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Abstract: Anisotropic etching of silicon in potassium hydroxide (KOH) is an important technology
in micromachining. The residue deposition from KOH etching of Si is typically regarded as a
disadvantage of this technology. In this report, we make use of this residue as a second masking layer
to fabricate two-layer complex structures. Square patterns with size in the range of 15–150 µm and
gap distance of 5 µm have been designed and tested. The residue masking layer appears when the
substrate is over-etched in hydrofluoric acid (HF) solution over a threshold. The two-layer structures
of micropyramids surrounded by wall-like structures are obtained according to the two different
masking layers of SiO2 and residue. The residue masking layer is stable and can survive over KOH
etching for long time to achieve deep Si etching. The process parameters of etchant concentration,
temperature, etching time and pattern size have been investigated. With well-controlled two-layer
structures, useful structures could be designed for applications in plasmonic and microfluidic devices
in the future.
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1. Introduction

Anisotropic etching of silicon in alkali metal hydroxides aqueous solutions (e.g., KOH) is an
important technology in micromachining [1]. Micro- and nano-structures on substrate have been
widely applied in solar cells, superhydrophobic surface and plasmonics [2–6]. Different applications
require the features at a different shape and size range.

The formation of micro- and nano-pyramids on the Si surfaces are well known fabricated by
this anisotropic etching process [5,6]. KOH has often been selected as the etchant according to its
advantages of easy-preparation, non-toxicity, cost-effective and fast-etching [7]. For anisotropic etching
of Si, the KOH concentration and etching temperature are key parameters, especially for the structures
at nanometer scale. For most micron scale fabrication, the KOH concentration varies from 25–50 wt %
and temperature range of 50–85 ˝C [1,5–16]. The higher etchant concentration and reaction temperature
guarantee that the etching products are dissolved fast without hiding the continuous etching. However,
if people would like to precisely control the etching process, such as nanostructure by KOH etching,
the lower KOH concentration and lower temperature are required [6].

The residue deposition from KOH etching of Si is well known [8], which is typically considered
as a disadvantage of this fabrication technology. In this work, we make use of the residue as a second
masking layer for fabrication of two-layer microstructures. Square arrays with different pattern size
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from 15 to 150 µm and gap distance of 5 µm have been designed and tested. Normal micropyramids
can be fabricated by well-controlled SiO2 and Si etched in HF and KOH solutions. When the substrate
is over-etched in HF to achieve larger gaps, the second layer wall-like structures appear among the first
layer micropyramids. Carefully control the fabrication parameters, the two-layer structure dimensions
can be tuned precisely. The residue masking layer is strong and stable, can survive longer than the
SiO2 masking layer for KOH etching, which in the end induces inversed structures.

Two-layer micro/nanostructures are important to achieve step-emulsification microfluidic
devices [17,18] and superhydrophobic surfaces [19,20]. With standard microfabrication technology,
it typically requires twice lithography and wet-etching to achieve two-layer microstructures.
By this method, two-layer microstructures can be fabricated in simple one-step lithography and
wet-etching process, which is very useful for fabrication of functional devices for plasmonics and
microfluidics applications.

2. Experimental Section

P-type <100> 4” silicon wafer with 100 nm SiO2 (Lijing Optoelctronics Co. Ltd, Suzhou, China)
was used as the substrate for surface patterning and etching. The Si wafers were ultrasonically cleaned
in Deionized (DI) water for 15 min, immersed in Piranha solution for 15 min and then thoroughly
rinsed by DI water. Photolithography was done by spin coating (Smart Coater 100, Best Tools, LLC,
St Louis, MO, USA) photoresist SUN-120P (Suntific Microelectronic Materials Co. Ltd, Weifang, China)
at 3000 rpm for 60 s, exposing using an aligner (URE-200/35, Institute of Optics and Elctronics, Chendu,
China) for 30 s, and developing in 0.4 wt % KOH at 25 ˝C for 2 min. The wafer with photoresist
was then rinsed using DI water and dried using nitrogen gun, and then hard baked on a hot plate
(EH20B, Lab Tech, Beijing, China) at 120 ˝C for 15 min. SiO2 etching was performed in 10 wt % HF
(Guangzhou Chemistry, Guangzhou, China) solution, and anisotropic Si etching was completed in
KOH (Zhiyuan Chemistry, Tianjin, China) solution. All chemicals were used as received without
further treatment. Desktop scanning electron microscope (SEM) (Phenom G2 Pro, Phenom-World,
Eindhoven, The Netherlands) and Field Emission-SEM (FE-SEM) (ZEISS-Ultra55, Carl Zeiss AG,
Oberkochen, Germany) were used to visualize micro- and nano-structures and take images. Contact
angle was measured using OCS 15pro (Dataphysics, Stuttgart, Germany).

3. Results and Discussion

Pyramids in the range of micrometer to nanometer size can be fabricated by anisotropic etching
of silicon surface in KOH etchant solution. The formation of pyramids is neither related to any specific
KOH supplier nor to mask or lithography problems [1]. Usually, the KOH etched pyramids are of
exact geometric shape. Two types of pyramids can be observed: rectangular base or octagonal base,
depending on the experimental conditions [21].

In general, pyramids are obtained according to the anisotropic etching of <100> and <110> plane in
KOH solution. In this work, we have designed the square patterns in the range of 15 to 150 µm with gap
distance of 5 µm. By controlling the etching time in HF solution, the opening of SiO2 (first masking layer
for KOH etching) varies with etching time. We have obtained simple micropyramids structure by
strictly control the etching time in HF solution. However, prolonged etching time in HF solution
expand the opening size of the SiO2 on Si substrate, which causes fast reaction with large amount of
products which will deposit on Si surface serving as a second masking layer to produce a second layer
of wall-like structures among the first layer micropyramids.

3.1. Two Types of Microstructures Obtained in One-Step Wet Etching

In our experiments, we found that with the variation of pattern size and etching conditions
different types of patterns have been obtained. Figure 1a,c represents the schematic cross-sectional view
of the fabrication process of one-layer micropyramids and two-layer with first layer micropyramids
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surrounded by second layer wall-like structures, respectively. Figure 1b,d shows the SEM images of
the fabricated structures.Micromachines 2016, 7, 19 3 of 7 

Figure 1. Schematic drawing of the fabrication process without (a) or with (c) the residue as second 
masking layer. (b) SEM images of cross-sectional view (top) and 45° view (bottom) of the fabricated 
one-layer micropyramids. (d) SEM images of cross-sectional view (top) and 45° view (bottom) of the 
fabricated two-layer micropyramids surrounded by walls. 

The simple micropyramids are obtained by anisotropic etching silicon via the 5 μm opening in 
KOH solution, micropyramids connected with each other via the valleys with the same shape and 
size, as shown in Figure 1b. By carefully analyzing SEM image in Figure 1d (top), we can clearly see 
that the height and width of the neighboring micropyramids are different; however, all even 
micropyramids show the same shape and size and all odd micropyramids show the same shape and 
size. The bottom image in Figure 1d clearly show that two types of microstructures were obtained in 
our experiments. The first layer of micropyramids were obtained by anisotropic etching silicon 
substrate via the opened Si by HF etching of SiO2, and the second layer of wall-like structures 
surrounding the micropyramids were obtained according to the second masking layer from the 
reaction products deposition. The second residue masking layer is mainly Si(OH)x from the reaction 
of KOH and Si, which could be easily removed if the sample was dipped in HF solution again. Figure 
2 shows the high resolution SEM image of the substance deposited on the wall-like structure surface. 

 

 
Figure 2. SEM images of a two-layer structures (a,b), and the residue substance on the wall-like 
structure surface (c). The pattern size was 75 μm × 75 μm with 5 μm gap distance. The substrate was 
etched in 10 wt % HF for 1.5 min, and then in 10 wt % KOH solution for 30 min at 70 °C. 

Figure 1. Schematic drawing of the fabrication process without (a) or with (c) the residue as second
masking layer. (b) SEM images of cross-sectional view (top) and 45˝ view (bottom) of the fabricated
one-layer micropyramids. (d) SEM images of cross-sectional view (top) and 45˝ view (bottom) of the
fabricated two-layer micropyramids surrounded by walls.

The simple micropyramids are obtained by anisotropic etching silicon via the 5 µm opening in
KOH solution, micropyramids connected with each other via the valleys with the same shape and
size, as shown in Figure 1b. By carefully analyzing SEM image in Figure 1d (top), we can clearly
see that the height and width of the neighboring micropyramids are different; however, all even
micropyramids show the same shape and size and all odd micropyramids show the same shape and
size. The bottom image in Figure 1d clearly show that two types of microstructures were obtained in our
experiments. The first layer of micropyramids were obtained by anisotropic etching silicon substrate
via the opened Si by HF etching of SiO2, and the second layer of wall-like structures surrounding
the micropyramids were obtained according to the second masking layer from the reaction products
deposition. The second residue masking layer is mainly Si(OH)x from the reaction of KOH and Si,
which could be easily removed if the sample was dipped in HF solution again. Figure 2 shows the
high resolution SEM image of the substance deposited on the wall-like structure surface.
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Figure 2. SEM images of a two-layer structures (a,b), and the residue substance on the wall-like
structure surface (c). The pattern size was 75 µm ˆ 75 µm with 5 µm gap distance. The substrate was
etched in 10 wt % HF for 1.5 min, and then in 10 wt % KOH solution for 30 min at 70 ˝C.
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We have designed and tested the square patterns with side length of 15, 30, 50, 65, 75, 100 and
150 µm, and all gap distance of 5 µm. Both simple one-layer micropyramids and complex two-layer
structures of micropyramids surrounded by the wall structures have been observed for all these
designed structures. In general, the one-layer micropyramids appear when the etching time in HF
solution (tHF) is ď 1.0 min. As soon as tHF ě 1.5 min, the two-layer structures started to appear.

3.2. HF Etching Time Effect on the Two-Layer Structures

As discussed in the previous section, the two-layer structures appear according to the over etching
in HF solution. We have tested the HF etching time (tHF) effect on the first layer micropyramids and
second layer wall-like structures using the sample of 50 µm ˆ 50 µm square patterns with 5 µm gap
distance, as shown in Figure 3. Figure 3a is the SEM images of the fabricated structure when the
samples were immersed in HF for different time. Figure 3b,c shows the variation of the two-layer
structure width and height with tHF.
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showing strong and wide wall structures. Therefore, we can conclude that the two-layer complex 
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Figure 3. (a) SEM images of the fabricated structures at different tHF (top: cross-sectional view, bottom:
45˝ view). (b) The second layer wall width (W2nd) varies with tHF. (c) Height (h) of the first layer
micropyramids and the second layer walls changes with tHF. The sample patterns are 50 µm ˆ 50 µm
square with gap distance of 5 µm. The samples were etched in HF solution for 1.0, 1.5, 2.0 and 2.5 min.
All sample substrates were etched in 10 wt % KOH solution for 30 min at 70 ˝C.

The simple one-layer micropyramids were obtained when the sample was etched in HF for 1.0 min.
As tHF increased to 1.5, 2.0 and 3.0 min, obvious two-layer structures were observed. The height of
the micropyramids (first layer) and wall-like structures (second layer) is 15.1 and 11.8 µm when
tHF = 1.5 min, 9.9 and 8.1 µm when tHF = 2.0 min, 3.1 and 8.6 µm when tHF = 3.0 min. Therefore,
the height difference between first layer and second layer is 3.3, 1.8 and 5.5 µm for tHF of 1.5, 2.0 and
3.0 min, respectively. The maximum second layer wall-like structures were obtained at tHF = 1.5 min.
A special structure was obtained at tHF = 3.0 min, in which the micropyramids were smaller than the
wall structures. As seen from the details of the SEM images, the SiO2 layer disappeared during the
KOH etching, leaving its covered Si completely open for KOH etching which caused the micropyramids
to shrink. However, the wall-like structures were stable over all etching processes, showing strong and
wide wall structures. Therefore, we can conclude that the two-layer complex structures are produced
according to the two masking layers: the first SiO2 masking layer and the second residue masking layer
from the quick accumulation of reaction products of KOH and Si in the open area, as demonstrated
in Figure 1c.
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3.3. KOH Concentration and Etching Time Effect on Two-Layer Structures

The effect of KOH concentration (CKOH) and etching time in KOH solution (tKOH) on the second
layer wall structures have also been investigated, as shown in Figure 4. As the KOH concentration
increases, the wall width does not change significantly, as shown in Figure 4a. The wall width slightly
decreases with the etching time in KOH, as shown in Figure 4b.
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Figure 4. (a) Width of the second layer walls (W2nd) varies with KOH concentration(CKOH). (b) Width of
the second layer walls (W2nd) changes with etching time in KOH solution (tKOH). The sample patterns
are 50 µm ˆ 50 µm square with gap distance of 5 µm. Each data point was obtained by averaging the
values from three samples. All samples were etched in HF solution for 1.5 min. The etching time and
temperature was 30 min and 70 ˝C for (a). The KOH concentration was 10 wt % KOH and etching
temperature was 70 ˝C for (b).

3.4. Shapes of Micropyramids

Usually the KOH etched pyramids are of exact geometric shape. Two types of pyramids
can normally be observed: rectangular base or octagonal base, depending on the experimental
conditions [21]. In our experiments, we have also observed the rectangular and octagonal shapes for
the first layer micropyramids directly etched via the opening of the SiO2 layer. The samples with the
same pattern size (50 µm ˆ 50 µm square with 5 µm gap distance) was selected to investigate the
shape of the micropyramids. The samples were all etched in 10 wt % HF solution for 2.0 min, and then
moved to KOH solutions to etch for 10 min at 70 ˝C. As shown in Figure 5, two-layer structures are
obtained for all samples; however the shape of the micropyramid tips changes with process conditions.
The shape is square, octagonal, mixed square and octagonal, square with round-corners and round
at the KOH concentration of 1.0, 5.0, 10, 20 and 35 wt %, respectively. This is according to the plane
selectivity and etching speed, which is similar to simple micropyramid structures without the second
layer structures [9].
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Figure 5. First layer micropyramids shape varies with KOH concentration. All samples were
50 µm ˆ 50 µm square patterns with gap of 5 µm. The samples were first etched in 10 wt % HF
solution for 2.0 min. The KOH etching time was 10 min and temperature was 70 ˝C.

4. Conclusions

In this work, we have designed micropatterns for fabrication of micropyramids on silicon
substrate with SiO2 as masking layer. Simple one-layer micropyramids have been obtained with
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controlled etching in HF solution to open the etching access holes at around 5 µm. Two-layer complex
structures of first layer micropyramids surrounded by second layer wall-like structures were obtained
by over-etching the substrate in HF solution. With the square pattern size in the range of 15 to
150 µm with 5 µm gap distance, reproducible two-layer structures have been obtained in a wide range
of fabrication conditions. As an example, 50 µm ˆ 50 µm patterns with 5 µm gap, the two layer
micropyramids appeared when HF etching time was more than 1.5 min. With increasing the etching
time in HF, the second layer wall-like structure width and height increases, however the first layer
micropyramids height and width decreases. KOH concentrate does not affect the wall-like structure
size significantly; however, it does affect micropyramids shapes due to the plane selectivity and etching
speed. The residue masking layer is strong and stable, which can withstand long time KOH etching.
For a long time HF etching with less SiO2 left, the second layer mask can induce an inversed structures
after long time etching in KOH solution. Making using of the residue as a second masking layer for
controllable microstructure fabrication on Si substrate is a simple and useful method which will be
used for fabrication of various structures applied in plasmonics, microfluidics and superhydrophobic
surfaces in the future.
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