Tucker3 [40-42] and
PARAFAC [43].

Both methods model the original data by assembling a
substantially smaller dataset representing the larger origi-

Fibers: ]

First mode i .

FOWS
S—— Fr o o o > o | %
Slices:
Horzontal
slices Vertical Frontal
slices slices
Figure 2

(Top) FIBERS: (A) Columns, (B) Rows, and (C) Tubes of a 3rd order tensor. (Bottom) SLICES: (A) Horizontal, (B)
Vertical, and (C) Frontal slices of a 3-way tensor (source of the figure is [45]).
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nal data. While PARAFAC has not been applied to tackle
the question of cell phenotype changes over time under
different stimuli, Omberg et al. did use a Tucker3 (N-
mode SVD) approach to model the time course of global
gene expression in response to cell cycle inhibitors in yeast
[44].

Overview of multiway modeling and analysis techniques

A higher-order tensor is a multiway dataset represented as
T e Rl xJ %N where M > 2. (Note that there are several
notations used for representing multiway data sets such

that both Tand T € RNVN2Nw refer to the same multi-
way array and will be used interchangeably.) For example
consider a 3-way tensor i.e., a data cube that has locus
links as its rows, gene ontology categories as its columns,
and experimental conditions as its tubes. Below we will
discuss three main techniques for analyzing such a tensor.

Tuckerl

Matricizing (unfolding/flattening) rearranges three-way
data as a matrix. Thus, it enables us to apply two-way anal-
ysis techniques, e.g., SVD, on a three-way dataset. As an
example we illustrate matricization of a three-way tensor
in the first mode (refer to Figure 3.). In the Tucker1 model
the tensor is matricized in the mode of interest and SVD is
performed on the corresponding matrix [45].

Tucker3

One of the most common multiway analysis techniques is
the Tucker3 model. As depicted in Figure 4, a 3-way tensor
T e RI*JxKis modeled as follows using a Tucker3 model :

R Q P
Ty = V S‘ S‘ Gi,AinBi.Cy, + Ey,

I ___'—'—_-:__-___-__-_'_""'--
[ = =5 TN
!
i i X o Xy Xaima |- Xyt
(e 7k
J /f:f e M
i o
A X | Xey | Xawra || Xamso
J JK
Figure 3

Unfolding a third order tensor in the first (top) and
second (bottom) mode[50].
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0

J
K R
P
I l = » ‘ﬂ x| ¢ + E
| A G ix 8
J 0
Figure 4

A Tucker3 Decomposition, where tensor X is
decomposed into component matrices A, B, C and
core tensor G. Tensor E contains the error term for each
entry in X [33].

where P, Q and R indicate the number of components
extracted from first, second and third mode (P <1, Q <J
and R £ K), respectively. A € RIxP, B € Ri*Qand C € RK*
Rare the component matrices. G € RP * QxR s the core ten-
sor and E € Rl *J x Krepresents the error term. Different
constraints such as nonnegativity, unimodality or orthog-
onality can be enforced on the component matrices. A
Tucker3 model with orthogonality constraints on compo-
nent matrices is a generalization of SVD from matrices to
high-order datasets and is also called Higher-Order Singu-
lar Value Decomposition (HOSVD) [46] or multilinear
SVD.

Tucker3 is the most flexible model among multiway anal-
ysis techniques. Although it suffers from core rotations,
which result in non-unique solutions, a Tucker3 model
may be preferred over other multiway analysis methods
such as PARAFAC because of its flexibility in extracting a
different number of components in each mode.

PARAFAC/ICANDECOMP

The simplest three-way model in terms of interpretation is
Parallel Factor Analysis (PARAFAC) by Harshman [43] or
Canonical Decomposition (CANDECOMP) by Carroll &
Chang [47]. These two methods were originally proposed
independently, but they employ the same model and are
therefore considered completely equivalent.

An R-component PARAFAC model on a third-order tensor
T e RI*J xKextracts three component matrices with R fac-
tors:

R
Ty, = ZAirBjerr + Ej,
r=1
where R is the number of components extracted in each
mode. A € RI*R B € RN xR, and C € RK*Rare the compo-
nent matrices, and E € Rl *J xKig the error term. An illus-
tration of PARAFAC decomposition (Figure 5) gives more
insight about how the model works. PARAFAC is a
restricted Tucker3 model, where the core tensor is super-
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Figure 5
PARAFAC. In this example a three-way tensor T is mod-
eled as a sum of three rank-one tensors.

diagonal, meaning that only the entries G;; in core tensor

G can be nonzero foralli=1..R.

iii

The multiway modeling and analysis techniques pre-
sented above were applied to two systems biology prob-
lems: (i) discovering functional clusters of gene/protein
expression during stem cell differentiation, and (ii)
dynamics of hMSC osteogenic differentiation over time.

Methods

In this section we will apply multiway modelling and
analysis techniques into two problems. First we will
extend our bilinear work in [48] to 3-way modelling and
analysis to investigate the impact of different stimulants
on hMSC osteogenic differentiation. The main result here
is the confirmation of multiple paths for reaching osteob-
last. Second, we focus on the time domain and model
how osteogenesis evolves as a function of time under ten-
sile strain. Our main finding is that tensile strain acceler-
ates the osteogenic differentiation.

Case study |

Impact of different stimulants on hMSC osteogenic differentiation
In Bennett et al. [48], we examined the protein expression
profiles of four populations of hMSC stimulated to
undergo osteogenic differentiation via either contact with
pro-osteogenic extracellular matrix (ECM) proteins (colla-
gen [, vitronectin, or laminin-5) or addition of osteogenic
media supplements (OS media). Unstimulated hMSC and
fully differentiated human osteoblasts (hOST) were
included as the start and desired end points of this differ-
entiation, respectively. Our goal was to identify key
changes in protein (and hence, gene) expression as hMSC
move from an undifferentiated state (represented by
unstimulated hMSC) to an osteogenic phenotype (repre-
sented by hOST). To capture a large amount of protein
expression data from each population, we used two-
dimensional liquid chromatography tandem mass spec-
troscopy (2D LC-MS/MS) to detect the 1000 most abun-
dantly expressed proteins in each population of cells. The
experiment was repeated three times, yielding three sets of
data for each of the cell populations. Our hypothesis was
that as hMSC differentiate into the hOST phenotype, their
protein/gene expression profile grows increasingly similar
to that of hOST. To our surprise, we discovered that, while
this appeared to be true, OS and ECM stimulants triggered
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a rise in different sets of genes found in hOST. These
results suggest to us that neither ECM or OS yield a com-
plete osteogenic phenotype when used alone, and that
they enhance different types of osteogenic genes. In other
words, hMSC exhibited at least two different patterns of
protein/gene expression change during osteogenic differ-
entiation. Our results in [48] were mainly obtained by
using bilinear methods (although we briefly introduced
multiway analysis using Tucker3 method on locus link
mode only). Next we show in detail how to fit several
multiway models to this multiarray data and analyze its
structure.

Constructing a third order proteomics tensor

In [48] we identified 361 proteins (not expressed by the
undifferentiated cells) that varied amongst the hMSC and
hOST populations, and annotated the gene for each with
its locus link number. We also mapped each gene in a
gene ontology tree. The data are arranged as a tensor of
type protein/gene locus link (LL) x category (Gene Ontol-
ogy-GO) x stimulant, with dimensions (361 x 69 x 5),
which we call the Proteomics Tensor (T). The stimulants
were numbered as: collagen-I = sample 1, OS = sample 2,
vitronectin = sample 3, hOST (positive control) = sample
4, hOST = sample 4, laminin-5 = sample 5.

We applied all three techniques reviewed above to model
and analyze the T'. Tuckerl model had (69, 26, 4) rank
reductions for each mode, respectively to explain almost
90% variance of the data. These numbers were used to
choose the core component numbers for our Tucker3
model. We also deployed a 12-component PARAFAC
model based on the core consistency analysis [50].

Locus link mode analysis

Tucker| Model

We unfold the tensor T in the first mode, T(;)and apply
SVD onT(;) to capture the structure in the locus link mode
(see Figure 6). Our goal is to use significant left singular
vectors to cluster locus links. We select the left singular
vectors explaining 90% of total variance, which results in
top 69 vectors (in Table 1 we show the first 12 singular
values).

Calegories Catagorias x Samples

Sammples //E — o —_
|| Unfolding

Locus Links Data
(1

Locus Links
Figure 6
Unfolding tensor T in the first mode for Tuckerl
analysis. Tensor is reduced to a matrix which permits appli-
cation of 2-way dimension reduction techniques such as SVD.
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Table I: The top 12 singular values of the matrix corresponding to unfolding of tensor T in Locus Link mode indicates that
corresponding 12 singular vectors jointly capture only 50% of the original data.

Tucker|: Top 12 Singular (cumulative) Values for Locus Link Mode Matricizing

0.115 0.178 0.233 0.277 0.318 0.356

0.391

0.422 0.449 0.473 0.496 0.515

Total 243 vectors are needed to obtain 100% explained variance.

Tucker3 Model

We choose a model with a core cube that has dimensions
69 x 26 x 4, which explains 82% of the total variance in
the data. Note that the choice of the component number
combination 69 x 26 x 4 is made based on the rank reduc-
tions in the unfolded tensor T and

that there may be other component number combina-
tions that explain the same percent of total variance in the
first mode. The core analysis which shows the contribu-
tion of each component is given in Table 2.

The projection of locus link numbers onto the first two
column vectors of the locus link component matrix is
shown in Figure 7. The visual inspection of this scatter
plot suggests that the locus link numbers can be clustered
into two groups: (i) the outliers, and (ii) the rest. These
results are in accord with our previous results reported in
Bennett et al. 2007 [48].

PARAFAC Model

PARAFAC is a more restricted multiway analysis tech-
nique relative to Tucker3, because it requires that (i) the
same number of components is extracted from each
mode, (ii) a superdiagonal core is constructed. In order to
determine the number of components in PARAFAC, we
make use of a core consistency diagnostic [50]. As shown
in Table 3 as we increase the number of components from
2 to 12 (for component number 1, core consistency is by
default 100%), we observe that the explained variance

also increases; however, the core consistency values do
not exhibit a monotonic decrease. This implies that PARA-
FAC fails to construct a superdiagonal matrix to fit the
data in a consistent manner with the component num-
bers.

We used the component matrix corresponding to the
locus link mode for a 12-factor PARAFAC model to ana-
lyze the locus link numbers. A scatter plot of locus link
numbers projected on the first two locus link component
vectors in shown in Figure 8.

Visual inspection shows that similar to Tucker3 analysis,
there is a concentration of a large number of locus link
numbers and then there are a small number of outliers.

Clustering on locus link mode

We used a k-means clustering algorithm with 100
repeated runs to divide the locus links into two clusters
(i.e., k = 2) to identify the outliers from the rest. In order
to resolve disagreements between different runs, we com-
puted a majority function by calculating the number of
occurrences of a particular clustering and then picking the
maximum number of occurrences.

Tuckerl

First we input the 69 vectors to a k-means algorithm and
obtained one cluster with 8 locus link numbers represent-
ing the candidate outliers while the rest of the locus links
numbers were assigned to the larger cluster. However, k-

Table 2: Core analysis of the Tucker3 model applied to tensor T shows the contribution of each element in the tensor T to the fitting

of Tucker3 model to the data.

ANALYSIS OF 69 x 26 x 4 CORE ARRAY

Component Value Squared Fraction of Variance Summed Fraction of Var.
[ 21.19 449.10 13.20% 13.20%
[2,2,1] 14.77 218.26 6.41% 19.61%
[3,3,1] 11.67 136.30 4.01% 23.62%
[4,4, 1] 10.29 105.94 3.11% 26.73%
[7,5 1] -9.59 91.94 2.70% 29.43%
[6, 1,2] -7.71 59.44 1.75% 31.18%
[5,6, 1] -743 55.14 1.62% 32.80%
[12,9, 1] -6.99 48.89 1.44% 34.23%
[3,1,3] 6.03 36.37 1.07% 35.30%
[8,7, 1] 5.94 3531 1.04% 36.34%
[5,3, 1] -5.63 3171 0.93% 37.27%
[6,6, 1] -5.42 29.39 0.86% 38.14%
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Figure 7

Projection of the data to lower dimension. The first
two vectors of the locus link component matrix of Tucker3
analysis is chosen as the dimensions.

means algorithm had difficulty to converge on the same
cluster assignments for 69 vectors. Thus, we had to cluster
in a lower dimension to obtain stability by trading off
explained variance: (i) using only the top 12 singular vec-
tors we obtained a cluster with 9 locus links in it that sub-
sumed the first one computed over 69 vectors but clusters
were not stable; (ii) inputting only the top 2 singular vec-
tors we obtained very stable clusters that differed con-
tained 17 locus link and subsumed all the elements from
the 69 and 12 vector clustering. The summary of k-means
algorithms for all three techniques is shown by a Venn
diagram in Figure 9.

Tucker3

Again, we first input the entire component matrix corre-
sponding to the locus link mode to a k-means algorithm
and observed that k-means algorithm on the locus link
component matrix with dimensions (361 x 69) had con-
siderable difficulty producing a stable clustering. The
maximum occurrence value was close to 40, which is less
than 10% of the runs. Thus we chose the top 2 vectors as
the input of the k-means algorithm to produce a stable k-

http://www.biomedcentral.com/1752-0509/2/63

means output over 100 runs which constructed a smaller
cluster with 30 locus links.

PARAFAC

We input the entire component matrix corresponding to
the locus link mode for a 12-factor PARAFAC model to
cluster locus links. We observed that a k-means algorithm
produced more stable clustering results on the locus link
component matrix with dimensions (361 x 12) obtained
from PARAFAC model. However for consistency we also
computed the clustering by using only the top 2 vectors
and obtained one small cluster with 63 locus links and
one large cluster with the remaining locus links. Compar-
ison of the clusters detected using Tucker1, Tucker3 and
PARAFAC methods are given in Figure 9. Notice that while
the clusters are not identical across all three methods,
there is considerable agreement on the outliers.

Category mode analysis

The original proteomics data contained 71 gene ontology
categories. We elected to drop the categories correspond-
ing to Transmembrane Receptor Activity and Transmembrane
Receptor Protein Tyrosine Kinase Signaling Protein because
they contained very few genes. We have analyzed the data
by using all three techniques considered in this work. Our
analysis in Category mode also aims at identifying clusters
of interest that may include categories that are nontrivially
related.

We calculated a scatter plot of category names by project-
ing them on the first column vector of the category com-
ponent matrix. The plotting is decluttered to provide a
visualization of the clusters as shown in Figure 10. Similar
to Tucker3 analysis, we plotted the category names by pro-
jecting them on the first column of the component matrix
to obtain an intuition about the clustering by visualiza-
tion as shown in Figure 11.

Clustering of gene categories

Tuckerl

We unfolded the proteomics tensor in the Category mode
and computed SVD on the corresponding matrix. 24 sin-
gular vectors out of 69 total were sufficient to explain the
data with 90% accuracy. These vectors were input to a k-
means algorithm for clustering the categories into 4 clus-
ters (i.e., k = 4). We chose four clusters because our previ-

Table 3: Core Consistency analysis of PARAFAC model for tensor T.

Comp. #s | 2 3 4 5 6 7 8 9 10 I 12
Core Con. 100 99.9 99.1 98.1 713 82.1 46.2 70.5 76 75 80 82
Expl. Var. I 17 225 25 27 31 345 38.1 41.1 438 46.1 50.5

The core consistency is given as the percentage of variation in a Tucker3 core array consistent with the theoretical superidentity array. The max
value is 100%. A sharp drop in the core consistency value would indicate the number of components to be taken for the modeling [51]. Notice that

PARAFAC modeling does not exhibit such a behavior on this data set.

Page 8 of 17

(page number not for citation purposes)



BMC Systems Biology 2008, 2:63

Locus Link Mumbers

10 . . : : :
|
|
. 18 : 817
i G1E | i
|
|
BE ee15: .
|
|
[ : 1
|

Figure 8

Projection of data into 2 dimensions obtained from
the first two component of locus link mode by PARA-
FAC analysis.

ous proteomics analysis identified four classes of
differentially expressed proteins/genes between naive
hMSC and osteoblasts [49,51]. The clustering algorithm
was run 100 times and the majority calculation was per-
formed as explained in locus link mode analysis above.
The Tuckerl method organized the outlying categories
into four clusters as shown in Table 4 which we shall inter-
pret at the Discussion section in detail.

PARAFAC cluster

Remaining of 63 genes

CAPZB
HSPD1

MAP4
MYH10
SEC13
PDLIM7

Tucker 1
cluster

Tucker 3
Remaining of 17 cluster

genes

Remaining of 30
genes

Figure 9

Venn diagram of k-means clustering results for all
three techniques. Tucker| and Tucker3 exhibit a stronger
agreement than PARAFAC. The detailed interpretation of
these clusters can be found at the Discussion section.
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Figure 10

Scatter plot of the category names projected on the
I'st vector of the category component matrix of
Tucker3 analysis.

Tucker3

We input all 24 columns of the category component
matrix, which has dimensions (69 x 24), to a k-means (for
k = 4) algorithm and ran it up to 100 times to obtain a
consensus, or a majority. The clusters and their members
are shown in Table 5.

The Tucker3 analysis was less informative and the clear
distinction between signal transduction and gene expres-
sion was lost. Also, the category of calmodulin binding
was absent and the category of calcium ion binding, a less
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Figure 11

Scatter plot of he category names projected on to
the first component of category mode in PARAFAC
analysis.
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Table 4: k-means clustering results obtained from 24 singular vectors of the unfolded tensor in category mode.

Category Names

DNA BINDING, NUCLEOBASE-NUCLEOSIDE-NUCLEOTIDE AND NUCLEIC ACID METABOLISM, RNA BINDING
CALMODULIN BINDING, CELL GROWTH AND/OR MAINTENANCE, CELL MOTILITY, CYTOSKELETAL PROTEIN

BINDING, ORGANOGENESIS, PURINE NUCLEOTIDE BINDING, SIGNAL TRANSDUCTION

TICluster I BIOSYNTHESIS, PROTEIN METABOLISM
TICluster 2

TICluster 3

TICluster 4  The rest of the 69 catagories

specific category, was selected. Other attractive categories
in the Tucker1 analysis (signal transduction, purine nucle-
otide binding, DNA binding) also appeared here, suggest-
ing they may play an especially prominent role during
osteogenesis.

PARAFAC

We used the component matrix corresponding to the
locus link mode for a 12-factor PARAFAC model to cluster
locus links using a k-means clustering algorithm for k = 4.
The clustering results are shown in Table 6.

Comparison to two-way analysis results

When compared to the categories identified by our previ-
ous two-way analysis [48,49], all three tensor models gen-
erated more meaningful clusters of functionally related
protein categories. Also, many of the categories selected
by the tensor models were more specific than those we
found previously (e.g., protein metabolism vs. amino acid
and derivative metabolism). Curiously, the category of
organogenesis, which is perhaps the most directly related
to the osteogenic differentiation we are inducing,
appeared only in the Tuckerl and PARAFAC models, and
was clustered with signal transduction categories in each
case. Many of the categories that appeared in the two-way
analysis are concerned with activities shared by all cells
(e.g., oxidoreductase activity, protein translation, oxygen
metabolism).

Sample mode analysis

Tucker! model

We unfolded the tensor T in the third mode (sample
mode as shown in Figure 6), T(3)and then applied Singu-
lar Value Decomposition (SVD) on T3 to capture the
structure in sample mode. The largest 4 singular values
out of 5 nonzero singular values belong to the singular

vectors that explained almost 93% of the variance (1st:
53%; 2nd: 15%; 31:14.5%; 4th: 10.5).

Figure 12 shows the scatter plot of the data projected on
to the three most significant left singular vectors, which
jointly explain almost 90% of the variance.

Tucker3 model

We fit our Tucker3 multiway analysis model with a core
tensor of dimensions 69 x 24 x 4 to the data tensor, T and
analyzed the structure in the third mode (sample mode).

Figure 13 shows the projection of the data in samples
mode to lower dimension. In particular, we projected the
data on to the first column of the sample component
matrix to show the scatter plot of the samples. Our inter-
pretation of this plotting is that Osteoblast state can be
reached by either In_OSmedium state or by traversing
On_Collagen — On_Vitronectin states, which is also
reported in [48,49].

PARAFAC model

We also decomposed the T tensor using a 12-component
PARAFAC model and examined the structure in the com-
ponent matrix corresponding to the sample mode. In Fig-
ure 14 we project the data in sample mode on the first
component vector of sample mode obtained from PARA-
FAC decomposition. Interpretation of the scatter plot
indicates that PARAFAC modeling does not indicate the
existence of different paths toward Osteoblast state.

Clustering of sample mode

Tuckerl

Using the four most significant left singular vectors, we
clustered the samples by running the k-means clustering

Table 5: k-means clustering results obtained from the 24 column vectors of the category component matrix of Tucker3 analysis.

Category Names

T3Clusterl BIOSYNTHESIS, CALCIUM ION BINDING, DNA BINDING, PROTEIN METABOLISM, PURINE NUCLEOTIDE
BINDING, RNA BINDING

T3Cluster2 CELL GROWTH AND/OR MAINTENANCE

T3Cluster3 CYTOSKELETAL PROTEIN BINDING, SIGNAL TRANSDUCTION

T3Cluster4 The rest of the categories.
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Table 6: k-means clustering of category names for PARAFAC analysis.

Category Names

ParCluster|
PROTEIN METABOLISM, RNA BINDING
ParCluster2

BIOSYNTHESIS, DNA BINDING, NUCLEOBASE- NUCLEOSIDE-NUCLEOTIDE-AND-NUCLEIC-ACID-METABOLISM,

CELL GROWTH AND/OR MAINTENANCE, CELL MOTILITY, CYTOSKELETAL PROTEIN BINDING, ORGANOGENESIS,

PHOSPHORUS METABOLISM, PURINE NUCLEOTIDE BINDING, SIGNAL TRANSDUCTION

ParCluster3

ParCluster4 The rest of the categories

algorithm for 100 times for k = 3. The class assignments
for each of 100 runs are stable and shown in Table 7.

Tucker3

In order to capture the data structure in sample mode, we
applied a k-means clustering algorithm on the component
matrix corresponding to the third mode. We observed (see
Table 7) that class memberships are not the same as in
SVD analysis on the unfolded tensor (PT(;)) discussed
above.

PARAFAC

We applied a k-means clustering algorithm to the sample
mode component matrix on PARAFAC model which pro-
duced the same class assignment as our Tucker1 model, as
shown in Table 7.

Clustering based on the PARAFAC decomposition yielded
the least informative results, in that the three clusters on
the plot formed a pattern lacking any clear, biological
meaning.

Samples
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Figure 12

3D scatter plot of the sample mode entries for
Tuckerl. The Cl, C2, C2 correspond to the top three
component vectors.

IMMUNE RESPONSE, RESPONSE TO EXTERNAL STIMULUS, RESPONSE TO STRESS

Case study Il

Collagen-induced hMSC stem cell osteogenesis over time

It is clear that cell differentiation is a carefully timed proc-
ess. What is missing from many systems biology
approaches is the element of time, and to add it requires
slightly more rigorous analysis. In many cases where data
are collected as a function of time, the time element is
simply removed, e.g. by taking the maximum activation
across the time periods, then using linear two-way causal
analysis techniques.

We collected gene expression data (from microarray anal-
ysis) for hMSC induced to undergo osteogenic differenti-
ation via two types of stimulus: (1) by simply placing
them on a flexible collagen-1 coated substrate
(unstrained), or (2) by also applying cyclic tensile strain
to these substrates. Both conditions were run for five days
and triplicate samples collected at day 1, 2, 4 and 5.
mRNA from three replicates of naive hMSC grown on tis-
sue culture plastic (TCP) and fully differentiated hOST
were also collected to represent the starting point and
desired end point, respectively. The resulting data were fil-
tered as follows: only those genes associated with a locus
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0s

o0n_Collage

07r 7

06 A

osl eMaStimulant i

0.4r s

03k 9
e0n_Vitranectin

02¢ @ OSTEOBLAST b
In OSmedinm

01 1 I 1 I 1 I
1 0z 03 0.4 05 06 07 08

Figure 13

Plotting of sample mode data on to first column of
the sample mode component matrix of Tucker3
Model.
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The hMSC Tensor
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Figure 14

Scatter plot of samples for PARAFAC analysis.

link number were considered; of these, only those data
points tagged as valid (P = present or M = marginal desig-
nations) across all 30 samples by the Genespring microar-
ray analysis software were used; of these, only genes with
statistically reliable replicates (t-test, 0.05 level of signifi-
cance) were considered.

Our hypothesis was that application of strain "accelerates"
the osteogenic differentiation induced by the collagen I
substrate, which will be reflected by the earlier appearance
of the osteogenesis-associated genes in the strained sam-
ples.

Constructing a third order time evolving hMSC tensor

Expressing phenotypic changes over time requires multi-
way data analysis, and thus is well suited to tensors. For
example, Gaudet's "compendium" [55] includes signaling
data triggered by different cytokines at various time
points. One tensor in their compendium uses stimuli,
measurements, and time as its modes. Here, we construct a
3-way tensor in which the rows are the gene IDs, the col-
umns are the hMSC populations (negative control cells,
hOST, and four samples each of the two stimuli), and the
tubes are the replicates (all samples were repeated in trip-
licate). Over the course of the four time points we meas-
ured (days 1, 2, 4 and 5), we detected a total of 3153 genes
with statistically significant (t-test, 0.05 confidence level)
differential expression, relative to unstimulated hMSC.

Table 7: k-means results for all three techniques.

http://www.biomedcentral.com/1752-0509/2/63

Thus the hMSC tensor T has 3153 x 10 x 3 elements as
shown in Figure 15.

One objective of our analysis is to understand the evolu-
tion of the differentiation process over time, in particular
the impact of different stimulants on this process. In Fig-
ure 16 we show the scatter plot of the data on the 1st com-
ponent vector of the time & stimulant (population)
mode. The 1st vector separates the two stimuli (static col-
lagen I vs. stretched collagen I) and indicates that adding
stretch accelerates osteogenic differentiation toward our
target state, represented by fully differentiated hOST. This
is consistent with our previous study which focused on a
selected set of osteogenic marker genes and demonstrated
that application of strain to collagen I induced a more
rapid differentiation than static collagen I [28].

Tucker3 model

We fit a Tucker3 multiway analysis model with core com-
ponent numbers 6 x 6 x 3 to the data tensor T. The
Tucker3 model decomposed the hMSC tensor into three
component matrices, one for each mode and a core tensor
with dimensions 6x6x3. The explained variance obtained
by this model was 98.16%.

PARAFAC model

We analyzed the hMSC tensor with the PARAFAC tech-
nique as well and computed the core consistency of our
PARAFAC model. Our consistency analysis identified a 2-
component model which explained more than 91% of the
variance and had 99.71% core consistency (the 3-compo-
nent model had 37.11% core consistency, which is well
below the rule of thumb 90% requirement).

Locus link analysis

Our objective was to identify the outliers in the locus link
mode and examine them in order to learn which genes are
potentially important for the cell differentiation process.

For both Tucker3 and PARAFAC we computed the 98%
concentration of the locus link numbers projected onto
lower dimensions to capture the outliers in the remaining
2 percentile. Finally we took the intersection of the 2 per-
centile set of Tucker3 and PARAFAC.

K-Means Cluster Assignment for Samples

No Stimulant Collogen Vitronectin OS Medium Osteoblast

| | 2 2 3 Tuckerl

| 2 | 3 2 Tucker3

| | 2 2 3 PARAFAC

Again Tucker| and PARAFAC are in agreement while Tucker3 differs from them.
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Tensor to model time evolution of stem cell differen-
tiation under different control.

Time analysis

When the data in this mode were projected onto the first
component in our Tucker3 model (Figure 17), we
observed a striking pattern: fully differentiated osteoblasts
and unstimulated hMSC cultured on tissue culture plastic
(TCP) lay at opposite ends of the graph, and the hMSC
populations cultured on collagen in the presence or
absence of mechanical strain were arranged in a temporal
sequence, such that cells cultured for two days lie closer to
the unstimulated hMSC, and cells cultured for five days lie
much closer to osteoblasts.
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Figure 16

Scatter plot of locus link onto the first vector of the
locus link component matrix of Tucker3 analysis.
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Results and discussion

The methods illustrated here provide a means for translat-
ing large data sets that capture global gene and protein
expression changes during hMSC differentiation into sim-
plified models. The performance of the Tucker1, 3, and
PARAFAC models sometimes differed considerably. For
example, in our proteomics data set (case study I),
Tucker3 appeared to perform best in locus link mode. K-
means algorithm identified two clusters (Figure 7), one of
which (the outliers) included genes that participate in sig-
nal transduction, especially calcium/calmodulin-associ-
ated proteins (e.g., calmodulin-dependent protein kinase
o, B, and y); and control of transcription and translation
(e.g., STAT1, SYNCRIP). We feel these genes may be of
special interest because they fall outside the majority of
the "common" genes that can be reduced by the model,
and thus may contribute uniquely to the distinct protein
profiles in this data set. Tuckerl and PARAFAC, by com-
parison, were comparatively poor at identifying meaning-
ful clusters. Nevertheless, the outliers identified by each
method shared one common feature: they all included a
set of six genes, five of which participate in signal trans-
duction pathways (see Figure 10). One of these, calmodu-
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Figure 17

Time evolution of the hMSC differentiation process.
We projected the data over the first component vector
(with explained variance of 85.64%) of the second mode
(populations and time) obtained for Tucker3 analysis. At one
end we have undifferentiated hMSC (Tissue Culture Plastic,
or TCP) and at the other end we have the target state (fully
differentiated hOST). In between we plot the data for each
stimulus and time point (e.g., NSD2 = no stretch, day 2; SD5
= stretch, day 5). Because the "SD" points lie closer to the
target (hOST) than their corresponding "NSD" conditions on
days 2 and 5, we conclude that the stimulus "stretch" acceler-
ates osteogenic differentiation when compared to the same
stimulus without stretch.
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lin-dependent protein kinase II delta, was previously
identified by SVD analysis as a candidate "osteogenic"
gene, in that its expression is found in hMSC populations
most closely resembling osteoblasts. This bolsters our
belief that calcium/calmodulin signaling in especially
important during hMSC osteogenic differentiation.

When one considers the set of proteins shared by at least
two of the three methods, this pattern becomes even
clearer: additional isoforms of calmodulin-dependent
protein kinase II and other signaling proteins (caldesmon,
PDLIM7, RhoA, Rho C, and protein phosphatase 2)
emphasize the importance of integrin-associated signal-
ing pathways during ECM-induced differentiation. These
interpretations are consistent with those of others who
have applied similar techniques to other stem cell data
sets (refs: UID# 15257023, 17541472, 17625253). These
models also included a number of muscle-associated pro-
teins (tropomyosin, two myosin isoforms, CAPZB) sug-
gesting that bone and muscle differentiation may be
closely related. This also agrees with our previous analysis
of osteogenic gene focusing in response to tensile strain,
wherein we observed a drop in expression of marker genes
for many different lineages (nerve, fat, cartilage), but
observed no drop in smooth muscle cell markers [28].

In category mode, PARAFAC yielded the most interesting
clustering results for the proteomics data set, in that it
identified clusters of functionally related genes that con-
tribute the most to the model. Furthermore, many of these
genes afford a plausible biological explanation for how
hMSC undergo differentiation. It selected the greatest
number of categories, yet organized them into three
clearly distinct clusters. P cluster 1 contained categories
primarily concerned with nucleotide binding and metab-
olism, and resembled the gene expression cluster (T1 clus-
ter 2) in the Tucker1 analysis. P cluster 2 closely resembled
the signal transduction cluster (T1 cluster 3) in the
Tuckerl model, and added an additional category, phos-
phorus metabolism. The third cluster contained categories
not found in the other two models, that centered on the
theme of extracellular matrix protein synthesis and modi-
fication. We previously identified these categories as sig-
nificant during hMSC differentiation [54].

Tuckerl and Tucker3 identified smaller sets of outliers.
The first cluster in the Tuckerl model (T1 cluster 1) con-
tained two categories primarily associated with cell sur-
vival, and therefore sheds little light on the potential
mechanisms underlying hMSC differentiation. However,
T1 cluster 2 and T1 cluster 3 contained categories con-
cerned with control of gene expression and signal trans-
duction, respectively. Given the tight association between
these activities and their clear association with cellular dif-
ferentiation, selection of these categories may help iden-

http://www.biomedcentral.com/1752-0509/2/63

tify the potential mechanisms used by hMSC during
osteogenic differentiation. In particular, the signal trans-
duction cluster (T1 cluster 3) contained categories con-
cerned with traditional signaling pathways known to
control differentiation. For example, calmodulin and cal-
modulin-dependent protein kinase II stimulate osteo-
genic differentiation of hMSC while promoting cell
migration and suppressing cell growth [52]; all of these
activities are contained in the signal transduction cluster.
G proteins, which correspond to the purine nucleotide
binding category, are well-known to play an important
role in osteogenic differentiation [reviewed in [53]].
Again, these results agree with our previous analysis,
which identified calcium-dependent signaling as an
important factor in osteogenesis [32].

The plot of sample mode data from Tucker3 (Figure 13) is
quite informative. The wide separation of the NoStimu-
lant and Osteoblast samples allows us to interpret the
space between them as a form of "differentiation axis,"
and illustrates two important themes. First, we observe
that populations of hMSC grown On_Vitronectin or
On_Collagen lie midway between the unstimulated
hMSC and osteoblasts, demonstrating the partial differen-
tiation induced by these stimulants. Second, the observa-
tion that hMSC cultured IN_OSMedium lie beyond the
intended target (Osteoblasts) suggests that OS may "over-
stimulate" these cells. OS medium contains dexamthea-
zone, a synthetic form corticosteroid, and this population
of cells expressed a distinct set of genes/proteins devoted
to steroid metabolism. Both ECM and OS stimulants yield
cells that resemble osteoblasts, yet they induce the expres-
sion of quite different genes. It is quite possible that the
typical OS exposure regimen drives steroid metabolism
genes beyond the level necessary for osteogenesis. It is
also possible that a combination of the genes expressed in
ECM stimulated cells and genes expressed in OS stimu-
lated cells would yield a phenotype closer to true osteob-
lasts than either set of genes alone. Curiously, the same
type of plot for the PARAFAC data (Figure 14) offered no
clear biologically meaningful relationship between the
samples.

The locus link analysis of our second (microarray) data set
identified a set of genes, ("outliers") that our model sug-
gests contribute heavily to the variance between each
experimental group (Table 8). In other words, expression
of these genes may discriminate between different states
of hMSC differentiation. Consistent with our previous
analysis, the majority of these genes can be organized into
four subsets based on their functions. One class encodes
proteins known to contribute to osteogenic differentia-
tion and/or inhibit hMSC growth (FHL2, POSTN, LOX,
LOXL1, SPARC, TMSB4X, CTHR1, FST, TGFB1) while a
second contains markers for a closely related differentia-
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tion fate of hMSC, chondrogenesis (CHI3LI, COL1Al,
COL3A1, COL6A3, COL8A1, COL12A1, CTGF, LUM).
The fact that many of these are extracellular matrix (ECM)
molecules or modifiers of the ECM underscores the
importance of ECM in controlling differentiation of
hMSC. Expression of at least two of these genes, CTGF and
COL12A1, is controlled by mechanical strain. Consistent
with our hypothesis that application of strain promotes
osteogenic differentiation of hMSC by triggering ECM-
associated signaling pathways, our outliers contain a third
class of genes that participate in signal transduction and/
or regulation of gene expression (IFITM1, CCPG1, FST,
MAPKBP1, FBXL2, TRERF1, FHL2). Finally, our gene set
contains markers for a range of different cell differentia-
tion fates, including embryonic development (AMD]1,
SERPINH1), vasculogenesis (S100A4), hematopoesis
(B2M, IGFBP6, IKZF5), neurogenesis (BASP1,
SERPINH1), and even osteoclastogenesis (CTSB, CTSD,
CTSK); it is possible that these genes are downregulated in
response to our osteogenic stimulus.

Finally, the graph of the samples in Figure 17, when
viewed as an axis of similarity between undifferentiated
hMSC grown on tissue culture plastic (TCP) and hOST is
entirely consistent with our hypothesis, and strongly sug-
gests that hMSC transdifferentiate towards the osteoblast
phenotype under these conditions. Furthermore, at each
time point tested (days 2, 4, and 5), the strained popula-
tion always lies closer to the osteoblasts than the
unstrained population. This is consistent with our previ-
ous finding that application of tensile strain accelerates
the osteogenic differentiation of hMSC [31].

Conclusion

Application of tensor analysis to complex data sets such as
those generated in studies of human stem cell differentia-
tion is a powerful method for uncovering important pat-
terns in the data. In particular, we have applied three
different analysis methods to two different data sets
extracted from hMSC, to yield models that present the
data in simplified forms. The first data set was the same
one used in [46] while the second one is entirely new.

A cross comparison of the tensor modeling and analysis
techniques indicated that the second data set can be mod-
eled and interpreted much better (i.e., by using fewer
components, capturing a higher percentage of the vari-

http://www.biomedcentral.com/1752-0509/2/63

ance in the data, and much better consistency in the con-
vergence and fitting). These models also identify
candidate genes/proteins as being especially important
because they contribute a great deal to explaining the var-
iation between our treatment conditions. It is important
that multiple modeling approaches consistently identi-
fied a small set of genes that play a large role in differenti-
ating between stem cell populations; these genes thus
serve as candidates for hypothesis-driven research aimed
at uncovering the molecular mechanisms governing phe-
notypic changes in stem cells.

While traditional two-way analysis tools are powerful
instruments to find relationships in two-way data, the
application of tensors allowed us to capture more infor-
mation than two-dimensional techniques and thus pro-
vided a more robust analysis of hMSC differentiation. We
feel that our tensor approach has a wide range of possible
applications in complex problems in systems biology.
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sional liquid chromatography tandem mass spectroscopy
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Foot Note
IWe have used the Matlab with PLSToolbox in our mode-
ling and analysis [49].

Table 8: We intersected the 98% outliers obtained by both Tucker3 and PARAFAC analysis to compose a list of interesting genes

INTERESTING GENES for the DIFFERENTIATION PROCESS:

AMDI B2M CANX SERPINHI CHI3LI COLIAI COL3AI COL6A3 COL8AI COLI2A1 COMT CTGF CTSB CTSD CTSK CYPIBI AKRICI
ENOI FHL2 GARS HMOXI IGFBP6 IMPDH2 LOX LOXLI LRPAPI LUM MXI SERPINE2 HTRAI RPL27A RPSI5A S100A4 SPARC TGFBI
TMSB4X UBAI IFITMI EIF3D EIF2S2 CCPGI ISG15 SERF2 BASPI IFITM3 FST POSTN MAPKBP| KIFIB FBXL2 Céorf48 TMEM66 CCDC91

TRERFI Cl50rf24 IKZF5 BAIAP2L2 DCUNIDS5 TUBAIC CTHRCI
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