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Abstract

Introduction: COVID-19 has caused tremendous death and suffering since it first emerged in
2019. Soon after its emergence, models were developed to help predict the course of various
disease metrics, and these models have been relied upon to help guide public health policy.
Methods: Here we present a method called COVIDNearTerm to “forecast” hospitalizations
in the short term, two to four weeks from the time of prediction. COVIDNearTerm is based
on an autoregressive model and utilizes a parametric bootstrap approach to make predictions.
It is easy to use as it requires only previous hospitalization data, and there is an open-source
R package that implements the algorithm. We evaluated COVIDNearTerm on San Francisco
Bay Area hospitalizations and compared it to models from the California COVID Assessment
Tool (CalCAT). Results:We found that COVIDNearTerm predictions were more accurate than
the CalCAT ensemble predictions for all comparisons and any CalCAT component for a
majority of comparisons. For instance, at the county level our 14-day hospitalization median
absolute percentage errors ranged from 16 to 36%. For those same comparisons, the CalCAT
ensemble errors were between 30 and 59%.Conclusion:COVIDNearTerm is a simple and useful
tool for predicting near-term COVID-19 hospitalizations.

Introduction

Since first being identified in Wuhan, China in 2019, the SARS-CoV-2 virus and accompanying
COVID-19 disease have had devastating consequences. As of May 1, 2022, and according to the
website worldometers.info, the virus has caused over 6 million deaths worldwide and about a
million deaths in the USA. At the peak of the pandemic, according to the CDC (https://covid.
cdc.gov/covid-data-tracker/#hospitalizations), total hospitalizations have been nearly 150,000
on a single day in the USA. Among those who have recovered many have developed long-term
health complications [1]. To combat the impact of the virus, starting inMarch and April of 2020
in the USA, various restrictions have been implemented. These restrictions have been main-
tained to various degrees in different communities. While restrictions were effective at slowing
transmission [2], they have had a large impact on the economy [3], which has not been separate
from the impact of the virus itself [4]. Predictive models, both long-term and short-term, were
developed to help inform the level of restrictions and the amount of inpatient medical resources
that would be needed.

Among long-term models, the first came from Imperial College [5]. This model made long-
term predictions of healthcare demand that would result from potential interventions. Similar
types of long-term predictions have been made throughout much of the pandemic by the
Institute for Health Metrics and Evaluation [6] at the University of Washington.

In contrast, our model, COVIDNearTerm, is useful for the short term. Its particular
use is for “forecasting,” which we define as making predictions two to four weeks into the
future. We modeled the near term because the many sources of uncertainty deriving from a
once-in-a-century pandemic make long-term predictions unrealistic. We focused on hospital-
izations, because in the USA they reflect the number of severely ill cases in a population essen-
tially independent of the amount of testing, since those sick enough will likely be admitted to a
hospital. Accurately predicting hospitalizations is particularly important because hospital beds
are a limited resource. Using only previous hospitalizations as input, which typically occur three
to ten days after symptoms [7], our model’s effectiveness has been validated by comparing
predicted hospitalizations to observed hospitalizations.
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Major sources of variability in hospitalizations included recent
trends, typical differences seen between days, and random error.
To include these factors, we utilized an autoregressive model
and made predictions using parametric bootstrap methods. This
model can be helpful for answering questions about the future
or past hospitalization trends relevant to planning and prepared-
ness efforts. For example, the model could address the following
questions regarding the future: What is the expected number of
COVID-19 hospitalizations in a county in two weeks? What is
the probability that the number of hospitalizations will exceed a
pre-determined threshold, such as 100 in a county, any day in
the next two weeks? A question involving the past could be: did
a loosening of restrictions lead to an increase in hospitalizations?
For example, four weeks after reopening restaurant dining, did
hospitalizations increase more than would be expected given the
previous trend?

We are not the first to model short-term hospitalizations.
Early in the pandemic, Van Wees et al. [8] developed a
Susceptible-Exposed-Infectious-Recovered (SEIR) model for this
purpose. Such a model makes predictions by estimating the rate
of transitions between these compartments. Perone [9] compared
various time series models to predict near-term hospitalizations in
the second wave in Italy. Goic et al. [10] used an ensemble method
to predict short-term ICU hospitalizations.

The literature on COVID-19 prediction models has exploded
since these early models were developed; for example, https://
covid19forecasthub.org/ is currently tracking forecasts given by
45 models. Here we present relevant examples of each type of
model we were able to identify. A critical review of the accuracy
of pandemic modeling is given in Rosenfeld and Tibshirani [11]
and a succinct discussion of the consequences of publicizing
unreliable predictions in Divino et al. [12]. We focus on models
with comparable goals – those predicting population-level
outcomes, and exclude models predicting individual risk, even
if population-level data were used to develop the model, as in
Tanboga et al. [13]. We refer readers interested in those models
to a systematic review [14].

Numerous predictions use algorithmic machine learning
models, such as the long short-term memory recurrent neural
network model; an example is Nikparvar et al. [15], which predicts
county-level incidence. A similar model predicts hospitalization
and death at a national level after vaccination [16]. Another group
of models uses geographic and aggregate mobility data and mecha-
nistic transmission models such as SEIR to predict population
incidence and hospitalization rates [17,18,19]. In terms of
short-term predictions, two recent novel approaches include
utilizing small area data together with empirical models to make
short-term predictions [20] and using auxiliary indicators [21].

Our model is novel in that it does not make any assumptions
about the dynamics of the disease. It is a purely empirical approach
and assumes that enough information is found in the current
trends and previous trends of hospitalizations. Further, our model
is pragmatic, relies on publicly available data, and is less computa-
tionally expensive than most models in the literature.

In June 2020, the state of California launched the California
COVID Assessment Tool (CalCAT, https://calcat.covid19.ca.
gov/cacovidmodels/). CalCAT gathered prediction models, mostly
from independent academic research centers, to help predict the
course of the COVID-19 pandemic in California in terms of key
metrics. An underlying assumption was that by forming an
ensemble, a model of models, predictions would be improved.

Models include “nowcasts,” the current state of the pandemic,
“forecasts,” as we have defined them, and “scenarios,” the long-
term impacts of various policies. CalCAT forecasts were used to
evaluate the accuracy of our model.

In this manuscript, we describe the COVIDNearTerm
model for hospitalizations. We then assess how well our model
predicted hospitalizations in the San Francisco Bay Area. Finally,
we compare those results to those deriving from models included
in CalCAT.

Methods

Our modeling scheme, COVIDNearTerm, relies on an autoregres-
sive model and makes predictions utilizing parametric bootstrap
methods.

Overview of the Model

We show how model development works in Fig. 1. Based on a
training set of 150 days starting on May 4, 2020, and running
through September 30, 2020, we predict COVID-19 hospitaliza-
tions for the first 28 days of October 2020. This is based on real
data from Santa Clara County, and we model the data exactly as
described later. To make the hospitalization predictions, all we
needed was a training set of hospitalizations and to specify two
parameters: how many of the last days from the training set to
use to specify the current trend and how heavily to weigh the very
latest observations when estimating the trend. How much to
dampen the trend is estimated from the training set as
described below.

The Basic Algorithm

Because COVID-19 cases, and thus hospitalizations, involve expo-
nential growth or decline [22], like other infectious diseases [23],
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Fig. 1. Demonstration of how COVIDNearTerm works. The black line depicts hospi-
talizations in Santa Clara County starting on May 4, 2020. The red lines represent
100 possible paths as predicted by the COVIDNearTerm model starting from
October 1, 2020. Each path is for 28 days, and the prediction for a particular day,
the median of the paths, is shown in green.
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we developed a modeling approach able to fit such a pattern. Our
basic model to account for this temporal dependency is

Yt ¼ ϕt�1Yt�1 þ εt; (1)

where Y represents observed hospitalizations, ε represents inde-
pendent, zero-centered error, and t represents time in days. The
basic idea is that the hospitalizations today are a multiple, repre-
sented by ϕ, of the hospitalizations yesterday plus random error.
For predictions, the error is proportional to the value of Y as
described below.

The training set is the first T days of data, and it is on the
training data that the parameters of our model are estimated.
These parameters are used later to make predictions. We start with
a ϕ estimate of the form

dϕ0
t�1 ¼ Yt�1=Yt�2; (2)

where the 0 superscript represents initial. To smooth daily trends
while incorporating local trends, the final estimate of ϕ is a func-
tion of the past W days worth of data. The final form is

dϕt�1 ¼ wt�W
dϕ0
t�W þ . . .þ wt�1

dϕ0
t�1; (3)

where the ws are weights. We considered three weighting schemes.
The first was equal weights, wi= 1/W, i = 1, : : : ,W, and the
second was triangular weights,
wi ¼ ðði=WÞ=ðPW

i¼ 1 i=WÞ; i ¼ 1; . . . ;W: Triangular weights
emphasize the most recent observations more heavily, and like
equal weights, sum to 1. Note the subscript for ϕ of model (1) is
t− 1, resulting in only data from previous times being used to
predict the current time. For our two previous weighting schemes,

when a new cϕ0 is added, the earliest one within the previous
window of lengthW is eliminated. We introduce a third weighting
scheme called unweighted that is the same as equal weighting
except in one way. For unweighted updating, we randomly drop

one cϕ0 rather than the earliest one, which further damps down
recent trends.

Fitting the model to the training set yields distributions of ϕ̂s
and ε̂s. To predict future hospitalizations, we use these distribu-
tions and equation (1) to simulate paths of hospitalizations H days

into the future, dYTþ1; . . . ; dYTþH. We go from a measured hospitali-

zation level YT to a predicted hospitalization level dYTþ1 by simu-

lating cϕT and dεTþ1, as described below. We repeat this process

iteratively to estimate dYTþ2; . . . ; dYTþH; with each dYTþi based on

a previously simulated dYTþi�1.
We repeat the simulation process N times. From the resulting

N paths, we estimate hospitalizations H days into the future by the
median of dYTþH;1; . . . ; dYTþH;N (or we could use other measures).
Alternatively, we can calculate the maximum for each path,

Mh ¼ maxf dYTþ1; . . . ; dYTþHg; and estimate the probability of
exceeding a trigger within H days as the proportion of Mhs out
of N that exceed the trigger.

We derive the estimate cϕ0
T and thus cϕT directly from training

data including YT − 1 and YT. For dϕTþ1 and beyond, we simulate

based on our model. We simulate dϕ0
Tþ1 from a N cϕT; s

2
� �

and

add that to dϕ0
T�Wþ2; . . . ;

dϕ0
T to estimate dϕTþ1 via equation (3).

Here, s ¼ mad ϕt � ϕt�1; t ¼ 2; . . . ;Tð Þ= ffiffiffiffi
2;

p
where mad is the

scaled median absolute deviation estimate of the standard

deviation. We estimate dϕTþ2; . . . ; dϕTþH�1 in a similar manner by

updating dϕ0
Tþ2; . . . ;

dϕ0
TþH�1:

To simulate ε̂s, we first model the relationship between ε and Y.
To do this, we use the locally weighted scatterplot smoothing

method (LOWESS) to fit bε2t on Yt for t= 1, : : : , T, since this
provides an estimate of the variance of ε as a function of Y based
on the training set. We simulate εTþ 1, : : : , εTþ h from a N 0; vŶð Þ;
where vŶ is estimated using the value of Ŷ (minus the error term)
and the LOWESS fit.

Shrinking the Trend Estimate

Our experience with COVID-19 hospitalizations time series
data is that trends tend to reverse themselves. Increasing trends
come down while decreasing trends lead to future increases.
Possible causes are that increasing trends lead to more careful
behavior or a reversal of opening, while decreasing trends lead
to less careful behavior and further opening.We therefore consider
shrinking the trend towards ϕ= 1. This leads to the shrunken
trend model

ϕ�
t ¼ �1þ 1� �ð Þϕt; 0 � � � 1: (4)

Here λ controls the amount of shrinkage, with λ = 0 imposing no
shrinkage, and thus using the trend exactly as estimated, λ= 1
being a model with no trend, and the higher the λ the more the
trend is attenuated. The model is utilized by substituting dϕ�

t�1

for dϕt�1 in model (1). The updating of ϕ̂ continues as if there
was no shrinkage, while bεt corresponds to the shrunken bYt (again
minus the error term).

To utilize the model, we need a method for estimating λ.
We choose the b� that best fits the training set Ys in the sense of
the smallest sum of squared residuals. Alternatively, we could

fix b� at some value based on previous experience.

CalCAT Models

In the Results, we include data from nine CalCATmodels that have
been used for hospitalization forecasts at the county level in
California. Thesemodels are categorized in Table 1 including refer-
ences to preprints. Further technical details and code for these
models can be accessed through CalCAT (https://calcat.covid19.
ca.gov/cacovidmodels/). Seven of these models are of the SEIR
variety. One model (Simple Growth) is exponential based on the
current R-effective and case rate and uses historical hospital and
intensive care unit admission rates. Another is a neural forecasting
model (UCSB) that assumes predictions can be made by identi-
fying similar patterns across regions from a few months prior.
At the end of the data analysis period on May 1, 2021, only
five models remained in CalCAT, four SEIR and Simple
Growth. Simple Growth was utilized by CalCAT starting only
on December 8, 2020.

Evaluating Prediction Errors

Because absolute errors in modeling would be expected to increase
when hospitalizations increase, we focused on percentage error.
More specifically, we utilized the median absolute percentage error
(MedAPE).
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The MedAPE is

medianj 100 Yj � bYj

��� ���=Yj

� �
; j ¼ 1; . . . ; J; (5)

where J is the number of days for which we provided predictions.
For some predictions, we also report the 25th and 75th percentiles
of absolute prediction errors, which we put in brackets. Prediction
accuracy was compared between models using the MedAPE. As a
secondary assessment of the models, we estimated the Pearson
correlation between true and predicted hospitalizations.

Data, Code, and Utilization

The historical data in this manuscript were downloaded on May
11, 2021, from CalCAT. These data are of the aggregate number
of COVID hospitalizations for each county for each day.
Importantly, there are no longitudinal patient-level data, so there
are no data on when a patient entered the hospital, when they
tested positive for COVID-19, and whether they are in the hospital
because of COVID-19 or for another reason. Further, there is also
no demographic information about the hospitalized patients.

Code is available at https://github.com/olshena/COVIDNear
Term/. It is in the form of an R package called COVIDNearTerm,
and we used version 1.0 for the analysis in this manuscript. Our
predictions for all California counties can now be found as part
of the CalCAT county forecasts at https://calcat.covid19.ca.gov/
cacovidmodels/. While COVIDNearTerm is currently part of the
CalCAT ensemble, it was not during the time for which there are
comparisons in the manuscript.

The analysis and figures in this manuscript can be reproduced
using the file https://github.com/olshena/COVIDNearTerm/
Manuscript/reproduce.zip.

Results

We assessed COVIDNearTerm by comparing it to models in
CalCAT. We focused on hospitalization data from the six inner
Bay Area counties. They are, ordered by size, Marin (0.3 million
people), San Mateo (0.8), San Francisco (0.9), Contra Costa
(1.2), Alameda (1.7), and Santa Clara (1.9). We made predictions
based on all the training data comprised of hospitalizations

reported from before that day. We made predictions for 14 days,
21 days, and 28 days and made predictions based on 1000 simu-
lations. We started training models with data from May 4, 2020,
as we wanted data collection to stabilize before we started, and
made our first predictions utilizing data up to June 14, 2020.
This gave the first 14-day predictions for June 28, the first
21-day predictions for July 5, and the first 28-day predictions
for July 12. We made predictions for every day through
May 1, 2021.

We discuss only our models with shrinkage as they had better
performance (data not shown). That left us with two parameters
to consider: the weighting method and the number of days,
W, utilized for weighting. As shown in Fig. 2, which has the
MedAPE for 14-day predictions, the weighting method had little
impact. For W, 14 or 21 tended to do best across counties.
Overall, the unweighted method with W= 14 gave the smallest
MedAPE for Santa Clara (16% [7%,28%]) and San Francisco
(23% [10%,45%]), and no other combination was best for more
than one other county. Also, across counties, this combination
had the lowest average MedAPE of 25.0% [11.4%,42.0%], with
the next closest being 25.3% [11.7%,41.8%] for equal weighting
with W= 14. Therefore, the unweighted method with W= 14
was used for all further comparisons.

After selecting our modeling approach, we did further compar-
isons only on days where CalCAT had ensemble model predic-
tions, which lowered the number of days with predictions from
308 to 283 but changed our prediction errors only slightly.
Results across counties for 14-day, 21-day, and 28-day predictions
can be found in Fig. 3 and Table 2. The MedAPEs ranged from
16 % -36% for 14-day predictions, 23 % -46% for 21-day predic-
tions, and 34 % -54% for 28-day predictions. All the lowest errors
were for Santa Clara (the most populous county), and all the
highest errors were for Marin (the least populous county).

We compared our results to those from the CalCAT tool.
The comparisons based on the MedAPE were to both the
CalCAT Ensemble and the individual CalCAT components.
COVIDNearTerm was more accurate than the Ensemble for all
counties at 14, 21, and 28 days. For instance, in Santa Clara
County, the COVIDNearTerm MedAPEs were 16% [7%,26%],
23% [10%,47%], and 34% [15%,67%] at 14, 21, and 28 days
compared to 31% [14%,49%], 42% [24%,65%], and 58%
[31%,84%] for the Ensemble. For Alameda, the MedAPEs for
the same comparisons were 19% [11%,30%], 28% [13%,45%],
and 42% [16%,65%] versus 35% [17%,59%], 47% [26%,78%],
and 65% [46%,102%].

The 14-day predictions for COVIDNearTerm, the CalCAT
Ensemble, and two promising methods, LEMMA and Simple
Growth, can be seen in Fig. 4. Qualitatively, COVIDNearTerm
had better predictive performance than the Ensemble in part
because it more quickly predicted a decrease after the January
2021 peak. Differences among COVIDNearTerm and LEMMA
and Simple Growth were less systematic.

At the individual model level, COVIDNearTerm was
most accurate except where stated. For Alameda, Simple Growth
was equally accurate for 14-day predictions (MedAPE=
19%) and 21-day predictions (MedAPE= 28%). For Contra
Costa, Stanford was equally accurate for 21-day predictions
(MedAPE= 34%) and more accurate for 28-day predictions, with
MedAPE= 32% versus 48% for COVIDNearTerm. LEMMA was
also more accurate for 28-day predictions with MedAPE= 41%.
UCSD-COVIDReadi was more accurate for Marin at 14 21 and
28 days, with MedAPEs of 32, 36, and 46% versus 36, 46, and

Table 1. Models used by the California COVID Assessment Tool (CalCAT) for
county-level hospitalization forecasts. Here "No" means the model was once
used as part of CalCAT but was not at the end the analysis on May 1, 2021.
SEIR stands for Susceptible-Exposed-Infectious-Recovered

Model In CalCAT Type of Model

COVID Act Now No SEIR

Columbia [24] No SEIR

JHU IDDG [25] Yes SEIR

LEMMA Yes SEIR

Simple Growth Yes Exponential using rate from
R-effective

Stanford Yes SEIR

UCLA MLL No SEIR

UCSB [26] No Neural forecasting model

UCSD-COVIDReadi No SEIR
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54% for COVIDNearTerm. For San Francisco, Simple Growth was
more accurate for all three with MedAPEs of 17, 19, and 35% versus
22, 38, and 45% for COVIDNearTerm. UCSD-COVIDReadi was
also more accurate for 21-day (MedAPE= 36%) and 28-day
(MedAPE= 40%) predictions. For Santa Clara, Simple Growth
was more accurate for 21-day and 28-day predictions, with
MedAPEs of 22 and 29% versus 23 and 34% for COVIDNearTerm.

Overall, COVIDNearTerm was most accurate or equal to most
accurate for 10 of 18 comparisons and four of six 14-day compar-
isons, all butMarin and San Francisco. It was also never worse than
the third most accurate model for any comparison.

To confirm that the strong results for COVIDNearTerm were
not dependent on our preferred measure, MedAPE, we also
evaluated accuracy using the Pearson correlation between true
hospitalizations and model-based hospitalizations. We focused
on the two-week results. Using this measure, COVIDNearTerm

was the second most accurate model with LEMMA the most accu-
rate. For Alameda and Santa Clara Counties, COVIDNearTerm
and LEMMA were most accurate with correlations of 0.88 and
0.95, respectively. For Contra Costa, LEMMA was most accurate
with a correlation of 0.90 and COVIDNearTerm was the second
most accurate with a correlation of 0.88. For San Francisco,
Simple Growth was most accurate with a correlation of 0.83
followed by COVIDNearTerm and LEMMA at 0.82. For San
Mateo, UCSD was most accurate with a correlation of 0.91,
Simple Growth had a correlation of 0.83, and LEMMA and
COVIDNearTerm had correlations of 0.82. Finally, for Marin,
the least populated county, Simple Growth was best with a corre-
lation of 0.67, while COVIDNearTerm was only the sixth best with
a correlation of 0.46, lower than the ensemble, which had a corre-
lation of 0.60. Thus, COVIDNearTerm was the most accurate or
close to the most accurate for all but one county.
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Fig. 2. Median absolute percentage error (MedAPE) by county as a function of days used in weighting for 14-day predictions. The symbol E is for equal (black), U is for unweighted
(red) and T is for triangular (blue).

Journal of Clinical and Translational Science 5



14−day Prediction

Median Absolute Percentage Error

Al
am

ed
a

C
on

tra
 C

os
ta

M
ar

in
Sa

n 
Fr

an
ci

sc
o

Sa
n 

M
at

eo
Sa

nt
a 

C
la

ra

0 20 40 60 80 100

21−day Prediction

Median Absolute Percentage Error
0 20 40 60 80 100

28−day Prediction

Median Absolute Percentage Error
0 20 40 60 80 100
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from bottom to top are COVIDNearterm (red), CalCAT Ensemble (brown), COVID Act Now (orange), Columbia (yellow), JHU IDDG (green), LEMMA (cyan), Simple Growth (gray),
Stanford (blue), UCLA MLL (pink), UCSB (purple), and UCSD-COVIDReadi (black).

Table 2. Median absolute percentage error by county for COVIDNearTerm and all California COVID Assessment Tool (CalCAT) models at 14 days, 21 days and 28 days. We
use the abbreviations AL (Alameda), CC (Contra Costa), MA (Marin), SF (San Francisco), SM (San Mateo) and SC (Santa Clara). The models are discussed in Table 1. Note that
COVID Act Now often gave median absolute percentage errors of 100 because the predicted hospitalizations were zero

Model AL CC MA SF SM SC

COVIDNearTerm 19,28,42 25,34,48 36,46,54 22,38,45 27,35,48 16,23,34

CalCAT Ensemble 35,47,65 59,81,94 51,62,73 30,46,58 49,61,79 31,42,58

COVID Act Now 68,85,96 100,143,170 100,100,100 99,100,100 82,100,100 63,81,100

Columbia 46,54,61 83,104,109 67,69,85 32,46,53 63,61,70 40,47,52

JHU IDDG 144,178,202 237,301,300 320,378,382 127,162,180 231,301,348 53,58,60

LEMMA 31,41,63 28,38,41 40,61,66 30,43,57 35,44,64 19,31,42

Simple Growth 19,28,48 88,96,98 71,77,83 17,19,35 66,83,86 21,22,29

Stanford 42,42,45 33,34,32 60,68,79 58,64,78 53,56,62 50,55,54

UCLA MLL 38,45,57 56,66,76 61,67,77 50,63,74 67,76,81 49,59,69

UCSB 58,77,NA 57,87,NA 53,60,NA 35,43,NA 54,64,NA 53,76,NA

UCSD-COVIDReadi 45,55,61 70,90,94 32,36,46 35,36,40 35,44,56 39,51,67
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Discussion

We developed an autoregressive model called COVIDNearTerm
for forecasting hospitalizations two to four weeks out. It has the
virtue of only requiring previous hospitalization data, so it is widely
applicable. When applied to CalCAT data, its predictions were
more accurate than the CalCAT ensemble model for all compar-
isons and more accurate than any other CalCAT model for most
comparisons.

As mentioned, COVIDNearTerm uses only past hospitaliza-
tions to predict future hospitalizations. This approach would be
disadvantageous if the predictions were inferior to those based
on other factors such as testing, community transmission, and
the percentage of people who have already been infected. We
have demonstrated, however, that COVIDNearTerm is as accurate
or more accurate than models that include such covariates.
Therefore, we were able to do more with less.

There are a few caveats to our modeling. Our comparisons to
the models in COVIDNearTerm may have been slightly biased

to favor COVIDNearTerm. First, we know the publication date
of the CalCAT component models, which is when the predictions
appeared on the CalCAT site, but not the actual date the predic-
tions were made. We assume that the publication date was close
to the prediction date, and the modelers did have the option of
making frequent prediction updates. Second, we looked at the
data retrospectively with COVIDNearTerm. Therefore, we had
the most updated data on actual hospitalizations, which
might be slightly different than when the other models
made their predictions. But since we did not start our comparisons
until June 2020, most data issues should have been resolved.
Overall, we believe the performance metrics we have presented
are valid.

The largest errors in predictions for our time of study, for
COVIDNearTerm and other models, were between December
2020 and February 2021. This is the same period where there
was the biggest change in hospitalizations, first an increase
and then a decrease. It makes sense that the models under
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Fig. 4. 14-day predictions for multiple methods. The lines are for truth (black), COVIDNearTerm (red), CalCAT Ensemble (brown), LEMMA (cyan), and Simple Growth (gray).
Note that Simple Growth was utilized by CalCAT starting only on December 8, 2020.
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consideration had the greatest prediction error during periods of
rapid change.

We saw a modest impact on hospitalizations based on the
day of the week, which was much less than the impact of day of
the week on cases (data not shown). If adjusting for day of the
week is desired, we suggest making the adjustment outside of
COVIDNearTerm. By making predictions 14, 21, or 28 days in
the future, we mostly avoided the day of the week problem.
We also did not address the modest impact of holidays.

One weakness of COVIDNearTerm is that its predictions
generally monotonically increase or decrease over time. We might
believe that hospitalizations will, for instance, decrease four weeks
out based on a recent decrease in cases or test positivity, even if this
reduction has not yet been seen in hospitalizations. For this situa-
tion, the next generation of COVIDNearTerm could include an
adjustment for covariates. How to adjust, however, is not straight-
forward, as the relationships among covariates and hospitaliza-
tions can change over time (data not shown).

There are a couple additional details that should be understood
before using COVIDNearTerm. First, our model is appropriate for
outcomes that exponentially increase or decrease and that start one
time period (such as day) where they ended the previous time
period. It would be less appropriate for outcomes where measure-
ments are independently measured in each time period, such as
new hospitalizations. Second, users of COVIDNearTerm may
want to optimize over weighting schemes and number of days that
go into weighting, that is, W.

We have shown that a simple hospitalization modeling strategy
was as effective as anything else used by CalCAT at a time of great
uncertainty. We believe that the less you know at the time of
modeling the more a simple approach makes sense. Further, our
modeling strategy can be extended to other contexts. For example,
it may be helpful in some places in the world where related
covariates are missing or not measured accurately. It might also
be applicable to other pandemics, including ones resulting from
new SARS-CoV-2 variants.
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