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Simple Summary: The combination of disulfiram and copper is a novel anti-cancer drug under
clinical development for the treatment of several tumor types including hepatocellular carcinoma. In
this study, we investigated the potential of disulfiram and copper to induce immunogenic cell death
and whether it could enhance the efficacy of immune checkpoint blockade. Our results showed that
treatment with disulfiram and copper induced the release of damage-associated molecular patterns,
such as calreticulin, ATP, and high mobility group box 1; thus, eliciting the maturation and activation
of dendritic cells. The treatment with disulfiram and copper further enhanced the efficacy of CD47
blockade. Mechanically, disulfiram and copper promoted the nuclear accumulation and aggregation
of nuclear protein localization protein 4 to inhibit the ubiquitin-proteasome system, thus, inducing
endoplasmic reticulum stress. Taken together, the present findings suggest the potential clinical
applications of disulfiram and copper in hepatocellular carcinoma.

Abstract: Some chemotherapeutic agents have been found to enhance antitumor immunity by
inducing immunogenic cell death (ICD). The combination of disulfiram (DSF) and copper (Cu) has
demonstrated anti-tumor effects in a range of malignancies including hepatocellular carcinoma
(HCC). However, the potential of DSF/Cu as an ICD inducer and whether it can enhance the efficacy
of the immune checkpoint blockade in HCC remains unknown. Here, we showed that DSF/Cu-
treated HCC cells exhibited characteristics of ICD in vitro, such as calreticulin (CRT) exposure, ATP
secretion, and high mobility group box 1 (HMGB1) release. DSF/Cu-treated HCC cells elicited
significant immune memory in a vaccination assay. DSF/Cu treatment promoted dendritic cell
activation and maturation. The combination of DSF/Cu and CD47 blockade further facilitated DC
maturation and subsequently enhanced CD8+ T cell cytotoxicity. Mechanically, DSF/Cu promoted
the nuclear accumulation and aggregation of nuclear protein localization protein 4 (NPL4) to inhibit
the ubiquitin-proteasome system; thus, inducing endoplasmic reticulum (ER) stress. The inhibition
of NPL4 induced ICD-associated damage-associated molecular patterns. Collectively, our findings
demonstrated that DSF/Cu-induced ICD-mediated immune activation in HCC enhanced the efficacy
of CD47 blockade.
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1. Introduction

Hepatocellular carcinoma (HCC), one of the most common malignant tumors, is the
predominant cause of cancer-related deaths and has limited treatment options [1]. The ma-
nipulation of the immune system has proven to be an effective strategy for cancer therapy,
whereas the majority of HCC patients still experience limited benefits from immune-based
therapy [2]. Cancer-induced immunotolerance in the tumor microenvironment may par-
tially explain the failure of clinical outcomes [3]. As a primary metabolic organ, the liver
evolves multiple immune-suppressive mechanisms by receiving non-self-antigens from
nutrients or resident microbes [4]. The hepatic immunosuppressive environment is mainly
maintained by Kupffer cells, regulatory T cells, and myeloid-derived suppressor cells,
mediated by pro- and anti-inflammatory cytokines [5]. Therefore, the use of additional
agents or specific treatments to convert the immune-suppressive microenvironment into an
inflammatory microenvironment could be an efficient strategy in HCC therapy.

Immunogenic cell death (ICD) is a particular form of stress-dependent cell death that
can drive an immune response against dead cell-related antigens coupled with the activa-
tion of cytotoxic T lymphocyte (CTL)-driven adaptive immunity [6,7]. ICD is characterized
by the coordinated release of a series of damage-associated molecular patterns (DAMPs),
including the exposure of calreticulin (CRT) on the surface of dying cancer cells, the secre-
tion of adenosine triphosphate (ATP), the release of high mobility group box 1 (HMGB1)
and the activation of type I interferon (IFN) response [8–10]. These DAMPs can recruit the
dendritic cells (DCs) and function as ‘eat me’ signals and subsequently attract cytotoxic
T lymphocytes into the tumor microenvironment [11]. Recently, some chemotherapeutic
agents, including anthracyclines, proteasome inhibitors, and DNA-damaging agents, have
been documented to elicit bona fide ICDs and achieve better efficacy in combination with
immune checkpoint blockade [12–16]. Therefore, the induction of ICD by chemotherapeu-
tic agents may provide a novel strategy to inhibit tumor progression by inducing broad
antitumor immunity.

Disulfiram (DSF), an old anti-alcoholism drug, recently showed anti-tumor potential
in several cancer types, including HCC, lung cancer, breast cancer, and glioma [17,18].
Researchers have demonstrated that DSF interacted with copper (Cu) to form the metabolite
CuET, which acts as a shuttle for Cu to cross the cell membrane and release Cu under
oxidative conditions; thus, targeting cancer via inhibiting the activity of p97-dependent
proteasomes via nuclear protein localization protein 4 (NPL4) [19,20]. Despite this, the
potential therapeutic applications of DSF/Cu in HCC need to be further explored. As a
potential proteasome inhibitor, the potential of DSF/Cu to induce ICD also deserves further
investigation. Sun and colleagues found that DSF/Cu could enhance the ionizing radiation
(IR) induced ICD in breast cancer [21]. You and colleagues found that DSF/Cu treatment
increases the membrane exposure of CRT [22]. Thus, we hypothesized that DSF/Cu induces
ICD via the inhibition of a ubiquitin-proteasome system and could promote the antitumor
effect of immunotherapy in HCC.

In the current study, we demonstrated that DSF/Cu induced ICD in HCC and
subsequently activated DCs. DSF/Cu induced ER stress through the inhibition of the
ubiquitin-proteasome system via the nuclear accumulation and aggregation of NPL4.
DSF/Cu-mediated enhancement of tumor immunogenicity improved CD47 blockade effi-
cacy in HCC.

2. Materials and Methods
2.1. Cell Culture

HCC-LM3, Huh7, and Hepa1–6 cells were obtained from America Type Culture
Collection (Manassas, VA, USA) in 2017. The methods of cell culture are presented in
Supplementary Methods.
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2.2. Reagents

Disulfiram (Selleck, S1680) and copper gluconate (CuGlu, Sangon Biotech, A503014)
with over 99% purity were used for the study. The antibody to NPL4 (sc-365796) was
obtained from Santa Cruz. The antibodies to EIF2S1 (ab32157), XBP1 (ab220783), and
EIF2S1 (phosphor S51) (ab32157) were obtained from Abcam. The antibodies to CHOP
(A0221), Ubiquitin (A18185), β-tubulin (A7074), and Lamin-B (A19970) were obtained from
Abclonal. The antibodies to Zombie NIR™ APC-CY7(423106), CD45 FITC (103108)/PE
(103106), CD11c PE (117308)/APC (117310), I-Ab PE-CY7 (116420), CD80 PE-CY5.5 (104712),
CD86 APC (105012), CD3 APC (100236), CD8 PE (100708)/APC-CY7 (100712), CD4 PE
(130310), CD44 PE-CY7(103010), CD62L APC (104412), Granzyme B PE-CY7(372213), and
IFN-γ PE-CY5.5(505821) were obtained from eBioscience (San Diego, CA, USA).

2.3. Cell Viability Assay

Procedures for the cell viability assay are described in Supplementary Methods.

2.4. Colony Formation Assays

Procedures for the colony formation assay are described in Supplementary Methods.

2.5. Determination of Apoptosis, Surface CRT, ATP and HMGB1 Release

Cells were grown to 40–50% confluence in 6-well plates, washed, and then incubated
with increasing concentrations of DSF/Cu for 24 h. Tumor cell death induced by DSF/Cu
was assessed using an Apoptosis Detection Kit Annexin V/Propidium Iodide kit (Vazyme,
Nanjing, China), and surface CRT (CST, 62304S, Danvers, MA, USA) was detected by flow
cytometry. The supernatants of cells cultured under the conditions described above were
evaluated for extracellular HMGB1 levels using an ELISA kit (Cusabio, CSB-E08223h and
CSB-E08225m, Wuhan, China). Extracellular ATP was quantified using an Enhanced ATP
Assay Kit (Beyotime, S0027, Shanghai, China).

2.6. Immunoblotting

Procedures for immunoblotting are described in Supplementary Methods.

2.7. Immunofluorescence

Procedures for immunofluorescence are described in Supplementary Methods.

2.8. Tumor Model and Treatment

Orthotopic Tumor model: A 12.5 µL mixture of RPMI 1640 medium and Basement
Membrane Matrix (with the ratio of 1:1, 354248, Corning, NY, USA) containing 105 Hepa
1–6 cells was injected into the left liver lobe of mice to establish the orthotopic tumor-bearing
model. According to Zdenek’s study, mice received oral administration of 0.15 mg kg−1

CuGlu and 50 mg kg−1 DSF every day from day 5 [19]. CuGlu was administered 2 h before
DSF. For the CD47 blockade treatment, a monoclonal anti-mouse CD47 antibody (BE0270,
BioXcell, Lebanon, NH, USA) was injected to the subcutaneous model (250 µg/mouse, i.p.,
on days 3, 6, 9, 12). At day 15, mice were euthanized, and the tumors were removed for
measurement of tumor weight and size.

Vaccination experiments: 106 dead Hepa1–6 cells treated with DSF/Cu were injected into
the right flank of a male C57BL/6 mouse (4 weeks). After 7 days, 4 × 105 live Hepa1–6 cells
were injected into the left flank. Incidence and growth of tumors were monitored every
2–3 days.

2.9. Dendritic Cell Activation and Phagocytosis Assays

Procedures for Dendritic cell activation and phagocytosis assays are described in
Supplementary Methods.
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2.10. Flow Cytometry Staining

Procedures for flow cytometry staining are described in Supplementary Methods.

2.11. siRNA

Procedures for siRNA are described in Supplementary Methods.

2.12. RNA Extraction, RNA-seq and Data Analysis

LM3 cells were treated with DSF/Cu in a concentration of 0.2 µM for 24 h or trans-
fected with siRNA-NC or NPL4 siRNA-1. Total RNA of normal control and treated cells
was isolated by TRIzol (Life Technologies, Carlsbad, CA, USA). The mRNA was sequenced
by Illumina HiSeq 2500. Clean data were deposited in the NCBI Gene Expression Omnibus
(GSE211734/PRJNA871352) The sequencing reads were aligned to the human reference
sequence (UCSC/hg38.p12) by HISAT2 [23]. The feature Counts function was performed
for each gene count from trimmed reads against the GENCODE (release 30) transcript
models [24]. Differential gene expression analysis was quantitated by edgeR [25]. The
top 200 significantly differentially expressed genes were used for GO and KEGG enrich-
ment. The analysis of differentially expressed genes and gene-set enrichment analysis was
implemented by the R package of Cluster Profiler.

2.13. Statistics

The Student t test and Mann–Whitney U test were used to compare the statistical differ-
ence between pairs of groups using Prism GraphPad software (not significant (ns), p > 0.05;
*, p < 0.05; **, p < 0.01; ***, p < 0.001). All the data were described as the mean ± SEM,
unless otherwise stated. Flow cytometry data were analyzed by FlowJo.10 (TreeStar, San
Francisco, CA, USA).

3. Results
3.1. The Combination of DSF/Cu Inhibits Cell Proliferation and Induces Apoptosis of HCC Cells

To evaluate the antitumor effect of DSF/Cu on HCC cell lines, we first treated LM3,
Huh7, and Hepa1–6 cells with increasing concentrations of DSF and 1 µM Cu for 24
h. Results indicated that mono-treatment with DSF or Cu showed no obvious toxicity
against HCC cell lines, whereas the combination of DSF and Cu exhibited strong extra
cytotoxic activity against HCC cells dose-dependently (Figures 1A and S1). Next, colony
formation assays indicated that DSF/Cu markedly suppressed colony formation capacity
in a concentration-dependent manner (Figure 1B). Consistently, the EdU assay implied that
the proliferation of HCC cells was inhibited by DSF/Cu dose-dependently (Figure 1C). To
further investigate whether the cytotoxicity of DSF/Cu is associated with apoptosis, the
apoptotic phenotype of HCC cells treated with DSF/Cu was assessed. The results showed
that the apoptotic proportion was significantly increased in a DSF concentration-dependent
manner (Figures 1D and S2). Collectively, these results revealed that the treatment with
DSF/Cu can decrease malignant cell growth and induce apoptosis in HCC cells.

3.2. DSF/Cu Induces ICD in HCC Cells and Enhances DC Activation

ICD is a cell death modality that induces an immune response against dead-cell-related
antigens, especially when they are released by cancer cells. Several biochemical markers
of ICD have been identified, including the exposure of CRT on the cell membrane, the
extracellular secretion of ATP and HMGB1, and the activation of the type I IFN response.
We first evaluated the surface expression of CRT after 24 h of DSF/Cu treatment. We
observed an increase in CRT on the cell surface of dying HCC cells in a DSF concentration-
dependent manner (Figure 2A). HMGB1 is released extracellularly from dead tumor cells
at the late stage of ICD. After 48 h of DSF/Cu treatment, we observed the increase in the
HMGB1 levels in the cell supernatant (Figure 2B). Furthermore, the levels of extracellu-
lar ATP were also increased in HCC cells treated with DSF/Cu (Figure 2C). We further
performed transcriptome sequencing of normal control and DSF/Cu-treated LM3 cells.



Cancers 2022, 14, 4715 5 of 15

GSEA analysis revealed the activation of type I IFN response and inflammatory response
after the treatment with DSF/Cu (Figure 2D). The heatmap also showed that type I IFN
response-associated genes were upregulated (Figure 2E). Overall, these results demonstrate
that DSF/Cu induced ICD in HCC cell lines in a DSF concentration-dependent manner.
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Figure 1. DSF/Cu inhibits proliferation and induces cell death in HCC cells. (A) Cell viability
of LM3, Huh7, and Hepa1–6 treated with DSF/Cu at indicated concentration for 24 h. (B) The
colony formation of LM3, Huh7, and Hepa1–6 cells under the treatment of DSF/Cu at indicated
concentration. (C) The proliferation of LM3, Huh7, and Hepa1–6 HCC cells treated with DSF/Cu at
indicated concentration were detected by Edu assay. Images with magnification at 100× are shown
here. (D) Apoptosis analysis of LM3, Huh7, and Hepa1–6 cells treated with indicated concentration
of DSF/Cu. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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Figure 2. DSF/Cu induces ICD and promotes DC cell activation in HCC. (A) Membrane exposure
of CRT on HCC cells after treatment with DSF/Cu was detected by flow cytometry. (B) Soluble
HMGB1 in the media of HCC cells treated with DSF/Cu at different concentrations. (C) Extracellular
ATP in the media of HCC treated with DSF/Cu at indicated concentration. (D) Gene-set enrichment
analysis of type I interferon response- and inflammatory response-related genes. (E) Heatmap of
type I interferon response-related genes. (F–I) The expression of CFSE, I-Ab, CD80, and CD86 in
CD11c+ DC cells cocultured with Hepa1–6 cells treated with DSF/Cu was detected by flow cytometry.
*, p < 0.05; **, p < 0.01; ***, p < 0.001.

ICD-associated DAMPs released by cells undergoing ICD have been proven to regulate
the function of specific innate immune cell subsets, such as DCs [12]. To determine whether
the DSF/Cu-induced cell death is immunogenic, we co-cultured DSF/Cu-treated Hepa1–6
cells with mouse BMDCs. The results revealed an efficient DC phagocytosis of the treated
Hepa1–6 cells (Figures 2F and S3). The enhanced maturation of DCs was also estimated by
cytometry, as shown by I-Ab, CD80, and CD86 surface expression (Figures 2G–I and S3).
Therefore, our findings suggested that DSF/Cu promotes DCs maturation and activation
in HCC cells.

3.3. DSF/Cu Induces ER Stress through a Buildup of Poly-Ubiquitylated Proteins Mediated by
NPL4 Aggregation in Cell-Nucleus

To further explore the mechanism of DSF/Cu-induced ICD in HCC cells, we per-
formed functional enrichment of differentially expressed genes between normal control
and DSF/Cu-treated HCC cells. The most significantly expressed genes were enriched to
protein ubiquitination, unfolded protein response, and ER stress (Figure 3A,B). ER stress
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plays a key role in the induction of ICD [26]. The phosphorylation of eIF2α, the initiation
part of ER stress, has been proven to be a pathognomonic biomarker of ICD [27]. Thus,
we next explored the level of eIF2α phosphorylation in HCC cells treated with DSF/Cu
and observed an increased eIF2α phosphorylation at serine 51 (Figure 3C). In addition,
X-box binding protein 1 splicing (XBP1s) and CHOP, the other component of ER stress,
were also upregulated.
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Figure 3. DSF/Cu induces unfolded protein response and inhibits protein degradation. (A) Pathway
analysis between normal control and DSF/Cu-treated HCC cells. (B) Differential expression of
unfolded protein response- and protein ubiquitination-related genes between normal control and
DSF/Cu-treated HCC cells. (C) Western blot analysis of ER stress and poly-ubiquitylated proteins in
LM3, Huh7, and Hepa1–6 cells after the treatment of DSF/Cu. (D) Fluorescence imaging of NPL4,
cell nuclei were stained by DAPI. Images with magnification at 800× are shown here. (E) Western
blot analysis of cytoplasmic and nuclear NPL4 in DSF/Cu-treated LM3 cells. The uncropped blots
are shown in Figure S6.
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Unfolded protein response undergoes activation upon accumulation of misfolded
proteins. Skrott and colleagues recently proposed that DSF/Cu inhibited the ubiquitin-
proteasome system by inhibiting NPL4. We also observed an accumulation of poly-
ubiquitylated proteins in HCC cells treated with increasing concentrations of DSF/Cu
(Figure 3C). Western blot and immunofluorescence showed a nucleus aggregation and
accumulation of NPL4 after DSF/Cu treatment (Figure 3D,E). According to the above
results, we speculated that DSF/Cu-mediated aggregation of NPL4 led to the accumulation
of unfolded proteins and ultimately ER stress.

3.4. Inhibition of NPL4 Induces ICD in Hepatocellular Carcinoma

To further explore whether the inhibition of NPL4 induces ICD in HCC cells, siRNAs
were used to silence the expression of NPL4 in LM3 cells (Figure 4A). Indeed, inhibition of
NPL4 led to a suppression of proliferation in LM3 cells (Figure 4B–D). In addition, NPL4
knockdown contributed to a higher proportion of apoptosis and induced upregulation of
ICD markers, including CRT exposure, HMGB1 and ATP release (Figure 4E–H). Results
of Western blot also confirmed the accumulation of poly-ubiquitylated proteins and ER
stress (Figure 4I). We further performed a transcriptome of LM3 cells transfected with
siRNA-NC or siRNA-NPL4. Functional analysis revealed the activation of the immune
response, ER stress, and protein ubiquitination, which was consistent with cells treated
with DSF/Cu (Figure 4J). GSEA analysis and heatmap confirmed the activation of type I
interferon response and interferon-gamma response (Figure 4K–L). Altogether, these data
demonstrated that inhibition of NPL4 could induce ICD in HCC cells which were similar
to DSF/Cu treatment.

3.5. DSF/Cu induced Immune Memory and DC Activation In Vivo

We next validated the immunogenic potential of DSF/Cu in a vaccine setting (Figure 5A).
Our results revealed significant inhibition of tumor growth and enhanced tumor-free
survival among mice injected with DSF/Cu-treated Hepa1–6 cells compared with negative
controls (injected with PBS) (Figure 5B–D). Meanwhile, we evaluated the proportion of
memory T cells in the lymph nodes at the contralateral flank. The proportion of effector
memory CD4+ and CD8+ T cells (CD44−, CD62L+) was higher compared with negative
controls (Figure 5E). The percentage of central memory T cells (CD44+, CD62L+) showed no
significance between the two groups (Figure 5E). These results suggested that Hepa1–6 cells
treated with DSF/Cu mediated the generation of immune memory. We also constructed an
orthotopic tumor-bearing mouse model to address the capacity of DSF/Cu to inhibit tumor
growth (Figure 5F). The results showed that DSF/Cu significantly inhibited the tumor
growth (Figure 5G–I). Flow cytometry analysis of tumors showed that DSF/Cu treatment
significantly increased the infiltration of DC cells expressing I-Ab and the costimulatory
molecule (Figure 5J–L). Taken together, our results indicated that DSF/Cu induced the
anti-tumor immune response in vivo.
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Figure 4. Inhibition of NPL4 inhibits proliferation and induces ICD in HCC cells. (A) Inhibition
efficiency of NPL4 in LM3 cells through Western blot analysis. (B) The role of NPL4 inhibition
in cell viability was detected by CCK-8 assay. (C) The role of NPL4 inhibition in clone-forming
capacity of LM3 cells. (D) The role of NPL4 inhibition in cell proliferation was detected by Edu assay.
Images with magnification at 100× are shown here. (E) Apoptosis analysis of LM3 cells after NPL4
inhibition. (F) CRT exposure, (G) HMGB1 release, and (H) ATP secretion of LM3 cells after NPL4
inhibition. (I) Western blot analysis of unfolded protein response and poly-ubiquitylated proteins in
LM3 cells after NPL4 inhibition. (J) Pathway analysis of LM3 cells after NPL4 inhibition. (K) Gene-set
enrichment analysis of type I interferon response- and interferon-gamma response-related genes in
LM3 cells after NPL4 inhibition. (L) Heatmap of type I interferon response-related genes in LM3
cells after NPL4 inhibition. *: p < 0.05; **, p < 0.01; ***, p < 0.001. The uncropped blots are shown in
Figure S6.
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Figure 5. DSF/Cu induced intratumor immune cell infiltration in vivo. (A) A schematic view of
the vaccination experiments. Individual tumor growth of normal control (B) or DSF/Cu-treated
Hepa1–6 cells (C) measured every 2 days (n = 7 for each group). (D) Tumor-free survival analysis
by Kaplan–Meier curves. (E) Analysis of the percentage of effector memory- (CD44−, CD62L+) and
central memory- (CD44+, CD62L+) T cells. (F) A schematic view of the orthotopic tumor model for
DSF/Cu treatment. (G) Tumor appearance, (H) weight and (I) volume were compared with the other
group (n = 5). Analysis of the percentage of (J) I-Ab+, (K) CD80+, (L) CD86+ DC cells in CD45+ cells.
ns: p > 0.05; *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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3.6. Combination of DSF/Cu and Anti-CD47 Therapy Exhibited Great Antitumor Activity

CD47 blockade has emerged as a promising strategy for cancer immunotherapy [28].
A previous study has suggested that the expression of CRT promoted anti-CD47 antibody-
mediated phagocytosis [29]. Given that DSF/Cu induced the membrane exposure of CRT,
we further investigated whether DSF/Cu acts synergistically with anti-CD47 through the
induction of ICD (Figure 6A). Our results showed that DSF/Cu alone or anti- CD47 alone
could inhibit tumor growth, while the combination of two drugs had a more pronounced
effect (Figure 6B–D). Compared with monotreatment with DSF/Cu or CD47 blockade, the
frequencies of I-Ab+, CD80+ and CD86+DC cells were increased in the combination-treated
group (Figure 6E–G). Moreover, secretion of IFN-γ and Granzyme B in infiltrated CD8+

T cells in the tumor microenvironment was also increased (Figure 6 H–I). Therefore, the
above data suggested that the combination therapy of the DSF/Cu and CD47 blockade
could effectively activate anti-tumor immunity to inhibit tumor growth.
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tumor model for DSF/Cu and anti-CD47 treatment. (B) Tumor appearance, (C) weight and (D)
volume were compared with each group (n = 5). Analysis of the percentage of (E) I-Ab+, (F) CD80+,
(G) CD86+ DC cells in CD45+ cells. Analysis of the percentage of IFN-γ (H) and Granzyme B (I) in
CD8+ T cells. ns: p > 0.05; *: p < 0.05; **: p < 0.01; ***: p < 0.001.

4. Discussion

The development of novel drugs for selectively activating the ICD pathway holds
great promise for cancer treatment. Recently, several anticancer agents that induce ICD
have been approved for clinical application, including belantamab mafodotin and lur-
binectedin, suggesting the broad prospects of ICD in cancer therapy [30,31]. DSF/Cu
has shown anti-tumor effects in a variety of tumors, while the potential of DSF/Cu to
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induce ICD in HCC has not been reported. Here, we found that DSF/Cu induced CRT
exposure, HMGB1 release, ATP secretion, and IFN pathway activation in HCC cells. These
DAMPs-releasing cells further promoted DC maturation and activation. The tumor vac-
cination assays validated that the DSF/Cu-induced ICD elicits immune memory. In vivo
experiments further confirmed that the oral administration of DSF/Cu inhibited tumor
growth. DSF/Cu treatment increased mature CD11c+ DCs in the tumor microenvironment.
Mechanistically, DSF/Cu indirectly inhibits the function of the proteasome by promoting
the nuclear accumulation of p97 segregase adaptor NPL4, thereby activating the unfolded
protein response (Figure 7). Collectively, our study indicated the potential of DSF/Cu as a
promising therapeutic agent against HCC cells through ICD.
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NPL4, one of the most versatile cofactors of p97, is involved in more than half of the
p97-mediated cellular processes, such as endoplasmic reticulum-associated degradation
(ERAD) and cell death [32]. During ERAD, NPL4 is recruited by p97 to extract polyu-
biquitinated proteins from the ER membrane, followed by processing and delivering the
extracted proteins to the proteasome for degradation [33]. Intranuclear aggregation of
NPL4 mediated by DSF/Cu treatment may prevent the trafficking of misfolded proteins
to the proteasome, thereby inducing unfolded protein responses and ultimately trigger-
ing ICD. Hyperactivation of the ubiquitin-proteasome system is an important factor in
abnormal tumor proliferation. Upregulation of NPL4 is observed in many cancer types and
was associated with poor prognosis in HCC, melanoma, kidney chromophobe, and glioma
(Figures S4 and S5) [34–36]. Therefore, the inhibition of p97/NPL4 segregase also represents
an attractive approach for cancer therapy. Our study demonstrated that knockdown of
NPL4 in HCC cells inhibited cell proliferation and promoted cell death, indicating that the
DSF/Cu-induced ICD is mediated by NPL4 as the relevant target.

Intuitively, the combination of immunotherapy and ICD-inducing agents represents a
potential therapeutic strategy, particularly in tumors lacking an effective immune response.
The interactions between ICD-inducing chemotherapeutic drugs and the host’s immune



Cancers 2022, 14, 4715 13 of 15

system have been found to enhance the efficacy of the checkpoint blockade. A variety
of ongoing clinical trials are assessing the effectiveness of the combination of checkpoint
blockade and ICD inducers, which may benefit numerous patients and broaden the indi-
cations for treatments with existing chemotherapeutic agents, thereby reducing the side
effects by dose reduction. In recent years, much progress has been made in targeting CD47
for cancer immunotherapy in solid tumors [37]. ICD inducers can promote the expression
of pro-phagocytic signals in tumor cells, while anti-CD47 treatment can block the “don’t
eat me” signal. The combined application of these agents may mediate the phagocytosis
of tumor cells by phagocytes. Zhou and colleagues found that CD47 blockade and ICD
induction efficiently boosted antitumor immunity and inhibited the tumor growth [38].
Our results further showed that DSF/Cu and anti-CD47 combination therapy enhanced
the activation of DCs and CD8+ T cells in the tumor microenvironment and improved
antitumor response.

In recent years, several new treatments for unresectable liver cancer have been devel-
oped, for instance, radiofrequency ablation, a multikinase inhibitor, and immune check-
point blockade [39,40]. Immune checkpoint blockade has seen a fast development in the
treatment of liver cancer during this time. As the monotherapy of immune checkpoint block-
ade showed non-statistically significant benefits in several clinical trials, researchers are
exploring combination strategies of immunotherapy and other anti-cancer agents [41,42].
Several combination strategies, such as atezolizumab plus bevacizumab and lenvatinib
plus pembrolizumab, have been demonstrated to better improve the prognosis of HCC
patients [43,44]. Some previous studies and our study found DSF/Cu could activate the
tumor immune microenvironment in preclinical models, indicating that the combination
of DSF/Cu and immune checkpoint blockade may become a new treatment option for
surgically unresectable liver cancer.

5. Conclusions

In conclusion, this study demonstrated that DSF/Cu induced ICD in hepatocellular
carcinoma by the inhibition of p97/NPL4 segregase. Our study further provides evidence
that the anti-tumor effects of DSF/Cu are partially mediated by the activation of innate
immunity via ICD. The combination of DSF/Cu and CD47 blockades might provide a new
strategy for the improvement of immunotherapy.
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