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Abstract: Spectral image filtration by means of acousto-optical tunable filters (AOTFs) has multiple
applications. For its implementation, a few different optical schemes are in use. They differ in
image quality, number of coupling components, dimensions and alignment complexity. To choose
the optical system of AOTF-based spectral imager properly, many factors have to be considered.
Though various schemes of acousto-optic (AO) filtration have been tested and discussed, their
comparative analysis has not been reported up to now. In this study, we assembled the four most
popular schemes (confocal, collimating, tandem and double-path) using the same AO cells and
experimentally compared their main features. Depending on the application, each scheme may be
the basis of compact cost-effective spectral imaging devices.

Keywords: spectral imaging; acousto-optic interaction; image quality; confocal scheme; collimating
scheme

1. Introduction

AOTFs have become a popular tool for various hyperspectral imaging applications in
biomedicine [1,2], agriculture [3,4], aerospace [5,6] and other fields. Based on anisotropic
Bragg diffraction of wide-band light by ultrasound in crystalline media, these spectral
elements provide a good combination of optical (high spectral and spatial resolution, wide
tuning range, etc.) and technical (compactness, absence of moving parts, etc.) features [7].

The imaging capabilities of AOTF-based systems are defined by multiple factors.
Most of them, e.g., geometry of AO interaction, shape of AO cell (AOC) and structure of
ultrasound beam [8–10], have been examined and discussed in detail. Besides these AOTF
characteristics, the optical scheme of AO spectral filtration has a strong influence on the
features of AOTF-based images [11]. In practice, a few different schemes are used.

A typical AOTF configuration includes a single AOC located between two polarizers
crossed with respect to each other [12]. More effective in terms of spectral resolution and
residual image distortion are double AOTFs that may consist of tandem AOCs [13] or
utilize a double light pass through a single AOC by means of optical feedback [14] and
back reflection [15].

Moreover, there are three image formation methods common for all AOTFs: collimat-
ing, confocal and convergent [10]. Collimating (telescopic) scheme is the most common and
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the simplest one and provides high image quality and spectral resolution. However, the
non-uniformity of the central wavelength of filtered light across the field of view results in a
specific image spatio-spectral distortion [16]. Confocal telecentric scheme, which forms the
image inside AOC, is free from this drawback but leads to visualization of the inhomoge-
neous ultrasound structure in the filtered image and to spectral resolution degradation [17].
Specific AO aberrations (distortion and chromatic image drift) are present in both schemes.
Converging scheme is used quite rarely [18].

Tandem AOTF consisting of two identical AOCs provides higher spatial and spectral
resolution, but at the same time, lower light transmission and larger dimensions. Normally,
tandem AOTF utilizes a collimating scheme to avoid additional couplers necessary for
the confocal one. To reduce the dimensions and price of a tandem AOTF, a single AOC
operating in double-pass collimating scheme can be used [19].

All these optical schemes differ in image quality, number of coupling components,
dimensions, alignment complexity and other features. For each specific task and for each
AOC, it is necessary to optimize the optical system for AO image filtration. Though the
schemes mentioned above have been already tested and discussed, their comparative
analyses have not been reported up to now. We need to extract the characteristic features
of each scheme by separating them from intrinsic features of AOC itself.

In this study, we assemble, test and analyze four various schemes (Figure 1). Two of
them are commonly used schemes: collimating (coll) and confocal (conf) ones. Two others
imply two-stage light diffraction: by two AOC in series (tandem configuration) and by
the same AOC (double-pass configuration). All of them are described in Section 2. The
comparison procedure and results are presented in Section 3, while the general conclusions
are presented in the last section.
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Figure 1. Typical schemes of AO filtration image: (a) single-crystal single-pass collimating scheme (S-coll); (b) double-crystal
single-pass (tandem) collimating scheme (T-coll); (c) single-crystal single-pass confocal scheme (S-conf); (d) single-crystal
double-pass collimating scheme (D-coll).

2. Materials and Methods

In the experiments, we used a typical AOC made from paratellurite (α-TeO2), which
is the most widely used AO uniaxial crystal. The geometry of this AOC is optimized for
minimization of the chromatic image drift in the confocal optical scheme. It provides good
spectral and spatial resolution and may be used in a wide spectral range [20]. Residual
angular dispersion is 0.4◦. The AOC has a cut angle γ = 7◦ (Figure 2). The wide-aperture
diffraction geometry of e-polarized light [8,12] is realized for incident angle θ = 73.85◦. Basic
parameters: the piezotransducer length L = 12 mm, clear input aperture is 10 × 12 mm2, the
angular aperture is 4◦ × 4◦. An incident light beam must be directed normally to the front
facet. The back-facet inclination angle is with respect to incident facet β = 2.3◦. By varying
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the acoustic frequency within intervals of 60–110 MHz, one can tune the wavelength of
filtered light in the range 450–850 nm. Driving acoustic power interval is 2.3–2.5 W. It is
adjusted to equalize the AOTF’s light transmission in this range. In tandem AOTF two
identical AOCs of this type was used.
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Figure 2. AO cell configuration. Group velocity v deviates from the ultrasound wave vector q due to
walk-off effect; deflection of diffracted light wave vector kd from incident ki depends on θ and γ,
while direction of output light beam is governed by back-facet inclination angle β. All the variants of
experimental schemes have the same structure: object→ input optics→ AO spectral unit→ output
optics→ photodetector.

In all the experiments presented below (Figures 3–6), we used both standard and
custom optical components. For image acquisition, the camera TheImagingSource DMK
37BUX178 with 1/1.8′ ′ 6.3 MP CMOS sensor was installed. Depending on the inspected
object, two different lenses L0 were utilized: an infinity-corrected microscope objective
Carl Zeiss Planachromat 10/0.25 and photography lens Minolta MAXXUM 135/2.8. Afocal
system L1, L2 consists of two identical standard lenses: 25 mm board lenses TheImag-
ingSource TBL 25 or Thorlabs AC127-025-AB achromatic doublets. Focusing lens L3 is
75 mm Kowa LM75HC lens or Thorlabs AC127-075-AB achromatic doublet. Focusing lens
in confocal scheme is 35 mm board lens TheImagingSource TBL 35. Coupling lenses L4
and L5 are 36 mm doublets specially designed and manufactured to compensate for the
chromatic focal shift introduced by the AO cell in the confocal scheme. Lens L7 in the last
setup is a 50 mm achromatic doublet.
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A single-crystal single-pass collimating scheme (S-coll) is comprised of the following
input optical part elements: input lens L0, field stop A1 inside the afocal system L1–
L2, which define the collimated beam divergence preventing sensor irradiation by non-
diffracted (unfiltered) light (Figure 3). An output lens L3 forms the spectral image on the
sensor S.

Single-crystal single-pass confocal scheme (S-conf) comprises two similar optical
systems in the input and output: a pair of lenses with intermediate diaphragm (Figure 4).
The input system forms an intermediate image inside the AOC, while the output projects
its filtered component onto the sensor S. The aperture stop A2 defines the convergence
angle and output stop A3 blocks the non-diffracted (unfiltered) beam. Coupling lenses L4
and L5 are 36 mm custom-designed to compensate for the chromatic focal shift introduced
by the AO cell. Other components are standard machine vision lenses.
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Double-crystal single-pass (tandem) collimating scheme (T-coll) needs an afocal sys-
tem L2–L3 in the input and output focusing lens L3 to transfer the object image into the
sensor S (Figure 5). Tandem AOTF consists of two identical AO cells and three crossed
Glan–Taylor calcite polarizers P1, P2, and P3. The second AO cell is rotated by 180◦ with
respect to the first one. The polarizers are necessary to block the non-diffracted light beam
leaving the filter at the same direction as the twice-diffracted one, whereas the lateral
separation is insufficient due to the rather small deflecting angle. As the extinction ra-
tio of polarizers is not always enough to eliminate non-diffracted light completely, we
additionally utilized a field stop A1.

Since AO cells are identical and opposite turned, the same wide-aperture diffraction
mode is realized in both AO cells, and, thus, image aberrations of distortion and chromatic
drift are compensated. The drawback of the scheme is significantly increased energy losses.
The advantages are higher spectral and spatial resolution.
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general, the normal incidence on any flat surface located after BS should be avoided to 
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Double-pass single-crystal collimating scheme (D-coll) contains beamsplitter BS, which
divides it into three parts (Figure 6). The input optical system consists of a lens L0 and the
afocal system L1-L2 with the field stop A1 inside. The spectral unit additionally comprises
an AO cell, a retroreflector (lens L6 with the mirror M), which directs back the diffracted
light emerging from AO cell, while the rest of the light does not return. The reflected
spectrally selected light diffracts in the AO cell and is filtered one more time. In terms of
ray tracing and spectral selection, the double-pass scheme is very similar to the tandem
one with two identical AO cells.
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In this scheme, we used a Thorlabs BSF10-A beamsplitter. A plate beamsplitter is
preferable, as reflections from the edges of that usually degrade the image contrast. In
general, the normal incidence on any flat surface located after BS should be avoided
to protect the sensor from stray light that would reduce the image contrast. Even AR
coating does not fully solve this problem, since the filtered light has a narrow spectrum
and therefore its intensity is much less than the intensity of unfiltered light. To minimize
stray light, the AOC is slightly tilted in the sagittal plane and its faces are coated with
the antireflection coating. These measures, however, do not ensure solving the problem,
because usually the tilt angle is small (otherwise it will cause optical aberrations, in
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particular astigmatism) and so reflections emerging in a wide spectral range make the
selection of narrowband filtered light difficult. For this reason, polarizers are not suitable
in this scheme. To solve the problem, we placed a field stop A1, like in the S-coll scheme
(Figure 3), and thus have managed to adjust the scheme.

Generally, in this scheme, the transmission is significantly reduced by the beamsplitter,
but there is an additional optical channel which can be used for white-light imaging
or auxiliary purposes. Therefore, the double-pass scheme is promising for multimodal
operation. One can also use an optional beamsplitter and other considered schemes to
provide a similar multimodal operation. However, this will lead to additional losses in all
other schemes.

3. Experimental Results

Imaging capabilities of the described schemes were estimated with use of the test
targets (Figure 7a) and specific color print (Figure 7b), for characterization of the spatial
resolution, image distortion and spectral imaging contrast features.
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For adequate comparison, one needs to equalize the image settings. To make the fields
of view of all four systems roughly equal, we chose appropriate parameters of optical
components L0–L6. The image longitudinal chromatic aberrations in the confocal scheme
caused by the dispersion of the α-TeO2 crystal were compensated for by custom designed
lenses L4 and L5. In collimating schemes, defocusing is negligible, and other optical
elements were standard achromatic lenses.

To equalize the image brightness, we optimized the intensity of the halogen light
source as well as the exposure time and gain of the camera. For example, images at
wavelength 600 nm (Figure 8) were recorded with the same lighting conditions, but different
exposure times: 0.01 s (S-call and S-conf), 0.25 s (T-coll) and 0.5 s (D-coll).

The spectral resolution was measured in the central part of the field of view by the
diffraction grating spectrometer Ocean Insight FLAME.

As can be seen from Figures 8 and 9, classical single-crystal single-pass schemes (S-coll
and S-conf) demonstrate rather similar features. The main differences are higher spatial
resolution in the confocal scheme, with lower spectral resolution [17,18]. Double-stage
schemes (T-coll and D-coll) exhibit significantly higher spectral and spatial resolution,
in exchange for higher light losses [19]. The double-pass scheme (D-coll) combines the
advantages of single-crystal and tandem AOTFs (high resolution at lower cost), but requires
laborious adjustment. Generally, all the schemes demonstrate their usability so a given AO
cell can be used in different schemes.
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4. Discussion and Conclusions

In this experimental study, we assembled four popular optical schemes for AOTF-
based spectral imaging (Figures 3–6). The same typical AOCs operating in a conventional
wide-aperture mode were exploited. In this way, we eliminated the influence of the AOC’s
features and highlighted the differences caused by the optical scheme. Though all schemes
are capable of providing acceptable image quality, there are considerable differences in
spectral and spatial resolution and other imaging characteristics and, therefore, adequate
choice of the optical scheme permits optimization of particular features important for
solving the problem.

A detailed analysis of the obtained images (Figures 8 and 9) is presented in Table 1.
These results should be interpreted primarily as a comparative assessment of the studied
schemes and not as a merit of the best performance achievable in each scheme.

Table 1. Experimental results.

Scheme Spectral Resolution
(at 600 nm), nm

Contrast at
15 mm−1

Chromatic (450–850 nm)
Drift, %

Exposure Time
(at 600 nm), s

Rel.
Cost

S-coll 4.8 0.50 5% 0.01 1

S-conf 5.5 0.60 0.5% 0.01 1.1

T-coll 3 0.65 1% 0.25 2.5

D-coll 3.8 0.20 0.5% 0.5 1.5

The spectral resolution, as expected, is higher in schemes with double AO filtering
(D-coll and T-coll). The best image contrast at the selected spatial frequency (~15 mm−1) is
achieved in a scheme with two AOCs (T-coll) and in a confocal scheme. The worst contrast
is demonstrated by the double-pass scheme (D-coll), in our opinion, for two reasons. First
is stray light. Second, light energy losses make it necessary to work with long exposure
times, and therefore, along with the signal, the background light is also exposed for longer.

In the experiments, we used AOCs with the geometry optimized for the confocal
scheme. In particular, it compensates for the chromatic drift by the optimal output facet
angle. Therefore, the chromatic drift is almost absent in S-conf, but it is noticeable in S-coll.
In double-pass schemes, chromatic drift is compensated. Its residual non-zero values can be
explained by inaccurate alignment. Exposure time in double-pass schemes is significantly
higher due to double absorption in the AOC, a narrower spectral bandwidth, and the
presence of a beamsplitter (in the D-coll scheme). In all schemes, the AOCs are the most
expensive components, followed by polarizers. Thus, T-coll scheme seems to be the most
cost ineffective.

This study paves the way to understanding the main issues related to the optical de-
sign of AOTF-based spectral imagers. A good result is always a compromise between the
AOTF configuration and the complexity of the optical coupling and adjustment. Depending
on the application, each scheme may be effective. The study results are helpful for the
development of new AOTF-based imagers. Each scheme is worth detailed studying and
discussing in a separate article.
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