
HOW DO BONE CELLS SENSE  

MECHANICAL LOADING?

Carlos Vinícius Buarque de Gusmão1, William Dias Belangero2

1 – Graduate Student, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP).

2 – Lecturer, Department of Orthopedics and Traumatology, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP).

Study conducted at the Labimo-Biomaterials Laboratory of the Center for Experimental Medicine and Surgery, Faculdade de Ciências Médicas, Universidade Estadual de 

Campinas (UNICAMP).

Correspondence: Rua Emílio Ribas, 800, 1º. and. – Bairro Cambuí – 13025-141 – Campinas, SP. Tels.: (19) 8111-8579 – (19) 3254-0220. E-mail: belangerowd@gmail.com

We declare no conflict of interest in this article

UPDATING ARTICLE

Rev Bras Ortop. 2009;44(4):299-305

ABSTRACT

Influenced by gravidity, bone tissue experiences stronger or li-

ghter deformation according to the strength of the activities of 

daily life. Activities resulting in impact are particularly known to 

stimulate osteogenesis, thus reducing bone mass loss. Knowing 

how bone cells recognize the mechanical deformation imposed 

to the bone and trigger a series of biochemical chain reactions 

is of crucial importance for the development of therapeutic and 

preventive practices in orthopaedic activity. There is still a long 

way to run until we can understand the whole process, but cur-

rent knowledge has shown a strong progression, with researches 

being conducted focused on therapies. For a mechanical sign to 

be transformed into a biological one (mechanotransduction), it 

must be amplified at cell level by the histological structure of 

bone tissue, producing tensions in cell membrane proteins (inte-

grins) and changing their spatial structure. Such change activates 

bindings between these and the cytoskeleton, producing focal 

adhesions, where cytoplasmatic proteins are recruited to enable 

easier biochemical reactions. Focal adhesion kinase (FAK) is 

the most important one being self-activated when its structure 

is changed by integrins. Activated FAK triggers a cascade of 

reactions, resulting in the activation of ERK-1/2 and Akt, which 

are proteins that, together with FAK, regulate the production of 

bone mass. Osteocytes are believed to be the mechanosensor 

cells of the bone and to transmit the mechanical deformation 

to osteoblasts and osteoclasts. Ionic channels and gap junctions 

are considered as intercellular communication means for bio-

chemical transmission of a mechanical stimulus. These events 

occur continuously on bone tissue and regulate bone remodeling.

Keywords – Mechanotransduction cellular; Osteogenesis;  

Stress mechanical; Weight-bearin;, Osteocytes; Osteoblasts; 

Gap junctions; Ion channels

INTRODUCTION

Bone mass maintenance is regulated by various 

stimuli, which can be grouped into the biochemical 

(growth factors and hormones) and the mechanical. 

Regarding the latter, it is known that prolonged im-

mobilization and situations that reduce gravity cause 

a reduction in bone mass, whereas the impact on bone 

tissue caused by physical exercise, for example, in-

creases bone mass(1-10).

Regardless of the type of mechanical stimulation 

(low-power ultrasound, fluid flow, centrifugation, ap-

plied static load, vibration, or electromagnetic field), 

it is recognized by the bone cells after a process called 

mechanotransduction that is responsible for producing 

biochemical reactions from a mechanical (physical) 

phenomenon, determining a cellular response, which 

may be bone growth or bone resorption(8,10-13). In this 

manuscript, we discuss the phenomena and theories 

about this partially understood area of orthopedics.

1. Amplification of the mechanical stimulus

The primary function of bone tissue is to bear the 

load of the body. According to Wolff’s law cited in 

Duncan and Turner(8), this tissue is able to adapt to 

mechanical stresses produced by the weight of the 

individual and the physical activities that cause defor-

mation of the entire skeleton. Typically, the deforma-

tion suffered by bone tissue during locomotion varies 

from 0.04 to 0.3% and rarely exceeds 0.1%(14,15). Ho-
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wever, in vitro studies have shown that the deforma-

tion needed for bone cells to respond to mechanical 

stimulation is 10 to 100 times greater than that requi-

red for bone tissue as a whole (~1-10%). If the same 

relative deformation (strain) used to stimulate bone 

cells were used in bone tissue, it would fracture(8,16). 

This apparent contradiction between stimulation on 

the macroscopic level and the microscopic (cellular) 

level was explained and justified by the experimen-

tal mathematical model developed by You et al.(16), 

in which the canalicular system in which bone cells 

(osteocytes) are inserted serves as an amplifier of me-

chanical deformation generated by physical activity.

1.1. Bone histological anatomy

The structure of long bones can be understood sche-

matically as a cylinder, containing within it a number 

of cylinders, the Haversian canals, which communi-

cate with each other through the Volkmann’s canals. 

The walls that form the Haversian canals are arranged 

radially and are called lamellae. These consist of bone 

extracellular matrix (ECM), which consists mainly 

of hydroxyapatite (inorganic component) and type I 

collagen (organic component). The bone ECM forms 

a structure that traps the osteocytes in lacunae within 

the lamellae. The osteocytes have extensions of their 

cytoplasm, called cytoplasmic processes (or dendri-

tes), enveloped by canaliculi (Figure 1). Between the 

canalicular wall and cytoplasmic processes, there is 

the pericellular space, permeated by a fluid. In the pe-

ricellular space there is the pericellular organic matrix 

(POM) supported by transverse fibrils that anchor and 

center the cytoplasmic processes of osteocytes in their 

canaliculi(16,18) (Figure 2).

1.2. Drag force and shear stress

Put simply, when the bone is deformed, it creates a 

pressure gradient in the complex system of cylinders, 

resulting in fluid flow within the pericellular space 

of cytoplasmic processes, exerting drag force on the 

POM. The drag force is the result of the frictional 

force and pressure on a body that moves in a liquid 

medium. In this case, what moves is the liquid (bone 

fluid) over the POM, but the drag force is produced 

in the same way.

The histological structure of bone allows the drag 

force to produce circular deformations (hoop strains) 

in the membrane-cytoskeleton system of the cell pro-

cesses of osteocytes, deformations which are 20 to 

100 (or more) times greater than the deformation of 

bone tissue as a whole. Circular deformations are the 

normal stresses (i.e., stress that forms a 90° angle to 

the tangent) to a body with circular symmetry. In other 

words, circular deformations produce compression 

and traction forces on the tissue and the greater the 

magnitude or frequency of the stimulus, the greater 

the amplification of deformation (Figure 2).

The shear stress (or tangential stress) is the defor-

mation that a body undergoes when subjected to the 

action of shear (tangential) forces. While You et al.(16) 

did not consider shear stress to be responsible for am-

plifying the deformation of bone tissue at the cellular 

level, in the view of several authors, its importance 

should not be ignored(8,10-12,16,19-21). The two types of 

cell deformation likely contribute to the cellular me-

chanical stimulus (Figure 2).

2. The mechanosensory cell 

There are three main types of cells in bone tissue: 

osteoblasts, osteocytes, and osteoclasts. For decades, 

osteoblasts and osteoclasts were considered the pro-

tagonists of bone remodeling and have therefore been 
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Figure 1 – Bone histological anatomy 
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studied much more than osteocytes, which account 
for 90-95% of all bone cells. While investigating the 
behavior of osteocytes, it has been observed that they, 
like osteoblasts, also respond to mechanical stimula-
tion, displaying the activation of basically the same 
proteins as osteoblasts(17,22). Since then the question 
has been: what is the main mechanosensor of bone 
tissue, the osteoblast or the osteocyte?

Although there is no definitive scientific evidence, 
it has been widely reported that the osteocytes are the 
cells that orchestrate bone remodeling(8,22-24), releasing 
biochemical mediators that regulate the activity of 
osteoblasts and osteoclasts. In support of this theory, it 
has been observed that osteocytes produce prostaglan-
dins – mediators of osteoblast and osteoclast activity 
– faster than the osteoblasts after mechanical stimu-
lation(25), and that osteocytes subjected to fluid flow 
stimulate the osteogenic activity of osteoblasts(26). It is 
expected that osteoblasts are sensitive to mechanical 
stimulation, since osteocytes are derived from these 
cells. In addition, bone cells are not the only ones 
capable of mechanotransduction. Fibroblasts(27), chon-
drocytes(28), cardiomyocytes(29), endothelial cells(30), 
and rhabdomyocytes(31) also have this capability. Ho-
wever, for the scientific community, it is more logical 
that osteocytes are more utilized as mechanosensors 
in bone tissue than osteoblasts because they are part 
of the canalicular system of mechanical deformation 
amplification, while osteoblasts are located on the 

periphery of the bone tissue, in the periosteum.

3. Piezoelectricity

The piezoelectric effect is a biological response 

to mechanical stimulation that has been known for 

a long time, documented by Fukada and Yasuda in 

1957 after observing the production of a negative 

electrical charge in areas of bone compression and a 

positive charge in the areas of traction(32). This effect 

was reproduced and measured by other authors, such 

as Butcher et al.(33) and Qin et al.(34). The hypothesis 

for this phenomenon was reported by Duncan and 

Turner(8), who believed that the fluid flow generated 

by mechanical stresses produced power currents (stre-

aming potentials), modulating the cellular response. 

Currently, it is known that the piezoelectric effect is 

not mechanotransduction: it is only a marker of fluid 

flow. This causes the activation of mechanosensitive 

ion channels, especially potassium and calcium ion 

channels, inducing ion flux in bone cells, resulting in a 

change in the cell membrane potential, which may be 

positive (depolarization) or negative (hyperpolariza-

tion). The bone cell can quickly identify the characte-

ristics of mechanical stimuli and respond electrophy-

siologically in different ways, with varying degrees 

of ion channel activation, resulting in the hyperpola-

rization or depolarization of the plasma membrane. 

What determines the intensity of the activation of ion 

channels is unclear, but it is known that the intensity 

and frequency of mechanical stimulation, as well as 

the velocity of fluid flow, regulate the activation of 

these channels. It is known that hyperpolarization is 

associated with osteogenesis, and depolarization with 

bone resorption. In addition to regulating the cellular 

response to mechanical stimulation, it is believed that 

activation of ion channels biochemically transmits the 

mechanical deformation to neighboring osteocytes, 

osteoblasts, and osteoclasts(12,33-39).

4. Mechanotransduction

Mechanotransduction can be interpreted as the pro-

cess of producing a biochemical reaction from a mecha-

nical stimulus. The biochemical chain reactions induced 

by mechanical stimuli act at the cellular level and can 

cause inhibition of apoptosis, increased cell prolifera-

tion, altered cell migration, among other effects.

When an external mechanical stimulus deforms 

bone tissue, circular deformation and shear stress oc-

cur at the cellular level, acting on the plasma mem-

brane of osteocytes, and are transmitted throughout 
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Figure 2 – Amplification of the mechanical stimulus. The me-

chanical deformation of bone tissue produces fluid flow, which, 

at the level of bone canaliculi, exerts drag force on the cytoplas-

mic processes and the walls of bone canaliculi. In addition, the 

fluid flow exerts a tangential force on the plasma membrane of 

osteocytes, producing shear stress
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the cell through a complex network that connects 

the plasma membrane to the cell nucleus, called the 

integrin-cytoskeleton-nucleus extracellular (and pe-

ricellular) matrix system. Duncan and Turner(8) de-

vised a model of mechanotransduction in which this 

system is critical; the mechanical stress causes strain 

between the constituents of this system, allowing for 

the transmission of deformation from the ECM to 

the nucleus of cells. Elaborating on this model in li-

ght of current knowledge, the authors of this review 

believe that its operation is like a lever system with 

multiple pivot points, which represent the interactions 

between the molecules that comprise the extracellular/

pericellular matrix (collagen, fibronectin, and fibrils), 

the different subunits of integrins, the cytoskeleton 

 !"#$%&'($%")*$%&'#!*$%&'+!,$**$%&'!%-'./!"#$%$%0&'!%-'#12'

nuclear membrane(8,17,18). Therefore, the pivot points 

can be tailored to the type and quantity of molecules 

interacting with each other, which allows for various 

types of transmission of mechanical deformation.

4.1. Integrins

In each region of the ECM/POM-integrin-cytoske-

leton-nucleus system, proteins are interacting with 

their constituents. The integrin region is the most 

understood, and is considered the most important 

for mechanotransduction. The name integrin refers 

to its function of integrating the interior of the cell 

(cytoskeleton) to its exterior (ECM and POM). Inte-

grins are heterodimeric transmembrane cell adhesion 

3*4"5+65#2$%7'"58+572-'59'.'!%-':'7);)%$#7<'=%'1)-

mans, there are 24 well-established types of integrins, 

627)*#$%3'9658'"58;$%!#$5%7'59'#12'>?'-$99262%#'.'7)-

;)%$#7' !%-' 2$31#' #4+27' 59' :' 7);)%$#7<'@12' -$99262%#'

"58;$%!#$5%7'59'.'!%-':'7);)%$#7'-2#268$%2'#12'7+2-

cificity of integrin binding to ECM components and 

of the cytoskeleton and cytoplasmic proteins, as well 

as the degree of affinity for each ligand. Osteoblasts 

2,+6277' #12'7);)%$#7'.A&'.B&'.C&'.D&'.(&'.E&':>&':B&'

!%-':D'$%'($#65(40,41), whereas in vivo, the expression 

59'$%#236$%7'$7'627#6$"#2-'+6$8!6$*4'#5'.B&'.D&'.(&':>&'

!%-':B(42). In these cells, the subunits that are known 
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:B&'!%-'#12'12#265-$8267'#1!#'1!(2';22%'-285%7#6!;*4'
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It is believed that after the mechanical deformation 

of the plasma membrane, an integrin conformational 

change occurs, creating high-affinity sites for chemi-

cal reactions in its chemical structure resulting in con-

nections with other integrins and components of the 

cytoskeleton. In other words, mechanical stimulation 

functions as an enzyme that catalyzes a biochemical 

reaction. Links between various integrins form clus-

ters that increase the avidity of these proteins to bind 

to other molecules. The clusters of integrins anchor 

to components of the cytoskeleton, inducing its re-

modeling, forming a specialized structure called focal 

adhesion (or focal contact). This structure is dynamic, 

as it forms in response to mechanical stimulation and 

breaks down in response to the absence of that stimu-

lus. It is located near the plasma membrane and the 

ECM, and it recruits several molecules involved in 

mechanotransduction: tyrosine kinases, ion channels, 

phospholipase C, and mitogen-activated protein kina-

se (MAPK), among others(11,12,43-46).

4.2. Focal adhesion kinase (FAK) pathways

Of all the molecules that interact with integrins 

in focal adhesions, the one that is most studied and 

considered essential in the conversion of mechani-

cal phenomena to biochemical phenomena is focal 

adhesion kinase (FAK), an adapter protein of the 

tyrosine kinase group, the structure of which allo-

ws it to interact with several proteins, allowing for 

the formation of multiple protein complexes. This 

feature can increase cellular response if the activity 

of the multiple complexes is additive, or can induce 

different types of cellular response if the activity of 

the different complexes is on different paths.

It has not been well established whether FAK is 

always connected to integrins, or whether it is recrui-

ted by integrins when they form the focal adhesions. 

The authors of this manuscript believe that the two 

forms exist and have their roles. After the defor-

mation of integrins, the FAK must subsequently be 

deformed, also undergoing changes in its structure, 

resulting in autophosphorylation at tyrosine residue 

397 (Tyr-397). This activates FAK, with the creation 

of a high-affinity site for binding to proteins contai-

ning the SH2 domain (Src-homology-2), such as Src 

and the p85 subunit of phosphatidylinositol 3-kinase 

(PI3K). In response, the activated FAK combines 

with Src or with PI3K, activating FAK-Src/Grb2/

Sos/Ras-Raf/MEK/ERK-1/2 and FAK/PI3K/Akt/

FG/HI' +!#1J!47&' 627+2"#$(2*4<' @12' 2,#6!"2**)*!6'

signal-regulated kinase-1/2 (ERK-1/2) and Akt are 
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effector proteins of these pathways and may exer-

cise their functions in both the cytoplasm and the 

nucleus of bone cells. What determines whether 

these proteins, including FAK, are in the nucleus 

or cytoplasm is not well established, but research 

suggests that this is determined by the amount of 

protein and the amount of activated protein. It has 

been speculated that nuclear localization involves 

the increased effects of these proteins (FAK, ERK-

1/2 and Akt), which may be: induction of migration, 

cell proliferation and differentiation, and inhibition 

of apoptosis(8,10,20,30,47-54) (Figure 3).

4.3. Biochemical transmission of the 

mechanical stimulus to other cells

Even the cells that are not deformed by mechanical 

force exhibit a biochemical response similar to that 

of those that were deformed. In these cases, the phos-

phorylation (activation) of connexin 43 was observed, 

which is responsible for activating the gap junctions, 

the intercellular communication structures located 

in the cytoplasmic processes of the osteocytes. Gap 

junctions allow for the exchange of ions and small 

molecules, particularly prostaglandin E2 (PGE2), betwe-

en osteocytes and between osteocytes and osteoblasts.

The activation of ion channels should also contri-

bute to the biochemical transmission of mechanical 

stimulation. The mechanical deformation causes ac-

tivation and inactivation of ion channels, especially 

calcium and potassium channels, which generates a 

negative action potential, with membrane hyperpo-

larization, which is transmitted to neighboring cells, 

activating intracellular reactions(26,35,37,55,56).

Although intriguing, this subject has gone largely 

unexplored, with current research focused primarily 

on the integrin pathway.

4.4. In vivo mechanotransduction 

Most studies have been based on in vitro experi-

mental models(11,16,19,21,23,25,26,35,46). Despite the unde-

niable contribution of these studies in guiding sub-

sequent research, the limitations of an in vitro study 

when compared with reality, that is, an in vivo study, 

should be considered(57,58). The beneficial effect of 

low-power ultrasound (lpUS) in accelerating bone 

healing in bones with some type of injury has been 

documented(59-66).

The authors of this review have developed a rat 

model to assess the “molecular” effect of 20 minutes 

of daily treatment with lpUS in the intact tibias of 

these animals. The tibias were stimulated for at least 

one week. After treatment, bone proteins involved 

in mechanotransduction (FAK, ERK-1/2, and Akt) 

were measured. It was observed that long-term tre-

atment with lpUS increased synthesis of FAK and 

ERK-1/2 in a non-cumulative manner, that is, at a 

certain point, the synthesis of these proteins stopped 

increasing, as if something had blocked the effects 

of lpUS. The activation of FAK, ERK-1/2, and Akt 

occurred early and, at times, was sustained for 15 

hours (only FAK and ERK-1/2), unlike what occurs 

when applying a single stimulus. The finding of a 

greater amount of insulin receptor substrate-1 (IRS-

1), a protein activated by growth factors and hormo-

nes in one of the stimulated groups, suggests that 

the lpUS interferes with cellular reactions mediated 

by growth factors, which is a controversial issue in 

in vitro models that has been little investigated. In 

addition, increasing the amount and activation of 

FAK in the bones of animals stimulated with the 

lpUS equipment turned “off”, although lower than 

in animals stimulated with the equipment turned 

on, indicates that “muscular” stress interferes with 

the activity of mechanosensitive proteins in “bone” 

tissue(67,68).

HOW DO BONE CELLS SENSE MECHANICAL LOADING?
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Figure 3 – FAK-dependent mechanical stimulus signaling in bone 

cells. The FAK maintains a close relationship with the and subunits 

of integrins and cytoskeletal components (actin, paxillin, talin, and 

vinculin), which are also in contact with the nucleus
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FINAL CONSIDERATIONS

Mechanotransduction is a phenomenon that is cons-

tantly occurring in bone tissue, with important clinical 

implications that should be acknowledged. However, 

because it is a complex phenomenon that involves se-

veral types of molecules arranged in multiple systems 

that interact with each other, it is still poorly unders-

tood. The detailed study of all the phases involved in 

the chain of molecular events is essential to unders-

tanding its entirety and to act systematically in this 

process, which apparently remains very complex.
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