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ARTICLE INFO ABSTRACT

Keywords: Pigs are natural host to various zoonotic pathogens including viruses. In this study, we analyzed
Diarrhea piglets the viral communities in the feces of 89 piglets with diarrhea under one month old which were
Feces

collected from six farms in Jiangsu Province of the Eastern China, using the unbiased virus
metagenomic method. A total of 89 libraries were constructed, and 46937894 unique sequence
reads were generated by Illumina sequencing. Overall, the family Picornaviridae accounted for the
majority of the total reads of putative mammalian viruses. Ten novel virus genomes from different
family members were discovered, including Parvoviridae (n = 2), Picobirnaviridae (n = 4) and
CRESS DNA viruses (n = 4). A large number of phages were identified, which mainly belonged to
the order Caudovirales and the family Microviridae. Moreover, some identified viruses were closely
related to viruses found in non-porcine hosts, highlighting the potential for cross-species virus
dissemination. This study increased our understanding of the fecal virus communities of diarrhea
piglets and provided valuable information for virus monitoring and preventing.

Metagenomic
Viral communities
Virus genome

1. Introduction

Pigs are omnivorous mammals that are frequently kept as livestock and are a significant component of animal protein for con-
sumption by humans all over the world [1]. China is one of the biggest pig farming countries in the world. According to official
statistics from the Ministry of Agriculture and Rural Development of the People’s Republic of China, the number of pigs slaughtered in
2021 was 1.672 billion [2]. Large-scale high-density pig farming operations are quite vulnerable to virus outbreaks, which may
promote the emergence and horizontal transmission of new pathogens, as well as increase the risk of zoonotic infectious diseases
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spreading to other species, including humans [3]. With the globalization of the pig industry, porcine pathogens are emerging more
frequently and spreading over the world [4].

Diarrhea is one of the common diseases of pigs. Piglets’ related dehydration symptoms are a common cause of piglet mortality,
particularly in intensive pig farms, resulting in major economic losses in the pig industry worldwide [5]. The Porcine Epidemic
Diarrhea Virus (PEDV) [6], Swine Fever Virus (SFV), porcine rotavirus [7] and porcine circovirus have been known to cause the
diarrhea in piglets [8]. In 2013, the PEDV affected nearly half of America’s breeding stock [8]. In China, African swine fever caused
$141 billion in direct economic losses [9]. Some of these viruses are zoonotic pathogens that recognize pigs as hosts and transmitted to
humans such as Nipah, influenza A, hepatitis E and Japanese encephalitis viruses [2]. Zoonoses can pose a serious threat to public
health and the global economy [10]. According to previous studies, the direct costs of zoonotic diseases surpassed $20 billion, while
the indirect costs exceed $200 billion [11]. It was reported that there have been outbreaks of new infectious diseases related to
diarrhea in piglet farms [12]. These diseases are related to bocaviruses, astroviruses, caliciviruses, kobuviruses, sapeloviruses, etc.

Pigs frequently live in close proximity to humans, and this might be associated with an increased risk of transmission of pathogens
including zoonotic agents [13]. Most viruses are spread to humans or other animals through direct contact with living animals, or to
the public by contaminated meat [14,15]. Emerging and re-emerging infectious viral diseases have become a constant threat and
disease burden to animal and human health. Therefore, it is crucial to investigate the presence of viruses in key host animals such as
pigs to find the original hosts or carriers of viruses that may cause disease outbreaks in farmed animals and humans [16]. Some
previous studies have investigated the viral composition of feces from diarrheic piglets; however, the fecal viral composition of piglets
is affected by a variety of factors such as feeding styles, sanitary conditions, geographic locations, and research methods. Recently, the
metagenomic approach has provided us with a new unbiased way to describe the viral community of different sample [17]. In this
study, viral metagenomic technique was carried out to analyze the fecal virus communities of diarrheic piglets in Jiangsu province of
China, and the potential novel viruses were bioinformatically identified.

2. Materials and methods
2.1. Sample Collection and preparation

To investigate fecal viruses in diarrheic piglets, from April to May in 2018, 89 fecal samples of diarrhea piglets were collected from
pig farms in Jiangsu Province of the Eastern China, including Nanjing, Yangzhou, Nantong, Zhenjiang, Changzhou and Suzhou cities
(Fig. S1 and Table 1). All piglets were under one month of age (14-30 days of age). Using disposable gloves, feces samples from a single
piglet were collected from the floor after the piglets were segregated in a designated area and allowed to fecate on their own. Samples
were collected using disposable materials and transported to the laboratory on dry ice. Fecal samples were resuspended with 10 vol of
phosphate buffered saline (PBS) and vigorously rotated for 5 min. After centrifugation (10min, 15000 g), the supernatant was placed in
a 1.5 ml centrifuge tube and stored at —80 °C for nucleic acid extraction.

2.2. Viral particle purification and nucleic acid extraction

A total volume of 500 pl of the mixed supernatant was filtered through 0.45 pm microwell filter to remove eukaryotic cells, and
0.22 pm microwell filter to remove bacterial-sized particles [18]. After centrifugation (13,000 g, 5 min), the filtered filtrate was
collected and treated at 37 °C with a mixture of DNases (Ambion Turbo DNase, Epicentre Baseline-ZERO), benzonase (Novagen), and
RNase (Fermentas) to digest unprotected nucleic acid. Fecal samples were treated for 90 min [19]. Nucleic acid (including RNA and
DNA) was extracted with QIAamp Viral RNA Mini Kit (QIAGEN) according to the manufacturer’s instruction [20,21]. Viral nucleic acid
was reverse transcribed to cDNA using the six random base primers with reverse transcription Kit (SuperScript IV, Invitrogen), and
then the products were denatured at 95 °C for 2 min and rapidly placed on ice for at least 2 min. The second strand was synthesized by
using Klenow fragment DNA polymerase (New England Biolabs) and the primer K-8N (GAC CAT CTA GCG ACC TCC ACN NNN NNN
NNNN N) [22].

2.3. Library construction for metagenomic sequencing

The PCR procedure was performed in a total reaction volume of 50 pl containing 1 U of Taq DNA polymerase, 0.2 mM dNTP, 2.5
mM MgCly, 1 x PCR Buffer, 0.8 pM primer K-randoms (GAC CAT CTA GCG ACC TCC AQC), and 5 pl of template. Temperature cycling

Table 1
Sample information.
Farm No. Collection location Sample size Sample No. Age in days
A Nanjing city 5 1-5 15
B Yangzhou city 3 23-25 17
C Nantong city 29 73, 74, 76-102 17~30
D Zhenjiang city 13 160-172 14
E Changzhou city 20 177-196 21~28
F Suzhou city 19 197-215 20~27
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was performed as follows: one cycle at 95 °C for 5 min, followed by 35 amplification cycles (95 °C for 1 min, 59 °C for 1 min, and 72 °C
for 1 min), and final extension at 72 °C for 1 min [23]. Products were identified as a smear by agarose gel electrophoresis [24]. Then,
Nextera XT DNA sample preparation Kit (Illumina) with dual barcoding was used to construct libraries and the quality was evaluated
using agarosegel electrophoresis. Libraries were sequenced on the NovaSeq 6000 Illumina platform, which features 250 base-paired
ends with double barcodes for each library [25].

2.4. Bioinformatics analysis

The 250bp paired end reads generated by NovaSeq 6000 sequencing were decoded using Illumina’s vendor software, and the data
was processed using the internal analysis pipeline running on the 32 node Linux cluster. Clone reads were removed and low-
sequencing quality tails were trimmed using Phred (mass fraction threshold set to 10). Adaptors were trimmed using the default
parameters of VecScreen which NCBI Blastn with default parameters is designed for adapter removal. The clean readings from [llumina
sequencing were De Novo assembled within each barcode group using the integrated assembler Geneious Prime (version 2019.2.3) to
combine them into longer contigs. The assembled contigs and singlets were compared with the internal viral proteome database using
Blastx, with E-value cut-off < 107525 Candidate viral hits were then compared with an internal non-virus non-redundant (NVNR)
protein database to remove false-positive viral hits [26]. The NVNR database was compiled using non-viral protein sequences
extracted from NCBI nr fasta file that based on annotation taxonomy excluding Virus Kingdom. Based on the number of virus reads
derived from MEGAN software (MEtaGenome Analyzer, version 6.21.7), the pheatmap package (v1.0.12) was used at the family level
of each barcode to establish a heatmap [27].

2.5. Viral diversity, distribution and community analysis

To study the diversity and distribution of viruses in fecal samples from diarrheic piglets, we performed two types of analyses. First,
all the reads with sequence length >50 bp in the clean data were compared to the viral proteome database using Blastx as mentioned
above and the Blastx results were then loaded into the MEGAN program [2.8,29]; rarefaction curves were then conducted to visualize
differences in the composition of the viral communities. Subsequently, using the “Map to Reference” function in Geneious Prime
(version 2019.2.3), the clean data of NGS from the 89 libraries were respectively aligned to each of the 127 viral genomes which were
used as reference genomes, the libraries with >10 different reads that consistently matched the reference genome were considered to
be positive. Numbers of each library’s sequence reads mapped to the 127 genomes are shown in Supplementary Table 1 that is further
used to create a heatmap of the viral distribution.

The virus communities were compared using principal coordinate analysis (PcoA), ANOSIM, the alpha diversity index and the
Upset plot. The PcoA plot was generated using R v4.1.1 package ggplot2, which implements principal coordinate analysis (PcoA) to
visualize beta-diversity patterns. The PcoA plot was based on the Bray-Curtis dissimilarity matrix calculated from the compositional
data of operational taxonomic units (OTUs) or amplicon sequence variants (ASVs). The P-value was calculated by ANOSIM. Simpson
and Shannon indexes were used to compare the magnitude of differences in the Alpha diversity index between farm groups in box plot.
These indices provide measures of species richness and evenness within each sample group. Abundance calculations were performed
by summing the relative abundances of all OTUs or ASVs in each sample group. Upset plot is a tool for visualizing intersecting sets of
data. The plots were used to represent the distribution of taxonomic groups across samples and to identify patterns of co-occurrence or
exclusion between different taxonomic groups. It effectively represented shared and unique viruses among farms. They were all
visualized in TUTU cloud analysis platform (https://www.cloudtutu.com/#/demo/pagel).

2.6. Viral sequences acquisition and phylogenetic analysis

Viral genomes or fragments were De Novo assembled to obtain full-length genomes in Genious Prime, using the low sensitivity/
fastest parameters [30]. The MUSCLE multiple sequence alignment programs in MEGA (version 10.1.8) were run with default pa-
rameters to generate amino acid sequence alignments [31]. Based on the predicted amino acid sequence of the viral protein, the closest
Blastx match in GenBank (E-value cut-off <10—> and the selected reference strain with the highest identity with our sequence) and the
representative members of the relevant viral species or genera were selected for phylogenetic analysis. Phylogenetic trees were
constructed using Bayesian inference (BI) in MrBayes3.2 by mixed models and Markov chain Monte Carlo (MCMC) methods based on
amino acid sequences [33]. The run was stopped when the ASDSF dropped below 0.01, and the first 25% of MCMC samples were
discarded as burn-in. Figtree v 1.4.4 software, Adobe Illustrator 2020 v24.0.1, iTOL (https://itol.embl.de/) and ChiPlot (https://www.
chiplot.online/) were used to visualize the Bayesian inference tree. International Committee on Taxonomy of Viruses (ICTV) criteria
(https://ictv.global/report) used to genetically and phylogenetically characterize each of the putative new genus or species of viruses
described in this study are listed in Supplementary Table 2.

3. Results
3.1. Viral metagenomic overview

As shown in Supplementary Fig. 1, the sampling sites located in Jiangsu Province, including Nanjing City (Farm A), Yangzhou City
(Farm B), Nantong City (Farm C), Zhenjiang City (Farm D), Changzhou City (Farm E), and Suzhou City (Farm F), respectively. A total of
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89 libraries were constructed. Each library contained one sample. All Illumina sequencing generated a total of 46,937,894 unique
sequence reads, with an average GC content of 44.2% (Supplementary Table 3). Of these reads, 5668086 (12.1%) matched viral
proteins through Blastx search based on protein sequence identity. The conduction of taxonomic classification of viral reads was based
at the family level. Contigs and singlet readings that resembled viral sequences were divided into 26 viral families (Fig. 1A), and the
results showed that the family Picornaviridae and the family Astroviridae were abundant in all libraries. According to Fig. 1B, it was
evident that phage viral groups dominated the farm C and were major in Siphoviridae, Microviridae, Podoviridae and Myoviridae in all
libraries (Fig. S2). The distribution of mammalian viral reads detected in each library was analyzed and sorted by the abundance of
sequence reads (Fig. 1C). The results showed that 2548330 and 2462437 reads have sequence similarity with the Bacteriophages and
the family Picornaviridae, respectively, accounting for the 45.0% and 42.5% of the total number of putative viral reads. The next
following families were Astroviridae (355280 reads), Caliciviridae (155157 reads), Parvoviridae (116374 reads), Smacoviridae (32027
reads), Circoviridae (23320 reads), Picobirnaviridae (5795 reads), Coronaviridae (3143 reads), genomoviridae (1820 reads), etc. By using
sequence assembly combined with Illumina sequencing of gaps between contigs, we identified 612 different complete or nearly
complete CDS of virus genomes (Supplementary Table 4).

Here, the species rarefaction curve was used to visualize virus species composition in the diarrhea piglets (Fig. S3A). The curve
changed to a clear plateau as the number of reads sampled rises, demonstrating that sequencing was sufficiently thorough to detect
nearly all viral species in the sample for subsequent analysis. The species accumulation curve was represented the species richness of
the sample database, had achieved a steady state, indicating that the sample volume in this study was adequate and accurately re-
flected the diversity variations among the various communities (Fig. S3). The mapping analysis using the 127 genomes against the 89
NGS data revealed the virus distribution in the 89 sample pools (Fig. S4 and Supplementary Table 1). The PcoA based on Bray-Curtis
revealed that the viral community composition of these six farms differed in the group at the family level (Fig. 2A). p-values of 0.05
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Fig. 1. Viral taxonomy analyses at the family level. (A) Heatmap representing the read number of each viral family in each library on log2 scale. The
sample groups are shown with corresponding colors (see color legend). (B) Heatmap representing the read number of each phage virus family in
each farm on log2 scale. The sample groups are shown with corresponding colors (see color legend). (C) The pie chart shows the composition of fecal
virus groups of diarrhea piglets and displays the percentage of virus sequences in different virus families.
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indicated significant differences in the composition of virus communities in fecal samples from diarrheal piglets on each farm (Fig. 2B
and C). The Upset plot is an ideal way to demonstrate both common and specific viruses among the six farms, which revealed the
distinctive viral community characteristics and the results of which indicated that all six farms showed the presence of nine common
viruses (Fig. 2D). The highest number of viruses at the species level was found in farm C, where 62 viruses were identified; the lowest
number was found in Farm B, where only 10 viruses were identified.

3.2. Parvoviruses

Parvoviruses are some of the common DNA viruses that can infect a variety of animals by causing disease with a single virus or
together with other viruses [32]. Parvoviruses have two ORFs, which encode non-structural protein 1 (NS1) and structural protein 1
(VP1) [33]. In this study, a total of six parvoviruses with complete genome sequences were determined from fecal samples of diarrhea
piglets, including a member of Chaphamaparvovirus (PFParV2) belonging to the Hamaparvovirinae. The other five sequences were all
from Bocaparvovirus (PFParV1, PFParV3, PFParV4, PFParV5, PFParV6). The genome lengths of them were 5287bp, 5095bp, 5649bp,
5446bp, 5137bp and 5245bp, respectively (Fig. 3A). The phylogenetic trees were constructed based on the protein sequences and
reference sequences of NS1. In the group of genomes showing similarity to parvovirus, five genomes from five different sample pools
were phylogenetically grouped into or close to the genus Bocaparvovirus (Fig. 3B). PFParV1 was closely related to Squirrel Boca-
parvovirus (Genbank No. QKV09257), which was another member of the genus Bocaparvovirus detected in Kunming city of China, and
formed a cluster in the phylogenetic tree, sharing the highest amino acid sequence identity (56.78%) with the reference sequence.
PFParV3-PFParV6 clustered with three different porcine bocaviruses and shared NS1 amino acid identity of 94.01%-99.69%. Only one
genome was phylogenetically grouped into the genus Chaphamaparvovirus (Fig. 3C). PFParV2 was closely clustered with rat parvovirus
2 (Genbank No. NC_055465). The amino acid sequence identity of NS1 was 64.09%, indicating that PFParV2 belonged to a new
chaphamaparvovirus species.
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Fig. 3. Phylogenies of Parvoviruses identified in the diarrhea piglets. (A) The genomic organization of the six Parvoviruses identified in diarrhea
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3.3. Mamstroviruses

Astroviruses, the primary cause of human gastroenteritis, were discovered to be the cause of infant diarrhea in a UK obstetric
hospital in 1975 [34]. Astroviruses are composed of three open reading frames [35]: ORFla encodes the nonstructural polyprotein 1A;
ORF1b encodes the polyprotein 1AB, including RNA-dependent RNA polymerase (RdRp) [36] and ORF2, which encodes the viral
capsid protein. Twenty-six astrovirus genomes were characterized from 21 different sample pools and were called as PFAstV1-26. The
phylogenetic tree based on capsid protein sequences indicated that these astroviruses are grouped into 3 different clades in the genus
Mamastrovirus (Fig. 4A). The results showed that most strains detected had the highest identity with Mamastrovirus 3, with amino acid
identity ranging from 69.32% to 98.52%. PFAstV3 and Mamastrovirus 22 (Genbank No. MW653750) shared a branch, and the
structural and nonstructural proteins of Mamastrovirus 22 shared 95.62% and 96.61% of their amino acid sequences, respectively.
PFAstV10 and PFAstV16 formed an independent clade with Porcine astrovirus 5 (GenBank No. YP 009010970), indicating that they
belonged to the Unclassified Astroviridae and shared 82.89% and 92.76% of their polyprotein amino acid sequences.

3.4. Caliciviruses

Caliciviruses can infect humans and various animals [37]. The Sapovirus genome contains two or three open reading frames
(ORFs). ORF1 encodes seven nonstructural proteins, followed by the major capsid protein VP1 [38]; ORF2 encodes the minor
structural protein VP2. All five calicivirus sequences obtained from fecal samples of diarrheal pigs were identified as Sapovirus
members by alignment in GenBank Blastx. The phylogenetic tree was constructed based on the protein sequence and reference
sequence of ORF1 (Fig. 4B). The majority of strains in diarrheal piglets were identified to be clustered inside the Porcine Sapovirus GIII
group, which was acknowledged from the tree, however the tree configuration divided the GIII into two branches, which was sup-
ported at 100% bootstraps. PFCalV2, PFCalV5 and PFCalV1 were distantly related to each other. Phylogenetic analysis showed that
PFCalV1 and PFCalV3, PFCalV 2 and PFCalV5 clustered with Porcine Sapovirus (GenBank No. QHC33959, QHC33963) and Sapovirus
GIII (GenBank No. BBA54631, AX078746) with amino acid sequence identity of 94.4% and 97.9%, 99.1% and 98.8%, respectively.
The ORF1 predicted by PFCalV4 encoded a putative polyprotein, which had at least 97.82% amino acid matching with the previously
published Sapovirus GVII (GenBank No. AXO78744), which clustered to form GVII with 100% bootstrap support.
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Picobirnaviruses are small, non-enveloped virus with a segmented genome of approximately 4.2 kb double-stranded RNA [39]. The
genome of picobirnaviruses is composed of two parts, a large fragment encoding capsid protein and a small fragment encoding RdRp
[25]. Six Picobirnavirus fragments in total were discovered in this study. These RdRp proteins shared 65.65%-99.79% amino acid
identity with other known picobirnavirus strains. The conserved RdRp amino acid sequence was used to construct phylogenetic tree
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(Fig. 5A). The tree showed that PFPicobV1 clustered with the Picobirnavirus (GenBank No. AGK45545) detected in fox feces with
65.65% amino acid sequence identity. PFPicobV2 and the closely related Picobirnavirus of African Green monkeys (GenBank No.
MN871976) sharing 96.6% of their sequence identities. PFPicobV3 and its distant relative Rabbit picobirnavirus 3 (GenBank No.
QLJ70100) and Human Picobirnavirus (GenBank No. BAJ53292) shared only 45.1% and 61.9% sequence identity, respectively.
PFPicobV4 and PFPicobV5 were clustered in a large branch, and the support value of the tree was 100. The PFPicobV4 clustered with
Simian Picobirnavirus (GenBank No. KY120191), and the amino acid identity was 43.9%. PFPicobV5 and Marmot Picobirnavirus
(GenBank No. KY928729) were grouped into one branch with an amino acid identity of 58.4%. PFPicobV6 shared the highest amino
acid sequence identity (99.8% identity) with Porcine Picobirnavirus (GenBank No. UAW00669), according to Blastx analysis.

3.6. Coronavirinae

Coronaviruses are envelope-positive single-stranded RNA viruses of the Coronavirinae, including a 5 *cap and a 3’ poly (A) tail [40].
In the current study, fifteen Coronavirus fragments were found in the fecal libraries. These fragments shared more than 99% simi-
larities with porcine epidemic diarrhea virus, which belonged to the genus Alphacoronavirus. Two sequences of the RNA-dependent
RNA polymerase (RdRp) were selected for phylogenetic analysis (Fig. 5B). The tree revealed that PFCorV1 and PFCorV2 clustered
with Alphacoronavirus sequences (GenBank No. APO14163 and APO14164) detected from Myotis Horsfieldii and shared 99.8% amino
acid sequence identity.

3.7. Picornaviruses

Picornaviruses are small, non-enveloped viruses with single-stranded polyadenylated genomic RNA that affect a range of vertebrate
hosts and cause a variety of diseases [41]. Typically, viral genomes have a single ORF flanked by the 5 ’and 3’ untranslated sequences
(UTR) [41]. In this study, a total of 82 complete Picornaviridae genome sequences were assembled in the feces of diarrhea piglets, more
than 6000 nucleotides in length. Sequences with more than 99.2% identity were excluded and 34 sequences were chosen to build the
phylogenetic tree, and they were temporarily given the name PFPicV1-34. A phylogeny over the amino acid sequence of ORF1 protein
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showed the relationship of the viruses identified here and their relatives. According to the sequence analysis and phylogeny, six of
these picornaviruses clustered with genus Sapelovirus (Fig. 6A), two of them were closely related to viruses in genus Teschovirus
(Fig. 6B), thirteen of them were closely related to viruses in genus Enterovirus (Fig. 6C), and twelve can be a member of the genus
Kobuvirus (Fig. 6D). These gene sequences shared high amino acid identities, ranging from 90.10%-99.47%.

3.8. CRESS-DNA viruses

Viruses with small circular rep-encoding ssDNA (CRESS-DNA) genomes encode a replication associated protein (Rep), mainly
includes the family Circoviridae [42], Genomoviridae [43], Smacoviridae [44], and others.

3.8.1. Circoviruses

In this study, the full-length genomes of 13 CRESS-DNA viruses were detected from 10 different sample pools. Phylogenetic tree
was constructed based on Rep proteins (Fig. 7A). PFCirV1 and PFCirV3 were most closely related to the Rep gene integrated in
Entamoeba-associated CRESS DNA virus 4 (GenBank No. QNJ47536), and the amino acid sequence identity was 99.67%. PFCirV2 and
PFCirV5 shared 45.57% and 42.2% sequence identity with the closely related Chicken virus (GenBank No. QIR82201), respectively.
PFCirV4 and PFCirV10 were members of Po-circo-like virus 51 (GenBank No. QZA75073), sharing 89.7% identity, while PFCirV11 and
PFCirV12 belong to Po-circo-like virus 22 (GenBank No. AER30023), with 94.79% and 95.16% amino acid sequence identity,
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Fig. 7. Phylogenies of CRESS DNA viruses identified in diarrhea piglets. (A) Bayesian inference tree established based on amino acid sequences of
Rep protein of circoviruses. (B) The genomic organization of the four Genomoviruses identified in diarrhea piglets. (C) Bayesian inference tree
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respectively. PFCirV8, PFCirV9 and PFCirV13 were clustered with Circoviruses identified from pigs (GenBank No. QBA83782 and
QBA83740), and the amino acid sequence identity was 83.81%, 75.3% and 100.00%, respectively. It was noteworthy that PFCirV7 was

found to be clustered with the Circular DNA virus that was detected from Trachemys Scripta elegans (GenBank No. QOW18373), with
49.81% amino acid sequence identity. PFCirV6 was clustered with CRESS virus (GenBank No. QRI44123) detected from water sample

prob
1
0.5
<O
SR
prob

Myoviridae
[1 Siphoviridae
1 Chaseviridae
[ 1 Drexferviridae
Podoviridae

Autographiviridae
Herelleviridae

p——
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(B) Bayesian inference tree established based on amino acid sequences of TERL protein of the order caudovirales. Representative strains of different
subfamilies were included and marked with the color coding in the key on the top right. The viruses identified in this study are labeled with red
branches and leave names. The size of the dots on nodes is positively correlated with the corresponding bootstrap score. Tree scales indicate the

amino acid substitutions per site.

10



L. Qian et al. Heliyon 10 (2024) e25616
along the river ports, and the amino acid identity was 50.73%.

3.8.2. Genomoviruses

In this study, a total of four complete Genomoviridae genome sequences were assembled from three libraries and named PFGenV1-4.
The genomic organization of these viruses was shown in Fig. 7B, where the predicted Rep and other proteins were pointing in the
opposite directions. The genome length of PFGenV2 is 2206bp and it belongs to Gemycircularvirus. The other three sequences are
divided into the unclassified Genomoviridae, whose genome lengths are 2155 bp, 2143bp and 2144 bp, respectively. Phylogenetic
analysis based on amino acid sequences of Rep protein (Fig. 7C) showed that PFGenVs were located on two independent clades.
PFGenV1 and Crane CRESS DNA virus (GenBank No. UBQ66246) clustered into one branch and shared 96.57% identity. PFGenV2
clustered with Gallus Feces associated Gemycircularvirus 17 (GenBank No. ANC51577) and shared 18.2% identity. It has formed its
own deep branch of the Genomoviridae tree. The PFGenV3 shared a 98.53% identity with the chicken stool-associated Gemycircu-
larvirus (GenBank No. YP 009337824). PFGenV4 shared the highest amino acid sequence identity (99.51%) with Genomoviridae
(GenBank No. QXN75495) detected from airborne Particulate Matter.

3.8.3. Smacoviruses

Recently, smacoviruses was recognized by ICTV as a group of CRESS with genomes ranging from 2.3 to 2.9 kb [45]. A total of 31
complete genome sequences were identified in 27 sample pools. The phylogenetic tree was constructed based on the Rep protein
(Fig. 7D) and showed that most of the sequences shared the highest sequence similarity with the different types of Porcine associated
Porprismacoviruses, with 79.68%-99.61% in Rep region. Species and genus criteria demarcation of Smacoviridae are based on
genome-wide and rep amino acid sequences with cut-off of 77.0% and 40.0%, respectively [44]. Based on these criteria, none of the 31
smacoviruses can be designated as new genera.

3.9. Of virome of the feces

Bacteriophage virus also accounted for a large proportion of the feces of diarrheic piglets, which mainly consisted of the Microvirade
and Caudovirales. As one of the most common ssDNA phage viruses, the family Microviridae are small, circular, single-stranded DNA
viruses [46]. A phylogenetic analysis was performed using the amino acid sequence of the major capsid protein (MCP) of the 396
Microviridae strains (Fig. 8A). The results revealed that the majority of Microviridae were highly varied and tricky to categorize into
recognized subfamilies. A total of 110 Microviridae genomes (from clades 5,6,9) were not clustered within any known families,
however formed several potentially new branches. One hundred and nine genomes of Microviridae were found to be clustered within
the branch associated with the Gokushovirinae and the other sequences were grouped together in the branch linked to the Unclassified
Microvirinae.

The order Caudovirales are the most prevalent viruses with double-stranded genomes [47]. A phylogenetic analysis was performed
based on the 89 TerL protein sequences (Fig. 8B). The Caudovirales in this study were highly diverse and clustered into multiple groups,
according to the phylogenetic tree structure. The majority of the sequences grouped together with known reference sequences of the
Siphoviridae, suggesting that they may share similar genetic characteristics and biological functions. Only PFChasV1 and PFHereV1
grouped within the Chaseviridae and Herelleviridae, respectively.

4. Discussion

Researchers found that pigs with diarrhea shed an average of 5.4 different mammalian viruses compared to an average of 4.2
different mammalian viruses shed by healthy piglets [48], which suggested that virus was more easily detected in sick pigs. With the
advancement of metagenomics technology in recent years, an increasing number of research have begun to use this technology to
examine the pathogenic communities in the feces of diarrheal piglets [49]. Viral metagenomic sequencing help us identify emerging
viruses in animals and humans, and was used to characterize pathogens in mammals [17]. Here, we provide a preliminary description
of the fecal virome of diarrhea piglets from six farms in Jiangsu, China, using viral metagenomic sequencing. In this study, we
identified major viruses such as microviruses, parvoviruses, mamastroviruses, caliciviruses, picobirnaviruses, coronaviruses, picor-
naviruseses, circoviruses, gemycircularviruses and smacoviruses in the fecal samples of diarrhea piglets. Based on the heatmap and
upset plot, we found that more viruses were detected in the fecal samples of diarrhea piglets from Farm C, which may be due to the
poor environmental hygiene and management quality. The dirty and crowded conditions of pig farms and the frequent movement of
pigs allow viruses to spread and evolve [50]. According to research, co-infection with a large number of viruses may reduce the innate
and immune defenses of piglets, leading to diarrhea and other diseases in piglets [48]. Furthermore, the use of animal facilities such as
feed delivery and the disposal of animal feces in large lakes may lead to the virus to spread from one farm to another, increasing public
health risks [51].

Bocaviruses usually infect the respiratory tract and intestine [25]. The majority of the parvovirus sequences found in this study
were clustered with Porcine Bocavirus. Whether it cause disease in pigs remains to be studied [52]. In addition, feces also contained
sequences that were very similar to those of Rat Parvovirus and Squirrel Bocavirus. NS1 amino acid sequence identity is used as
demarcation criteria for genus and species in Parvoviridae family, according to the ICTV classification criteria, with 35.0% identity as
threshold to novel genus and 85.0% to species [53]. It means parvoviruses with NS1 amino acid sequence identity greater than 85%
belong to the same species [54]. Therefore, PFParV1 and PFParV2 from this study could potentially be the first members of two novel
species. Astroviruses are the main pathogen of human gastroenteritis and are considered to be the main cause of infantile diarrhea
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[34]. They can also infect different mammals and poultry, including pigs. The majority of the 26 almost complete Astrovirus genome
sequences found in diarrheal piglet feces exhibited the highest similarity to Mamastrovirus 3. Currently, the ICTV-recognized
Mamastrovirus species should have capsid proteins with amino acid distances greater than 37.8% [55]. The astroviruses found in
this research are unlikely to represent a novel species. Caliciviruses are generally transmitted through fecal oral or droplet trans-
mission, which can infect humans and various animals and induce related diseases [37]. Species criteria demarcation of Caliciviridae
are based on Cap amino acid sequences with cut-off of 14.7%-26.7% [56]. All calicivirus sequences found in this study were Porcine
Sapovirus, and among them, PFCalV4 belonged to Sapovirus GVIL.

Picobirnavirus has been detected in the feces of many different hosts, including humans, pigs, rabbits, dogs, rats, and birds [25]. In
this study, one sequence showed the highest amino acid identity with Picobirnavirus detected in fecal samples from African green
monkeys. Several novel fragments clustered with Picobirnavirus detected from fox, Simian and Marmot feces, respectively. We found
that PFPicobV1 clustered with the Picobirnavirus detected in fox feces with 65.65% amino acid sequence identity. The PFPicobV4 was
clustered with Simian Picobirnavirus and the amino acid identity was 43.9%. PFPicobV5 and Marmot Picobirnavirus were grouped
into one branch with an amino acid identity of 58.4%. Phylogenetic distance of RARp amino acid sequences greater than 78% is one of
the species demarcation criteria in these genera [53,57]. Considering those criteria, some of our newly identified viruses can be
tentatively considered as new species. The new fragments could simply represent pollutants in the food eaten by piglets. In fact, we
cannot decisively comment on the host relationship of any virus found only in feces, as they may also represent food contaminants.

Coronavirus has a wide host range and can infect animals and humans, causing respiratory, intestinal and nervous system diseases
[40]. The outbreak of severe acute respiratory syndrome (SARS) in 2003-2004 was caused by an animal-derived Coronavirus [58]. The
90% aa sequence identity threshold now proposed as a species demarcation criterion within each genus has been determined from the
analysis of pair-wise aa distances in seven conserved replicase domains (nsp3 ADRP, nsp5 (3CLpro), nspl2 (RdRp), nsp13 (Hell),
nspl4 (ExoN), nsp15 (NendoU) andnsp16 (O-MT)) of 156 viruses in the Coronaviridae [59]. By phylogenetic analyses, these fragments
were grouped with porcine epidemic diarrhea virus, showing more than 99% of amino acid identity, which are unlikely to represent a
novel species. Two sequences detected in fecal samples in this study clustered with Alphacoronavirus sequences detected from Myotis
Horsfieldii, suggesting the potential for cross-species transmission. The hypothesis that horizontal transmission may occur between
domestic animals and bats was based on the PEDV-like viruses detected in Horsfield myositis [60]. This was the first report on the
presence of this Coronavirus in Horsfieldii myositis, and at the genetic level, the detected strain was likely to be closely related to PEDV
strains infecting pigs and cattles [61]. Furthermore, contamination of food cannot be ruled out. These viruses could be in the diet of the
pigs if they are eating something contaminated with bat feces. Myotis bats tend to live in dark places, including farms, houses and
barns, and are potential zoonotic host. It is particularly important to investigate whether there are pig farms and bats in the sur-
rounding environment in areas where the coronaviruses were found, which will provide data to explore potential relationships be-
tween piglets, bats and other livestock [62]. The fecal virus group of diarrhea piglets includes a large number of vertebrate viruses. The
family Picornaviridae reads dominated in all samples. Our study has provided an overview of enteroviruses in diarrhea piglets and has
further enriched the current knowledge about picornaviral. Although Porcine Teschovirus and Sapelovirus have been identified as the
causes of a variety of diseases including gastrointestinal diseases, poliomyelitis, and respiratory system diseases, the clinical corre-
lation between EV-GS and intestinal or other diseases needs further study [63].

CRESS-DNA viruses with small, circular replication associated protein (Rep)-encoding single stranded (CRESS) DNA genomes, were
largely identified based on conserved rolling circle replication proteins [64]. The pathogen causing significant economic losses to the
global pig industry is PCV2, which can cause Porcine Circovirus (associated) Disease (PCVD/PCVAD) [65]. Porcine circovirus was not
detected in this study, and follow-up studies should expand the sampling area and change the sampling method to detect more viruses.
The cut-off criterium for species demarcation in Circoviridade family is 80% complete genome nucleotide sequence identity. The two
circoviruses, named PFCirV2 and PFCirV5, respectively, show 30.2% and 31.3% genome-wide identity to known circoviruses. Thus,
according to the current species demarcation criteria, they represent two novel circoviruses. PFCirV6 was clustered with CRESS virus
detected from water sample along the river ports and the genome-wide nucleotide sequence identity was 39.6%, which may be a new
member of this genus. Of course, water from farms may be contaminated. The thirteen CRESS-DNA species described here all belong to
unclassified CRESS viruses. The results suggested that pigs may be co-infected by a variety of CRESS DNA viruses. Additionally, the
source of the Rep-encoded circular DNA viruses identified in this study was likely to be the intestinal cells of diarrheal piglets, mi-
croorganisms or parasites colonising the porcine gut [66-68], or from the porcine diet. The intensive trade of animals and their
persistent infection can lead to the spread of various viruses. The microbial communities of the pig intestine is very complex, and to
date, little is known about how viruses (including these unclassified porcine associated CRESS DNA viruses) interact with host cells and
other microorganisms [69]. Gemycircularviruses have been detected in different organisms and environments, but the host species of
these viruses was only known for one fungal virus [70]. Species criteria demarcation of Genomoviridae of ICTV are based on
genome-wide amino acid sequences with cut-off of 78% [71]. Gemycircularviruses detected in this study and Gallus feces associated
Gemycircularvirus 17 formed their own deep branches in the phylogenetic tree, and the genome-wide nucleotide sequence identity
was 51.5%, which may indicate the existence of a new member of the genus Gemycircularvirus. In this study, we identified three new
unclassified Genomoviruses strains from fecal samples. Smacoviridae is one of the new families of the group that was recognized by
ICTV in 2018 and were thought until recently to have animals as possible hosts [45]. Smacoviruses can be detected in the fecal samples
of various vertebrates [72], and most of the sequences belong to Porprismacovirus.

We discovered a very high genetic diversity of bacteriophage viruses in the feces of diarrheal piglets. There are differences in host
range, capsid size, serological properties and, insofar as known, DNA sequences between various phage viruses. The majority of the
Microviridae phages detected in the feces of diarrheal piglets clustered individually in the evolutionary tree, exhibited a high level of
genetic diversity. The symptoms and course of the avian influenza illness can be made worse by phages via facilitating virus replication
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and transmission [73]. Additionally, phages can attack the intestinal bacteria of some animals, leading to illnesses like diarrhea and
intestinal infections.

5. Conclusion

We conducted a comprehensive investigation of the virus communities in the feces of piglets with diarrhea in six different locations
in Jiangsu Province, China. We have discovered novel viral genomes including the Parvoviridae, Picobirnaviridae and CRESS DNA
viruses. In addition, we also identified a large number of phage viruses in the feces of diarrheic piglets. Our research has increased the
knowledge on the diversity of virus communities in diarrheal piglets. We will broaden the scope of sample collecting and enhance the
sample size in the future. This can aid in our comprehension of the genetic traits, infection mechanisms, and biological behavior of
these viruses, as well as aid in the prediction of potential intra- or interspecies transmission of these viruses. It can also serve as a
foundation for future research into the detection, treatment, and prevention of emerging viral infections in mammalian and human
hosts.
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