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DNA polymerases catalyze DNA synthesis with high effi-
ciency, which is essential for all life. Extensive kinetic and
structural efforts have been executed in exploring mechanisms
of DNA polymerases, surrounding their kinetic pathway, cat-
alytic mechanisms, and factors that dictate polymerase fidelity.
Recent time-resolved crystallography studies on DNA poly-
merase η (Pol η) and β have revealed essential transient events
during the DNA synthesis reaction, such as mechanisms of
primer deprotonation, separated roles of the three metal ions,
and conformational changes that disfavor incorporation of the
incorrect substrate. DNA-embedded ribonucleotides (rNs) are
the most common lesion on DNA and a major threat to
genome integrity. While kinetics of rN incorporation has been
explored and structural studies have revealed that DNA poly-
merases have a steric gate that destabilizes ribonucleotide
triphosphate binding, the mechanism of extension upon rN
addition remains poorly characterized. Using steady-state ki-
netics, static and time-resolved X-ray crystallography with Pol
η as a model system, we showed that the extra hydroxyl group
on the primer terminus does alter the dynamics of the poly-
merase active site as well as the catalysis and fidelity of DNA
synthesis. During rN extension, Pol η error incorporation ef-
ficiency increases significantly across different sequence con-
texts. Finally, our systematic structural studies suggest that the
rN at the primer end improves primer alignment and reduces
barriers in C20-endo to C30-endo sugar conformational change.
Overall, our work provides further mechanistic insights into
the effects of rN incorporation on DNA synthesis.

DNA polymerases catalyze the essential process of DNA
synthesis during DNA replication and DNA repair. Although
distinct in their sequences and structures and categorized into
seven enzymatic families, DNA polymerases contain similar
active sites, follow similar kinetic pathways, and employ similar
catalytic mechanisms (1, 2). They adopt a right-hand archi-
tecture with the active site in the palm domain, the thumb
domain that interacts with primer:template DNA duplex, and
the finger domain that interacts with the incoming nucleotide
(Fig. 1A). Conserved acidic residues line the active site, and
once DNA and the incoming nucleotide bind, replicative
polymerases (A, B, C, D, and RT-family) and some X-family
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polymerases (β and λ) exhibit large-scale finger domain
conformational changes, while Y-family polymerases and some
X-family polymerases do not. Following finger domain
movement, multiple metal ions are recruited in promoting
DNA synthesis (Fig. 1C) (1, 3–6). The B-site metal ion (Me2+B)
is associated with the triphosphate motif of the incoming
deoxynucleotide triphosphate (dNTP) and stabilizes its bind-
ing; the A-site metal ion (Me2+A) lies between the primer end
and the incoming dNTP and aligns the primer 30-OH with the
substrate α-phosphate to promote primer 30-OH deprotona-
tion and nucleophilic attack; following the binding of dNTP
and the Me2+A and Me2+B, the C-site metal ion (Me2+C) binds
between the α- and β-phosphates on the other side of the
active site and drives α-β-phosphate bond breakage. Following
product formation in A-, B- and some X-family DNA poly-
merases (7–14), the primer terminus sugar pucker remains in a
C30-endo conformation to avoid steric clashes. For Y-family
polymerases like DNA polymerase η (Pol η) (15), the primer
terminus sugar pucker changes from a C30-endo conformation
to a C20-endo conformation to avoid steric clashes with the
nonbridging oxygen on the incoming nucleotide. Concur-
rently, the metal ions and pyrophosphate dissociate from the
polymerase active site, and the newly synthesized primer end
translocates out of the nucleotide insertion site for the next
round of dNTP incorporation.

Genomic DNA constantly faces endogenous and environ-
mental assaults. Although there exist proficient repair path-
ways, polymerases inevitably face DNA lesions while traveling
along DNA. Such lesions may create bulky obstacles or alter
base-pairing, pi-stacking, and the DNA backbone, promoting
polymerase stalling and replication stress (16). Eukaryotic cells
contain repair and translesion polymerases that can bypass
various lesions (2). Different translesion mechanisms are used
to bypass different lesions with varying chemical properties (2).
DNA-embedded ribonucleotides (rNs) are the most common
lesion and pose major threats to genome integrity (17, 18). A
vast majority of rNs are incorporated during DNA replication
by DNA polymerases δ and ε (19, 20). In addition, rNs are
incorporated by Pol α as primers during Okazaki fragment
formation (21). During nonhomologous end joining or base
excision repair, rN incorporation by X-family polymerases
facilitates downstream ligation (22, 23). Having a OH group on
the 20 carbon (Fig. 2A), DNA embedded rNs can lead to nicks
on the phosphate backbone and the accumulation of
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Figure 1. DNA polymerase with bound DNA and substrate nucleotide. A, polymerase η with the DNA colored in yellow and the substrate nucleotide
colored in orange. The Me2+A and Me2+B are colored in green in the zoom-in panel. The palm, finger, thumb, and little finger domains are colored in red, blue,
green, and purple, respectively. B, stick representation of the primer terminus in yellow and yellow-orange, nucleotide in orange, the Me2+A and Me2+B in
green, and protein residues in pink. C, scheme of the three-metal-ion dependent enzyme catalysis and transition state stabilization. Divalent metal ions
optimally bind to their ligands with bond lengths of 2.0 to 2.2 Å at 90�.

Ribonucleotide extension by pol η
nonsynonymous mutations (20, 24). Although rN incorpora-
tion does not significantly affect the processivity of Pol η, Pol α,
Pol δ, and Pol ε (25, 26), rNs, if left incorporated on the nu-
clear or mitochondria template strand, can lead to error-prone
impairment and stalling of the replication and transcription
machinery (26–29). Because of their lethal nature, the cell has
evolved two specific pathways to remove DNA-embedded rNs.
The first involves ribonuclease H2 (RNaseH2), which nicks at
the rN site for error-free ribonucleotide excision repair (30,
31). The second involves topoisomerase I, which can lead to
small DNA deletions (24, 32–34). In addition, mismatch repair
has been implicated as an alternative pathway in rN removal
(35), but the mechanism of rN recognition is unclear.

The structural basis of rN incorporation by DNA poly-
merases is well understood. A steric gate for discriminating the
20-OH group of rN was first proposed in 1995 and 1997 (36, 37).
In A-family (38), B-family (39, 40), and Y-family polymerases
(41), a steric gate formed by tryptophan and phenylalanine
residues sterically clashes with the hydroxyl group on the 20

carbon of ribonucleotide triphosphates (rNTPs) and prevents
rNTP binding. As a consequence, the A-family Klenow frag-
ment polymerase, B-family RB69, and Y-family pol η discrimi-
nate rNTP incorporation by 3400- (42), 6400- (39), and 770- to
3400-folds (25), respectively. X-family polymerases such as
DNA polymerase μ, β, and λ contain only a peptide backbone in
place of a steric gate. With a tyrosine backbone in place of this
steric gate, Pol β and Pol λ discriminate rNTPs by 2000- to
8200-fold (43) and 4000-fold (44), respectively. On the other
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hand, Pol μ which contains a glycine backbone instead, prefers
to incorporate dNTP over rNTP by only 2-fold (45). During
DNA replication, if a rN does get incorporated, DNA synthesis
extending from the rN can still occur because the rN contains a
functional 30-OH group. Recently, it was revealed that the
catalytic rate of DNA polymerase ε drops 3300-fold during rN
extension compared to deoxynucleotide (dN) extension (46),
hinting the involvement of translesion polymerases in rN
extension. Kinetic analysis of Pol β revealed insignificant
changes in catalytic efficiency (Kcat/KM) between dN and rN
extension (43). Structural studies of DNA polymerase λ showed
minimal differences when the 30-end of primer was a dN versus
a rN during correct nucleotide incorporation (47). Despite such
efforts, whether and how the 20-OH at the primer end affects
the structure and dynamics of the active site as well as poly-
merase catalysis and fidelity are not fully explored.

Pol η is a Y-family translesion polymerase responsible for
bypassing cyclobutane pyrimidine dimers (48, 49). Addition-
ally, Pol η has been implicated in translesion DNA synthesis
against a variety of lesions (2). People with mutations on the
Pol η gene develop a predisposition for skin cancer and
xeroderma pigmentosum (50, 51). Furthermore, Pol η widely
participates during lagging strand synthesis (52) and has the
ability to incorporate rNs and exhibits reverse transcriptase
activity on RNA:DNA duplexes, although the biological role of
the latter remains unclear (53). Pol η has been used as a model
system for investigating mechanisms of polymerase catalysis.
Kinetic studies have revealed that Pol η follows a similar



Figure 2. The ratio of correct versus incorrect nucleotide incorporation efficiency decreases during ribonucleotide extension by DNA polymerase η.
A, chemical representation of deoxyribonucleoside (dN) and ribonucleoside (rN). Hydrogens on the sugar moieties have been removed for clarity. B, WT Pol
η DNA polymerase correct versus incorrect nucleotide incorporation efficiencies during dN or rN extension in the presence of Mg2+ based on steady-state
kinetics. The bars represent the mean of triplicate measurements for the catalytic efficiencies (kcat/KM) for incorporation of dATP (blue) and dGTP (red)
opposite dT for WT Pol η. The errors bars represent the standard deviation for the measurements. The distance between the respective catalytic efficiencies
represents a ratio of the efficiencies and is a measure of discrimination. Data are generated from Table S1. dGTP, deoxyribose guanine triphosphate; Pol η,
DNA polymerase η.
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kinetic pathway to other polymerases (54). The reaction pro-
cess of Pol η was captured at atomic resolution with recent
time-resolved crystallography (3–5, 55–57). By tracking the
DNA synthesis by Pol η in crystallo, we have showed that the
Me2+C binds between the α- and β-phosphates on the opposite
side of Me2+A and Me2+B and plays an essential role in driving
α-β-phosphate bond breakage. For Pol η, the primer terminus
sugar pucker changes from a C30-endo conformation to a C20-
endo conformation to avoid steric clashes with the non-
bridging oxygen on the incoming nucleotide (15). In addition,
primer alignment by Me2+A is perturbated during mis-
incorporation and contributes to intrinsic polymerase fidelity
(5). Moreover, structural snapshots of Pol η bypassing various
lesions such as cyclobutene pyrimidine dimers, 8,50-cyclo-20-
deoxyadenosine, phenanthriplatin, and cisplatin were captured
for illustrating mechanisms of translesion synthesis (49,
58–60). Bypassing a cyclobutene pyrimidine dimer and
cisplatin was promoted by finger domain movement that
helped minimize DNA changes in pi-stacking and alignment.
On the other hand, perturbations in primer-substrate align-
ment prevented Pol η-mediated bypass of 8,50-cyclo-20-deox-
yadenosine and phenanthriplatin on the DNA template. Thus,
we sought to use the Pol η system to investigate the conse-
quences of rN extension at atomic resolution.
Here, we present biochemical and structural studies of Pol η
extending rNs. Steady-state kinetic data on correct and
incorrect single-rN extension suggest that Pol η can extend
rNs with high efficiency. Interestingly, the rN primer end
significantly decreases substrate discrimination. Correspond-
ing crystal structures of Pol η complexed with both Mg2+ and
Mn2+ and single rN-primed DNA substrate suggest that hav-
ing a rN at the primer terminus stabilizes it in a productive
conformation for nucleophilic attack. Furthermore, we
compare the misincorporation process extending from ribose
uridine (rU) and deoxyribose thymine (dT) primed DNA
substrate with time-resolved crystallography. The results
further confirm that the decreased Pol η fidelity during rN
extension is due to the stabilization of the active aligned
conformation during nucleophilic attack.
Results

Kinetics and misincorporation efficiencies of rN extension by
pol η

During the DNA synthesis reaction, the primer 30-OH aligns
with the α-phosphate to initiate the nucleophilic attack. It was
recently revealed that primer 30-OH alignment promoted by
Me2+A is the key step in substrate discrimination (5, 61).
J. Biol. Chem. (2023) 299(3) 102938 3



Ribonucleotide extension by pol η
Interestingly, Gregory et al. captured the rN primer terminus
in the aligned conformation in the absence of the Me2+A (57),
suggesting the 20-OH group alters conformation of the sugar
ring and possibly facilitates the nucleophilic attack. We thus
hypothesized that a rN at the 30-primer end may promote
primer 30-OH alignment and stimulate incorrect nucleotide
incorporation. Steady-state kinetic assays of Pol η with native
and single-rN primed DNA substrate were conducted to detect
for changes in misincorporation efficiencies. The correct
nucleotide incorporation efficiency during rN extension was
1.3 to 2-fold lower than during dN extension (Fig. 2B and
Table S1). However, misincorporation efficiency from a rN
primer was enhanced by over 10-fold compared to dN
extension. Previous studies suggested that the misincorpora-
tion efficiencies of Pol η is sequence dependent and decreases
when extending from deoxyribose adenine (dA) and dT, also
known as the WA (W, A or T) motif (62). We thus also
examined DNA substrates with different terminal nucleotides.
Similar as reported, Pol η catalyzed DNA synthesis with
different misincorporation efficiencies on substrates with
different primer termini, with deoxyribose cytosine (dC) as the
highest and dA/dT as the lowest. For all sequence context,
substrate discrimination dropped over 10-fold with a rN
primer end. Notably for rU extension, correct incorporation
was only twice more efficient than misincorporation during rN
extension.

Misincorporation efficiencies of S113 A pol η

Previous crystal structures of Pol η showed that the primer
is coordinated in the down aligned conformation by serine 113
Figure 3. Mechanisms of S113 A polymerase η catalysis and misincorporati
ID 4ECQ). The primer 30-OH is slightly too low or close to S113 to be in an align
and its bridging oxygen are at 160�. dT primer terminus close to S113 (light blu
moves 1.3 A toward the misaligned conformation when an alanine is substitu
substrate incorporation efficiency during dN or rN extension in the presence o
incorrect substrate incorporation efficiencies represents a measurement of su
ments for the catalytic efficiencies (kcat/KM) for incorporation of dATP (blue
deoxyribose guanine triphosphate; dN, deoxynucleotide; Pol η, DNA polymera
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in the active site before Me2+A binding (Fig. 3A) (3, 57). This
widely conserved serine among Y-family polymerases is
important for primer alignment. We investigated whether a
S113 A Pol η mutant would perturb primer alignment and
alter polymerase extension. With a dN primer end, the S113 A
mutant catalyzed DNA synthesis with 6-fold lower KM and
3-fold lower kcat compared to the WT (Table S2), consistent
with previous studies (3). Misincorporation of deoxyribose
guanine triphosphate (dGTP) over dT template affected both
KM and Kcat, resulting in a 63-fold drop in catalytic efficiency
compared to correct dATP incorporation over dT (Table S2).
A ribose adenine (rA)-ended primer increased the catalytic
efficiency of correct dATP incorporation around 3-fold but
stimulated incorrect dGTP incorporation around 16-fold,
resulting in a 5-fold change in misincorporation efficiency. The
stimulation of the misincorporation by rA-ended primer is
mainly due to the elevated kcat (Fig. 3B and Table S2). Our
kinetic studies were consistent with previous studies, where rA
at the primer termini overrides the effect of S113 to help in
aligning the primer for nucleophilic attack. The results further
confirmed the significant role of primer alignment in fidelity
control and the conformation selection of the rN primer end.

Binary complex of pol η with dN and rN ended primer

To test how the rN primer end would affect primer align-
ment, we first obtained crystals of Pol η in the absence of
bound incoming nucleotide. We captured the binary state of
Pol η complexed with dT-ended DNA at 1.75 Å resolution and
rU-ended DNA at 2.1 Å resolution (Fig. 4). Both structures
were similar to the previous ternary complex (RMSD 0.2 and
on. A, WT Pol η ground state with the dT primer terminus close to S113 (PDB
ed conformation. The angle of the primer 30 oxygen, substrate phosphorus,
e) in the S113 A Pol η ground state (PDB ID 7M7Q). The dT primer terminus
ted in place of S113. B, S113 A Pol η DNA polymerase correct and incorrect
f Mg2+ based on steady-state kinetics. The fold-change between correct and
bstrate discrimination. The bars represent the mean of triplicate measure-
) and dGTP (red) opposite dT. Data are generated from Table S2. dGTP,
se η; rN, ribonucleotide; dT, deoxyribose thymine.



Figure 4. Pol η primer terminus alignment upon favorable substrate binding. A, B, binary structure of Pol η complexed with dT-primed in A or
rU-primed DNA in B. Superimposition of binary (DNA only) and ternary (DNA with substrate nucleotide 4ECR) structures (pink) during dT extension during
correct nucleotide incorporation in A, or rU extension during incorrect incorporation in B indicates primer movement upon substrate binding. The Fo-Fc
omit map for the primer (green) was contoured at 3 σ (σ values represent r.m.s. density values). dT, deoxyribose thymine; rU, ribose uridine; Pol η, DNA
polymerase η.
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0.3, respectively) and binary complex (RMSD 0.3 and 0.4,
respectively), confirming that there are no significant confor-
mational changes during incoming nucleotide binding (63).
The dT and rU structures are almost identical. In addition, the
sugar ring conformations were the same. Compared to
the ternary complex, the sugar ring for both primers termini in
the binary complex is in a C20 endo geometry. The 30-OH
group exists in the misaligned up conformation with the
substrate phosphate 4.4 Å and 3.5 Å relative to the aligned
30-OH group and stabilized by R61 through hydrogen bonds
within the dT and rU structures, respectively. These binary
structures suggested that the primer 30-end with either dN or
rN is not aligned in the absence of the incoming dNTP and
Me2+.
Structures of pol η misincorporation complex with rN at the
primer terminus

We further investigated how a rN primer end affects primer
alignment by capturing the ternary misincorporation complex.
To prevent catalysis, we prepared ternary Pol η structures with
rN-ended primers complexed with 20-deoxyguanosine-50-
[(α,β)-imido]triphosphate (dGMPNPP). We determined
structures of Pol η with rA, rU, rC, ribose guanine (rG) at the
primer terminus. In the rA structure, the primer is 100%
aligned even with the incorrect substrate, in contrast to only
25% in the dA structure (Fig. 5, A and B) (5). It is interesting to
note that for the rA primed structure, the sugar pucker of the
rA base was already in a C30endo conformation, as opposed to
that of the dA structure, which was in a C20 endo conforma-
tion (Figs. 5A and 6). Similarly, in the rU structure, 100% of the
rU primer existed in a C30endo aligned down conformation
(Fig. 5, C and D). In contrast, the primer termini in the rC and
rG structures existed in the misaligned up conformation,
similar to the structures with dC and deoxyribose guanine
(dG) (Fig. 7, A and B and Fig. S1) (62). The decreased efficiency
of bypass mediated by perturbations in primer termini align-
ment has also been observed during 8,50-cyclo-20-deoxy-
adenosine and phenanthriplatin bypass (49, 58, 59).
Interestingly, all of our rN primed structures showed minimal
changes in base-pairing and planar geometries similar to what
has been observed during Pol η-mediated cyclobutene py-
rimidine dimer and cisplatin bypass (Figs. S2 and S3) (49, 60).
In contrast, during phenanthriplatin bypass weaker pi-stacking
interactions between a template phenanthriplatin and the
incoming nucleotide were suggested to explain the 6-fold drop
in nucleotide binding.

We suspect that the primer end is in dynamic equilibrium
between the misaligned and aligned conformations as
observed in previous in crystallo studies (5, 61). The occu-
pancy might be too low for the aligned conformation of rC and
rG structures to be refined at the current resolution. Because
Mn2+ has been shown to improve primer alignment, we
captured the same rC and rG-ended Pol ηmismatch structures
with Mn2+. The rG primed structure with Mn2+ showed
increased presence of the primer terminus in the down aligned
conformation (from 0% to 30%) (Fig. 7C and Fig. S1). The
sugar pucker of the down conformation was also in C30endo
configuration. In contrast, for the structures with rC at the
primer terminus, the primer remained in the up misaligned
conformation, consistent with the kinetic studies, showing dC/
rC-primed DNA with the highest incorrect nucleotide
discrimination (Fig. 7D and Fig. S1).
In crystallo rN extension of pol η

Previous studies have shown that nonhydrolyzable nucleo-
tide analogs such as dNMPNPPs may impede primer align-
ment (5). Thus, we visualized the misincorporation process of
dGTP across dT in the presence of Mn2+ from a single uridine
J. Biol. Chem. (2023) 299(3) 102938 5



Figure 5. Structural comparison between reactant states of incorrect nucleotide incorporation during dN or rN extension show increased incli-
nation of primer terminus alignment during rA or rU extension misincorporation. A,C, structure of rA extension (A) and rU extension (C) WT Pol η
mismatch reactant state complexed with Mg2+. B, D, structural overlay of dN (green) (PDB ID 4J9M and 4J9K) or rN (pink) extension structures with
dGMPNPP:dT base-pair indicating differences in 30-OH alignment. The misaligned primer terminus in the dN structure (green) is colored with yellow green.
All electron density maps apply to the molecule colored in pink. The 2Fo-Fc map for everything including Me2+A and Me2+B, dGMPNPP, and catalytic
residues and S113 (blue) was contoured at 2 σ. The Fo-Fc omit map for the primer terminus (green) was contoured at 3.5 σ in A, B, and 2.7 σ in C, D. rU, ribose
uridine; dN, deoxynucleotide; Pol η, DNA polymerase η; rN, ribonucleotide; dT, deoxyribose thymine.
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primed DNA substrate. We crystalized Pol η complexed with
dATP, Ca2+, K1+ to prevent the reaction. In this ground state,
30% of the rU primer termini existed in the aligned down
Figure 6. Sugar pucker geometry comparison between primer terminus
of dN versus rN extension. The Fo-Fc omit map for the pink rA primer
terminus structure was contoured at 3.5 σ. dN, deoxynucleotide; rN,
ribonucleotide.
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conformation and 3.6 Å away from the target α-phosphate
(Fig. 8A). dGTP formed a wobble base-pair with the template
dT. Similar to dT extension (5), 70% of R61 in the ground state
was already flipped away from the triphosphate motif of the
incoming nucleotide to stabilize the wobble dG-dT base pair.

To track the reaction process, we have determined six
structures of Pol η soaking in 10 mM Mn2+ for 30 to 300s
(Table S3). Mn2+ was chosen over Mg2+ due to the higher
occupancies of the incoming nucleotide and its better signal in
X-ray diffraction. The resolution of these structures are similar
with different soaking time, ranging from 2.05 to 2.2 Å. After
30s soaking in 10 mM Mn2+, 70% of the Me2+A was already
saturated with Mn2+, and 75% of the rU primer had moved
down in the aligned conformation, residing 3.6 Å away from
the target α-phosphate (Fig. 8B). In comparison, after 30s
soaking with a dT-ended primer, 65% of the Me2+A was
saturated with Mn2+, and 40% of the thymine primer was
aligned for misincorporation. The Me2+A during rU extension



Figure 7. Structural comparison between reactant states of incorrect nucleotide incorporation during rC and rG extension. A,B, structure of rC
extension (A) and rG extension (B) misincorporation with Mg2+ by WT Pol η. C, D, structure of rC extension (C) and rG extension (D) misincorporation with
Mn2+ by Pol η. The 2Fo-Fc map for everything including Me2+A and Me2+B, dGMPNPP, and catalytic residues and S113 (blue) was contoured at 2 σ. The Fo-Fc
omit map for the primer terminus (green) was contoured at 3.8 σ in A and C and 2.0 σ in B and D. Pol η, DNA polymerase η; rG, ribose guanine.
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was assigned with 70% occupancy and was in an optimal
octahedral geometry. Despite the improvement in alignment,
the 30-OH of rU resided 2.6 Å away from the Me2+A, 0.5 Å
further compared to that during correct incorporation. After
180s of soaking, clear electron density for newly formed bond
was visible and assigned to 50% between the rU 30-OH and
target α-phosphate (Fig. 8, C and D). Unlike during dT
extension in which the Me2+C appeared before product
Figure 8. In crystallo visualization of WT Pol η rU extension misincorporat
10 mM Mn2+ soaking for 30s (B) and 180s (C). The 2Fo-Fc map for the primer ter
Me2+A, Me2+B, dGTP, and catalytic residues (blue) was contoured at 2.0 in A, 2.5
primer terminus (green) was contoured at 3 σ in A–C. The Fo-Fc omit map for all
of reaction product of Pol η rU extension misincorporation in crystallo with Mn
triphosphate.
formation, the Me2+C here appeared simultaneously with
product formation.

Discussion
Many efforts have investigated the kinetic and structural

mechanism surrounding polymerase fidelity (64–73). It was
proposed that the exonuclease proofreading and the finger
domains’ conformational changes (64, 65) play significant roles
ion with Mn2+. A–C, structures of WT Pol η during in crystallo catalysis after
minus up conformation (blue) was contoured at 1.2 σ. The 2Fo-Fc map for the
in B, and 2.0 σ in C. The Fo-Fc omit map for the down conformation of the

the Mn2+C, and newly formed bond (red) was contoured at 3.5 σ. D, timescale
2+. Pol η, DNA polymerase η; rU, ribose uridine; dGTP, deoxyribose guanine

J. Biol. Chem. (2023) 299(3) 102938 7



Ribonucleotide extension by pol η
in substrate discrimination. However, polymerases that lack
proofreading exonuclease and finger domain conformational
changes still incorporate correct bases versus incorrect bases
more efficiently than what can be provided by Watson–Crick
base pairing melting energies, which has been estimated to
be only �0.3 kcal/mol (2, 66, 69, 74–76). More recently,
studies of Pol β and Pol η have shown that primer alignment
contributes to the intrinsic polymerase incorrect nucleotide
discrimination and is perturbed during misincorporation (5,
61). Here, we show that during rN extension, misincorporation
efficiency increases over 10-fold (Fig. 2B). Systematic struc-
tural studies confirmed that this rise in misincorporation is
likely due to improved primer alignment in the presence of the
incorrect incoming nucleotide (Figs. 5, 7 and 8). Pol η mis-
incorporation is sequence dependent, with dA/dT at the
primer end showing higher misincorporation and dC with
lower misincorporation (62). The wobble base pair during rN
extension looked identical to the previous reported dN
extension mismatch structures, suggesting similar pi-stacking
interactions (62). Consistent with the trend of misincorpora-
tion, the rA and rU primer ends are better aligned compared to
rC (Figs. 5 and 7). These multiple levels of correlation of
primer end alignment and misincorporation highlighted the
critical role of primer alignment in polymerase substrate
discrimination control. All of our binary, ternary, and in
crystallo reaction structures were determined in the same
space group with similar parameters, and the observed dif-
ference in primer alignment was not likely influenced by the
crystal lattice.

During Pol η-promoted DNA synthesis, the primer termi-
nus overcomes a C20-endo to C30-endo barrier (3) to avoid
steric clashes with the nonbridging oxygen of the incoming
nucleotide. Our structures suggested that an extra 20-OH on
the sugar motif like on a rN affects sugar pucker conformation.
The rN primer termini are more readily in the C30-endo form
in the aligned conformation before product formation (Fig. 6).
In addition, this suggests weaker barriers for product forma-
tion compared to DNA extension. Minimal steric clashes of
rNs at the penultimate primer (P-2) position in A-family Pol I,
B-family RB69, X-family Pol β, and Y-family Pol η may suggest
that the C30-endo conformation is preferred as the product
form during rN incorporation (Fig. S4). The combination of
improved primer alignment and weaker C20-endo to C30-endo
sugar pucker conversion might explain the changes in sub-
strate discrimination by Pol η. Many nucleoside analog drugs
have modifications on the 30 and 20 carbon of the sugar ring
and inhibit DNA synthesis at the extension step (77). Cytar-
abine, which is similar to dC but has a 20-OH in the β direc-
tion, is an effective chain terminator and a drug for leukemia
treatment (77–80). Elevated Pol η expression has been found
to help bypass cytarabine (81, 82). Structural studies show that
cytarabine exists as a C20-endo at the primer terminus even
during correct nucleotide incorporation (83). The altered
sugar ring conformation might increase barriers in C20-endo to
C30-endo conversion and thus also inhibit polymerase exten-
sion (83, 84). Similarly, nucleoside analog drugs such as
entecavir and galidesivir contain C20-modifications and
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possibly exert their inhibitory effect through similar
mechanisms.

Our study on rN extension suggests that the 20-OH signif-
icantly affects polymerase misincorporation. As Me2+A-medi-
ated primer alignment is a required step in DNA synthesis, we
hypothesize that the observed elevated incorporation error
rate might be a universal property for all polymerases. How-
ever, polymerases from different families may have evolved
specific structural features to discriminate the 20-OH at the
primer end. Although Pol η and X-family polymerases can
extend past rN primers with high efficiency, Pol ε efficiency
decreases over 3300-fold during rN extension (46). Further
biochemical and structural studies of different polymerases
may be needed to clarify the effect of the 20-OH group on
catalysis, misincorporation, and primer extension. The
reduced efficiency of Pol ε in extending rN primer might
indicate involvement of translesion polymerases in extending
rN primers (5, 61).

Experimental procedures

Protein expression and purification

Wildtype human polymerase η (Pol η) (residues 1–432) was
cloned into a modified pET28p vector with a N-terminal
6-histidine tag and a PreScission Protease cleavage site as
described (56). For protein expression, this Pol η plasmid was
transformed into BL21 DE3 Escherichia coli cells. When the
absorbance of the E. coli cells reached 0.8, isopropyl ß-D-1-
thiogalactopyranoside was added to a final concentration of
1 μM isopropyl ß-D-1-thiogalactopyranoside. After 20 h (16�C)
of induction, the cell paste was collected via centrifugation and
re-suspended in a buffer that contained 20 mM Tris (pH 7.5),
1 M NaCl, 20 mM imidazole, and 5 mM ß-mercaptoethanol.
After sonification, Pol η was loaded onto a HisTrap HP col-
umn (GE Healthcare), which was pre-equilibrated with a
buffer that contained 20 mM Tris (pH 7.5), 1 M NaCl, 20 mM
imidazole, and 5 mM ß-mercaptoethanol. The column was
washed with 300 ml of buffer to remove nonspecific–bound
proteins and was eluted with buffer that contained 20 mM
Tris (pH 7.5), 1 M NaCl, 300 mM imidazole, and 3 mM
dithiothreitol (DTT). The eluted Pol η was incubated with
PreScission Protease to cleave the N-terminal 6-histidine-tag.
Afterwards, Pol η was buffer-exchanged and desalted to
20 mM 2-(N-morpholino)ethanesulfonic acid (MES) (pH 6.0),
250 mM KCl, 10% glycerol, 0.1 mM ethylenediaminetetra-
acetic acid, and 3 mM DTT and was loaded onto a MonoS
10/100 column (GE Healthcare). The protein was eluted with
an increasing salt (KCl) gradient. Finally, Pol η was cleaned
with a Superdex 200 10/300 Gl column (GE Healthcare) with a
buffer that contained 20 mM Tris (pH 7.5), 450 mM KCl, and
3 mM DTT.

DNA synthesis assay

The nucleotide incorporation activity was assayed by the
following: The reaction mixture contained 1.3 to 180 nM Pol η
(WT or S113 A), 5 μM DNA, 0 to 400 μM dNTP (either dATP
or dGTP), 100 mM KCl, 50 mM Tris (pH 7.5), 5 mM MgCl2,



Table 2
Crystallization DNA sequences

DNA sequence N = DNA N = RNA Name

30 TCGCAGTTTTAC 50
50 AGCGTCAA 30

rA primed

30 TCGCAGTATTAC 50
50 AGCGTCAU 30

rU primed

30 TCGCAGTGTTAC 50
50 AGCGTCAC 30

rC primed

30 TCGCAGTCTTAC 50
50 AGCGTCAG 30

rG primed

30 TCGCAGTGTTAC 50
50 AGCGTCAC 30

dC primed

30 TCGCAGTCTTAC 50
50 AGCGTCAG 30

dG primed
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3 mM DTT, 0.1 mg/ml bovine serum albumin, and 4% glyc-
erol. The incorporation assays were executed using DNA
template and 50-fluorescein–labeled primer listed in Table 1.
Reactions were conducted at 37 �C for 5 min and were stopped
by adding formamide quench buffer to the final concentrations
of 40% formamide, 50 mM ethylenediaminetetraacetic acid
(pH 8.0), 0.1 mg/ml xylene cyanol, and 0.1 mg/ml bromo-
phenol. After heating to 97 �C for 5 min and immediately
placing on ice, reaction products were resolved on 22.5%
polyacrylamide urea gels. The gels were visualized by a Sap-
phire Biomolecular Imager and quantified using the built-in
software. Quantification of Kcat, KM, VMax and fitting and
graphic representation were executed by Graph Prism. Source
data of urea gels are provided as a Source Data file.

Crystallization

Pol η was concentrated to 300 μM in buffer that contained
20 mM Tris (pH 7.5), 0.45 M KCl, and 3 mM DTT. Then
DNA, dGTP or dGMPNPP, and Ca2+ and low salt buffer
[20 mM Tris (pH 7.5), and 3 mM DTT] were added to this
polymerase solution at the molar ratio of 1 : 1.2: 1: 1 for Pol η,
DNA, dGTP or dGMPNPP, and Ca2+, bringing Pol η0s con-
centration to 100 μM. Then after this solution was kept on ice
for 10 min, more dGTP or dGMPNPP was added to a final
concentration of 0.5 mM. DNA template and primer used for
crystallization are listed in Table 2. All crystals were obtained
using the hanging-drop vapor-diffusion method against a
reservoir solution containing 0.1 MMES (pH 6.0) and 9 to 15%
(w/v) PEG2K-MME at room temperature within 4 days.

Chemical reaction in crystallo

The crystals were first transferred and incubated in a pre-
reaction buffer containing 0.1 M MES (pH 7.0, titrated by
KOH), 100 μM dGTP, and 20% (w/v) PEG2K-MME for
30 min. The chemical reaction was initiated by transferring the
crystals into a reaction buffer containing 0.1 M MES (pH 7.0),
20% (w/v) PEG2K-MME, and 10 mM MnCl2. After incubation
for a desired time period, the crystals were quickly dipped in a
cryo-solution supplemented with 20% (w/v) glycerol and flash-
cooled in liquid nitrogen.
Table 1
Kinetic assay DNA sequences

DNA sequence N = DNA N = RNA Name

30CACGGATCGCATTTGTACTGAG50
50 GTGCCTAGCGTAA 30

dA primed

30CACGGATCGCATATGTACTGAG50
50 GTGCCTAGCGTAT 30

dT primed

30CACGGATCGCATGTGTACTGAG50
50 GTGCCTAGCGTAC 30

dC primed

30CACGGATCGCATCTGTACTGAG50
50 GTGCCTAGCGTAG 30

dG primed

30CACGGATCGCATTTGTACTGAG50
50 GTGCCTAGCGTAA 30

rA primed

30CACGGATCGCATATGTACTGAG50
50 GTGCCTAGCGTAU 30

rU primed

30CACGGATCGCATGTGTACTGAG 50
50 GTGCCTAGCGTAC 30

rC primed

30CACGGATCGCATCTGTACTGAG50
50 GTGCCTAGCGTAG 30

rG primed
Data collection and refinement

Diffraction data were collected at 100 K on LS-CAT beam
lines 21-D-D, 21-ID-F, and 21-ID-G at the Advanced Photon
Source (Argonne National Laboratory). Data were indexed in
space group P61, scaled, and reduced using XDS (85).
Isomorphous Pol η structures with Mg2+ PDB: was used as
initial models for refinement using PHENIX (86) and COOT
(87). Initial occupancies were assigned for the substrate, re-
action product, PPi, Me2+A, Me2+B, and Me2+C, for the ternary
ground state, following the previous protocol (4). After there
were no significant Fo-Fc peaks and each atom’s B value had
roughly similar values to its ligand, we assigned occupancies
for the same regions for the timepoints in between (Figs. S5–
S7). Occupancies were assigned to the misaligned and aligned
conformations of the primer termini until there were no more
significant Fo-Fc peaks. For the structures in which both
primer conformations were at an equilibrium (not 100% in
either misaligned or aligned), occupancies were assigned until
the Fo-Fc peaks for both conformations (while they still
remained) did not increase. In addition, for the structures in
which some positive Fo-Fc peaks were present around the
Me2+ binding sites or primer termini, no change in the
assigned occupancy was executed when a 10% change in oc-
cupancy (e.g., 100% to 90%) failed to significantly change the
intensity of the Fo-Fc peaks. Source data of the electron den-
sities in r.m.s. density are provided as a Source Data file. Each
structure was refined to the highest resolution data collected,
which ranged between 1.75 and 2.2 Å. Software applications
used in this project were compiled and configured by SBGrid
(88). Source data of data collection and refinement statistics
are summarized in Table S3, A–C. All structural figures were
drawn using PyMOL (http://www.pymol.org).
Data availability

The coordinates, density maps, and structure factors for all
the structures have been deposited in Protein Data Bank (PDB)
under accession codes: 8E85, 8E86, 8E87, 8E88, 8E89, 8E8A,
8E8B, 8E8C, 8E8D, 8E8E, 8E8F, 8E8G, 8E8H, 8E8I, 8E8J, and
8E8K.
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information.
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