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Abstract: Nanocomposite biopolymer materials containing colorimetric pH-responsive indicators
were prepared from gelatin and chitosan nanofibers. Plant-based extracts from barberry and saffron,
which both contained anthocyanins, were used as pH indicators. Incorporation of the anthocyanins
into the biopolymer films increased their mechanical, water-barrier, and light-screening properties.
Infrared spectroscopy and scanning electron microscopy analysis indicated that a uniform biopolymer
matrix was formed, with the anthocyanins distributed evenly throughout them. The anthocyanins
in the composite films changed color in response to alterations in pH or ammonia gas levels, which
was used to monitor changes in the freshness of packaged fish during storage. The anthocyanins
also exhibited antioxidant and antimicrobial activity, which meant that they could also be used to
slow down the degradation of the fish. Thus, natural anthocyanins could be used as both fresh-
ness indicators and preservatives in biopolymer-based nanocomposite packaging materials. These
novel materials may therefore be useful alternatives to synthetic plastics for some food packaging
applications, thereby improving the environmental friendliness and sustainability of the food supply.

Keywords: intelligent packaging; pH-responsive films; natural anthocyanins; chitosan; integrity indicators

1. Introduction

Billions of tons of waste products are generated by the agricultural and food industries
annually. It would be advantageous to convert these waste products into value-added
functional materials so as to improve the profitability and sustainability of the food supply.
One strategy for achieving this goal is to utilize these agricultural and food waste products
to construct innovative packaging materials [1,2]. Various kinds of biopolymers, including
polysaccharides (such as cellulose, pectin, chitosan, starch, gums, and their derivatives)
and proteins (such as gelatin, casein, whey, and soy proteins) are commonly used as
scaffolding materials to assemble biodegradable packaging materials [3–5]. Nevertheless,
the types and amounts of the biopolymers used must be optimized to obtain packaging
materials with the required mechanical, barrier, and optical properties [6]. The use of these
biodegradable materials to replace synthetic petroleum-based plastic packaging materials
may have significant benefits for the environment [5,7].

The functional performance of biopolymer-based packaging materials can be improved
by including active ingredients such as antimicrobials or antioxidants to enhance the safety
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and shelf life of foods (“active” packaging) or by including sensors that provide information
about the status of packaged foods (“smart” packaging) [8,9]. Smart packaging materials
typically contain sensors that provide information about the freshness, quality, or safety of
foods. These sensors often respond to changes in the composition, pH, or temperature of
food during storage [10,11].

Natural plant-derived substances that change color in response to changes in food
properties have been widely used in the development of smart biodegradable packag-
ing materials, e.g., anthocyanins, curcumin, quercetin, betalain, and alizarin [6,10,12,13].
Saffron and barberry anthocyanins are commonly utilized for this purpose because of
their pH sensitivity, antioxidant property, ecofriendly, non-toxicity, and affordability. Saf-
fron/barberry anthocyanins are rich in polyphenolic compounds, and due to the molecular
structure of anthocyanins, they are susceptible to reactions against pH changes [6,7,10].
Moreover, they also exhibit antimicrobial and antioxidant properties, which means they
may also be used as natural preservatives in packaging materials [1]. The pH of many fresh
foods (especially meat and fish) changes appreciably during storage due to spoilage of
the food. Consequently, pH-sensitive colorimetric (“halochromic”) films can be utilized
to monitor changes in their freshness [6]. These halochromic sensors can also be used to
detect amines and ammonia in foods, especially those generated by seafood products (such
as fish and shrimp), because nitrogen causes their discoloration [8,14].

The goal of this study was, therefore, to assess the efficacy of using two pigments
(barberry and saffron) as pH-sensitive sensors in biopolymer-based films. The matrices of
these films were assembled from an animal protein (gelatin) and polysaccharide (chitosan
nanofibers). We examined the ability of the anthocyanins to monitor changes in the
freshness of a model food (fish) during storage, as well as their ability to inhibit oxidative
and microbial degradation. The availability of innovative smart and active biodegradable
packaging materials may help to reduce the amount of synthetic plastics currently used by
the food industry as packaging materials.

2. Materials and Methods
2.1. Materials

Gelatin (G) powder (Type B, M.W. 60 kDa) and DPPH (2, 2-diphenyl-1-picrylhydrazyl)
standard were purchased from Sigma-Aldrich (St. Louis, MO, USA). Buffer solutions
(K2HPO4) were procured from Neutron Co. (Tehran, Iran). Chitosan nanofiber powder
(purity > 99%, size ~20–50 nm, degree of deacetylation 80–85%, M.W. 50–80 kDa) was
provided from the Nano-Novin Polymer Company (Mazandaran, Iran). Barberry fruit
(Berberis vulgaris L.) was obtained from Qaen city (South Khorasan, Iran). Saffron flowers
were harvested from farms near Kashmar city (Khorasan-Razavi, Iran). After removing
the stigmas and anthers, the saffron petals were air-dried and then powdered and kept
in dark glass containers prior to testing. Mueller Hinton agar was provided by Quelab
(Montreal, Canada).

2.2. Barberry and Saffron Anthocyanin Extraction

To extract the anthocyanins from the powdered barberry fruit and saffron petals,
1 g of their powder was added to 20 mL of solvent (distilled water/ ethanol; 80/20 v/v)
and stirred for 24 h min at 25 ◦C. Then, the solution was filtered through Whatman
filter paper (No.1). The extract was concentrated using a rotary evaporator at 37 ◦C. The
total anthocyanin concentration in the final solution was computed as mg cyanidin-3-
glucoside/100 mL of solution using the pH differential method [15,16].

2.3. Fabrication of Smart Indicators

A gelatin solution (3%, w/v) was prepared by dissolving powdered gelatin in distilled
water. A chitosan nanofiber solution (3% w/v) was prepared by dissolving powdered
chitosan in acetic acid (1%) solution. Afterward, the chitosan and gelatin solutions were
mixed at a ratio of 1:1 by stirring for 2 h at 60 ◦C. Subsequently, glycerol (30% w/v)
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and saffron and barberry anthocyanin (3% v/v) solution were separately added to the
gelatin/chitosan, and the mixture was stirred for 2 h. Finally, the film solutions were cast
into Petri dishes and dried at 25 ◦C.

2.4. Instrumental Analysis

ATR-FTIR spectra of the films were recorded from 500 to 4000 cm−1 using an infrared
spectrophotometer (Thermo-Nicolet Instrument, Nexus-670, Waltham, MA, USA) with a
spectral resolution of 16 cm−1. Scanning electron microscopy (SEM) images of the films
were observed on a commercial microscope instrument (Sigma VP, ZEISS, Jena, Germany).
A UV-visible spectrophotometer (Ultrospec 2000, Pharmacia Biotech, Stockholm, Sweden)
was used to measure the transparency (at 600 nm), color change, pH sensitivity (pH from
2 to 14), and color coordinates (from 200 to 800 nm) of the films.

2.5. pH-Sensitivity of Colorimetric Films

Square samples of the film (2 cm × 2 cm) were immersed in buffer solutions with
different pH values (from 2 to 14) at 25 ◦C, and changes in their color were recorded.

2.6. UV-Vis Spectroscopy Analysis of Smart Colorimetric Indicators

Changes in the UV-visible absorbance spectra of the samples were measured using a
UV-visible spectrophotometer (Ultrospec 2000, Scinteck, UK) from 200 to 800 nm.

2.7. Sensitivity of Colorimetric Indicators to Ammonia Vapor

Square samples of the films (2 cm × 2 cm) were attached to the headspace of a beaker
containing 80 mL of ammonia solution (8 mM) at a distance of 1 cm above the solution
at 25 ◦C for 30 min. The R, G, and B values of the indicator film were then determined
using the Pixie program for Windows at 0, 5, 10, 20, and 30 min. The color sensitivity of the
indicator films was computed using the following equation:

SRGB =
(Ri − RF) + (Gi − GF) + (Bi − BF)

Ri + Gi + Bi
× 100

Here, Ri, Gi, and Bi and Rf, Gf, and Bf represent the red, green, and blue values,
respectively, of the films before and after being exposed to an ammonia solution.

2.8. Physical and Mechanical Properties of Films
2.8.1. Color Properties

The Hunter color values (L, a, b) of the films were measured using an instrumental
colorimeter (Konica Minolta, Japan). The total color difference (∆E) was then calculated
from these values:

∆E =

√(
L∗1 − L∗

)2
+
(
a∗1 − a∗

)2
+
(
b∗1 − b∗

)2

Here, L* = 93.44, b* =1.66, and a* = −0.04 are the color indices of the white plate used
as reference material. The hue angle (hab) and chroma (C*ab) of the films were determined
using the following expressions:

C∗ab =

√
(a∗)2 + (b∗)2

h∗ab = tan−1(b∗/a∗)→ (i f a∗(+) and b∗(+))

h∗ab = 180 + tan−1(b∗/a∗)→ (i f a∗(−) and b∗(−) or a∗(−) and b∗(+))

h∗ab = 360 + tan−1(b∗/a∗)→ (i f a∗(−) and b∗(−) or a∗(−) and b∗(+))
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2.8.2. Films Thickness

Film thickness was determined using a digital micrometer (Dial Thickness gauge 7301,
Mitutoyo Corporation, Kanagawa, Japan) with a precision of 0.001 mm.

2.8.3. Mechanical Resistance

The mechanical properties of strips of film (10× 1 cm2) were measured using a Texture
Analyzer (Model DBBP-20, Bongshin, Korea), which operated at a fixed crosshead speed
(10 mm/min) and gauge length (50 mm) at 25 ◦C, RH = 50 ± 2%. The tensile strength (TS)
and elongation at break (EAB) were computed according to the following formula:

TS =
stress at break

initial cross sectional area of film

EB =
increase in length
initial film length

× 100

2.8.4. Moisture Content and Water Solubility of Films

The moisture content of the films was measured by determining their change in mass
after 24 h drying at 110 ◦C. The water solubility (WS) of the films was determined by drying
square samples (20 mm × 20 mm) at 105 ◦C for 5 h and then measuring their mass (Ma).
The film samples were then soaked in 25 mL of distilled water and slowly moved for 24 h
at 25 ◦C. Then, the film pieces were removed, and their mass was determined after drying
at 105 ◦C (Mb). The WS (%) was then calculated using the following equation:

WS =
Ma −Mb

Ma
× 100

2.8.5. Water Vapor Permeability

The water vapor permeability (WVP) of films was determined by measuring their
water vapor transmission rate using a standardized method (ASTM-E96 and Materials,
1995). Circular pieces of films (6 mm diameter) were placed in a container filled with CaCl2
granules (0% RH). Then, the test containers were put into a chamber containing distilled
water (100% RH). The mass of the samples was measured every 3 h over a 48 h period. The
WVP (g.m/kPa.m2·h) was then calculated using the following expression:

WVP =
(W × X)

(S× ∆P)

where W = water vapor transmission rate (g/h), X = the film thickness (m), S = film area
(m2), and ∆P = pressure difference across the film (kPa).

2.9. Antibacterial Activity

The antibacterial activity of the films was measured by the disk diffusion method
according to previous studies [7]. Spread plates of Mueller Hinton agar were inoculated
with a solution (~1.5 × 106 CFU/mL) of Escherichia coli and Staphylococcus aureus. Films
with 10 mm discs were placed on the surface of the plates, which were then incubated at
37 ◦C for 24 h. The diameter of the inhibitory zone surrounding film discs was measured
with a Vernier caliper.

2.10. Antioxidant Capacity

The antioxidant activity of the films was measured using the DPPH radical reduction
assay. In brief, 3.8 mL of a standard DPPH methanol solution (0.004%) was mixed with
0.2 mL of the film solutions. After incubation at ambient temperature for 30 min, the
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absorbance of the solutions was measured at 517 nm using a UV-visible spectrophotometer,
and the inhibition activity was assessed:

DPPH Inhibition (%) =

(
Ac −As

As

)
× 100

Here, Ac is the absorbance of the DPPH solution, and As is the absorbance of the
sample solution.

2.11. Monitoring of Fish Freshness

Fresh trout fish was purchased from a local seafood market and transported to the lab-
oratory under sterile and cold conditions. Fish fillets were then placed in PET (polyethylene
terephthalate) packaging boxes, and colorimetric indicators were embedded in the back of
the box door without contact with the fish. After 72 h storage under ambient conditions
(~25 ◦C), the color change of the films was recorded by acquiring a photograph using a
digital camera. The pH of the fish fillets was then measured using a digital pH meter.

2.12. Statistical Analysis

Statistical analysis of the data was performed by one-way analysis of variance (ANOVA)
using commercial software (SPSS). Moreover, Duncan’s multiple range test (p < 0.05) at 95%
probability was conducted to detect differences amongst mean values of film properties.

3. Results and Discussion
3.1. Absorbance Spectrum of Smart Indicators

Ultraviolet and visible light can negatively impact the quality of foods containing
photosensitive ingredients, such as many natural pigments and nutrients. Therefore, the
ability of packaging materials to prevent light from passing through them and reaching the
food is often important [17]. For this reason, we measured the ability of the anthocyanin-
loaded biopolymer films to block the penetration of light waves (Figure 1). The films were
able to greatly reduce the transmission of light, especially in the ultraviolet region, which
can mainly be attributed to the ability of anthocyanins to absorb visible and UV light [18].
Indeed, the pigment-free films were not effective at blocking the passage of light. Previous
researchers have also shown that red cabbage anthocyanins can also significantly reduce the
transmission of UV light through films [19]. The anthocyanin-loaded films may therefore
be useful in applications where photosensitive food ingredients need to be protected from
light exposure.
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3.2. pH Dependence of Colorimetric Indicator

Small pieces of films loaded with barberry and saffron pigments were immersed in
buffer solutions with pH values ranging from 2 to 14 (Figure 2). After placement in the
buffer solutions, there was an appreciable change in the color of the films, which depended
on anthocyanin type and the pH value. The barberry pigment was reddish/crimson under
acidic conditions and yellowish under alkaline conditions, while the saffron pigment was
reddish/pink under acidic conditions and greenish/yellow under alkaline conditions.
Similar pH-induced color changes have been reported for anthocyanins derived from other
plant sources (alizarin and grapefruit seed) that were incorporated into carboxymethyl
cellulose/agar films [13]. These results highlight the pH sensitivity of the anthocyanin-
loaded biopolymer films, which may be useful for monitoring changes in the quality or
freshness of some foods.
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3.3. Ammonia-Sensitivity Test

The production of volatile nitrogen compounds in moist protein-rich foods, such as
meat and seafood, is an important indicator of their quality and freshness. In this series of
experiments, we tested the effect of ammonia on the anthocyanin-loaded films to measure
their ability to detect the release of nitrogenous compounds [10]. The change in film color
change was measured over a 30-minute period after the films were brought into contact
with ammonia gas. The color changes in both pigments were rapid at the beginning and
then tended to a constant value at longer times. For the saffron pigment, the color of the
film changed from violet to green, while for the barberry pigment, it changed from red
to yellow. However, the sensitivity of color changes to ammonia for saffron pigment was
slightly higher than for barberry.

Color sensitivity analysis (SRGB) of the films also showed that the color of anthocyanins
progressively changed after they were exposed to ammonia (Figure 3). The phenolic
compounds in these pigments. Other researchers have also shown that anthocyanins
undergo color changes in the presence of ammonia, which was attributed to alterations in
the chemistry of the pigment molecules [20]. These results suggest that the anthocyanin-
loaded biopolymer films developed in this study may be useful for monitoring changes in
the freshness of moist protein-rich foods.
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3.4. Characterization of Colorimetric Indicators

The structural and physicochemical properties of the anthocyanin-loaded films were
characterized in this series of experiments.

3.4.1. Surface Morphology

The morphology of films is important because it impacts their appearance, rheology,
and barrier properties. Typically, it is desirable to form films containing smooth and
uniform biopolymer networks with an even distribution of any functional additives. The
microstructures of films with and without different kinds of additives were measured
using field-emission SEM (Figure 4). The gelatin film had a smooth and uniform surface.
The gelatin film containing chitosan nanofibers contained some heterogeneities, which
may have been due to the presence of the insoluble nanofibers or the formation of protein-
polysaccharide complexes. After adding barberry and saffron pigments, no significant
changes were observed in the appearance of the films. These results are consistent with
earlier studies on the impact of pomegranate extracts on the morphology of dimethyl
acrylamide/gelatin films [21].

Molecules 2022, 27, x FOR PEER REVIEW 8 of 14 
 

 

earlier studies on the impact of pomegranate extracts on the morphology of dimethyl 
acrylamide/gelatin films [21]. 

 
Figure 4. FE-SEM image of (a) gelatin, (b) gelatin/chitosan nanofibers, (c) G/CsNFs/Bas, and (d) 
G/CsNFs/SPAs films. 

3.4.2. FTIR Analysis 
FTIR spectroscopy was used to evaluate the type and interactions of the different 

components within the anthocyanin-loaded biopolymer films (Figure 5). The absorption 
bands observed at around 3500–3200 cm−1 can be attributed to O-H stretching vibrations 
[6]. The position of these peaks shifted to 3251.81, 3265.23, and 3262.72 cm−1 after the ad-
dition of the chitosan nanofibers, red barberry, and saffron anthocyanins into the gelatin 
film, respectively. This effect can be attributed to molecular interactions between various 
functional groups in the films [6,10]. In the chitosan nanofiber-loaded films, an additional 
band corresponding to the C=O stretching of the amide I group was observed at 1769.24 
cm−1, which is usually attributed to the presence of acetic acid in the solvent used to dis-
solve chitosan [8]. 

 
Figure 5. ATR−FTIR spectra of (a) gelatin, (b) gelatin/chitosan nanofibers, (c) G/CsNFs/Bas, and (d) 
G/CsNFs/SPAs films. 

Figure 4. FE-SEM image of (a) gelatin, (b) gelatin/chitosan nanofibers, (c) G/CsNFs/Bas, and
(d) G/CsNFs/SPAs films.

3.4.2. FTIR Analysis

FTIR spectroscopy was used to evaluate the type and interactions of the different com-
ponents within the anthocyanin-loaded biopolymer films (Figure 5). The absorption bands
observed at around 3500–3200 cm−1 can be attributed to O-H stretching vibrations [6]. The
position of these peaks shifted to 3251.81, 3265.23, and 3262.72 cm−1 after the addition
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of the chitosan nanofibers, red barberry, and saffron anthocyanins into the gelatin film,
respectively. This effect can be attributed to molecular interactions between various func-
tional groups in the films [6,10]. In the chitosan nanofiber-loaded films, an additional band
corresponding to the C=O stretching of the amide I group was observed at 1769.24 cm−1,
which is usually attributed to the presence of acetic acid in the solvent used to dissolve
chitosan [8].
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3.5. Physical, Mechanical, and Optical Properties of Films
3.5.1. Color Characteristics

The optical properties of packaging materials are one of their most important quality
attributes, affecting the overall appearance of packaged foods, as well as influencing the
transmittance of potentially damaging light waves into the foods [22]. The gelatin and
gelatin/chitosan nanofiber (G/CNF) films were transparent and colorless. As expected, the
incorporation of the anthocyanins into the composite films caused an appreciable change
in their color (Table 1). The anthocyanin-loaded composite films had lower lightness values
(L = 53.5 and 50.8) than the G/CNFs ones (L = 66.5), which can be attributed to the fact
that more of the light waves were absorbed by the films, so fewer were reflected to the
detector. The composite films containing the barberry extract had the strongest red color
(a = +23.3), while the ones containing the saffron extract had the highest hue-angle value
(319), which can be attributed to their strong violet color. Other researchers have also
reported appreciable color changes in packaging films after the addition of anthocyanins
from black eggplant [18], blueberry, and blackberry [15]. These studies show that the
color of the films depends on the type of pigments incorporated into them, which may be
important for certain food applications.
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Table 1. Characteristics of biocomposite films loaded with barberry and saffron anthocyanins.

Film Type

Physical Properties Gelatin G/CsNFs G/CsNFs/Bas G/CsNFs/SPAs

Thickness (µm) 88.5 ± 6 a 100 ± 8 b 118 ± 12 c 115 ± 10 d

Transparency (%) 90.4 ± 1.0 a 85.5 ± 1.2 b 83.2 ± 1.5 c 74.9.0 ± 0.8 d

WVP (×10−11 g ×m/kPa ×m2 × h) 2.45 ± 0.04 a 1.20 ± 0.05 b 1.10 ± 0.02 b 1.15 ± 0.03 b

Water solubility (%) 50.3 ± 1.2 a 44.5 ± 1.5 b 44.0 ± 1.7 b 45.1 ± 1.9 b

Mechanical properties
Tensile strength (MPa) 53.4 ± 0.9 a 65.05 ± 1.4 b 35.68 ± 1.8 c 41.5 ± 2.2 d

Elongation at break (%) 1.25 ± 0.15 a 1.07 ± 0.01 b 5.30 ± 0.2 c 6.8 ± 0.4 d

Color properties
L value 85.5 ± 1.4 a 66.5 ± 1.5 b 53.5 ± 1.0 c 50.8 ± 2.0 d

a value 0.33 ± 0.02 a −0.33 ± 0.13 b 23.3 ± 0.88 c 5.3 ± 0.75 d

b value 2.66 ± 0.15 a 5.83 ± 0.8 b 10.1 ± 0.66 c −9.66 ± 0.5 d

∆E value 8.01 ± 0.5 a 27.26 ± 0.15 b 47.02 ± 1.7 c 44.43 ± 1.5 d

Chroma (C*ab) 2.68 ± 0.2 a 5.8 ± 0.5 b 25.39 ± 1.44 b 11.02 ± 0.66 c

Hue angle (hab) 83.0 ± 1.33 a 90.33 ± 1.11 b 27.0 ± 1.0 c 318.66 ± 0.55 d

Antimicrobial activity (inhibition
zone (mm))

E. coli - 12.0 ± 1.8 a 16.5 ± 0.9 b 16.8 ± 2.3 b

S. aureus - 12.6 ± 1.1 a 17.8 ± 1.3 b 18.0 ± 0.9 b

Antioxidant activity
DPPH radical scavenging (%) - 14.5 ± 2.0 a 82.2 ± 1.7 b 83.0 ± 1.5 c

The data are presented as mean ± standard deviation. Any two means in the same row followed by the same
letter are not significantly (p > 0.05) different from Duncan’s multiple range tests. G—gelatin; CsNFs—chitosan
nanofibers; Bas—barberry anthocyanins; SPAs—saffron petal’s anthocyanins; WVP—water vapor permeability;
DPPH—2,2-diphenyl-1-picrylhydrazyl.

3.5.2. Transparency

The transparency of films depends on the absorption and scattering of light waves [8].
The impact of incorporating chitosan nanofibers and anthocyanins on the transparency of
the films was therefore characterized by measuring their absorbance at a wavelength of
600 nm. The gelatin films exhibited the highest transparency (Table 1). The incorporation
of the chitosan nanofibers reduced the light transmission of the gelatin films, which can
mainly be attributed to the scattering of some of the light waves by the nanofibers. Light
scattering occurs because the refractive index of the nanofibers is expected to be greater than
that of the surrounding water. The incorporation of the barberry and saffron pigments into
the films caused them to become cloudier, thereby reducing light transmission. This effect
can partly be attributed to the strong absorption of light waves by the anthocyanin [16], as
well as some scattering of the light waves by the chitosan nanofibers. Other researchers
have also reported that adding anthocyanin-rich purple and black eggplant extracts to
films reduces their transparency [18].

3.5.3. Mechanical Properties

The mechanical properties of the films were evaluated by measuring their elongation
at break (EAB), a measure of their flexibility, and their tensile strength (TS), a measure of
their mechanical rigidity. The gelatin film had good mechanical strength (TS = 53.4 MPa)
(Table 1). The incorporation of the chitosan nanofibers into the gelatin films decreased the
flexibility (EAB = 1.07%) and increased the mechanical strength (TS = 65.05 MPa) of the
composite films. The incorporation of the pigments into the composite films increased their
flexibility (EAB = 5.03% and 6.8%) but reduced their mechanical strength (TS = 35.68 MPa
and 41.5 MPa). These changes were more considerable for saffron pigment. In fact, the
saffron pigment made smart films more flexible. These results suggest that the addition of
the chitosan nanofibers and the pigments caused changes in the structural organization
and/or molecular interactions within the biopolymer films, which is consistent with the
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morphology and FTIR experiments discussed elsewhere. Incorporation of the anthocyanins
into the biopolymer network increased the flexibility and softness of the films, which may
have been because they weakened the interactions between the biopolymer chains, thereby
increasing their mobility. Previous researchers have also reported that adding sweet potato
anthocyanins into a chitosan matrix increased the flexibility and reduced the strength of
the films [22].

3.5.4. Water Vapor Permeability

The water vapor permeability is another important attribute of films used as pack-
aging materials because it impacts the gain or loss of moisture by food products during
storage [23]. The WVP data for the different films are shown in Table 1. There was a signif-
icant difference in the values for the gelatin and chitosan nanofiber-loaded gelatin films
(p < 0.05), which suggested that the presence of the polysaccharide nanofibers had a major
impact on the diffusion of water molecules through the films. There was no difference
in the WVP of films with or without barberry and saffron pigments, which suggests that
the presence of the anthocyanins did not impact their resistance to water transport. Taken
together with the measurements of the mechanical properties, our results suggest that the
anthocyanins impacted the interactions between the biopolymer chains but did not alter
the size of the pores within the biopolymer network [24]. Other researchers have reported
that the addition of anthocyanin pigments did modulate the WVP properties of biopoly-
mer films, but the effects depended on anthocyanin and biopolymer type. For instance,
incorporation of carrot anthocyanins into chitosan/cellulose films increased their WVP [25],
but the incorporation of Phyllanthus reticulatus anthocyanins into chitosan/methylcellulose
matrices reduced their WVP [26].

3.5.5. Water Solubility of Films

The water solubility of biopolymer films impacts their resistance to disintegration
during storage and disposal. For this reason, we measured the impact of chitosan nanofibers
and anthocyanins on the water solubility of the different films (Table 1). Gelatin is known
to have a relatively high water solubility, which is problematic for some applications. For
this reason, we incorporated chitosan nanofibers, which have a low water solubility, into
the gelatin films to improve their resistance to dissolution when they contact water. Our
results confirm that the addition of the chitosan nanofibers reduced the water solubility
and that the addition of the pigments to the composite films further also reduced their
water solubility, which there was no difference between the two pigments. These effects
can mainly be attributed to the relatively hydrophobic nature of the chitosan nanofibers.
Other researchers have shown that incorporating natural pigments into biopolymer-based
films reduces their water solubility [27,28]. Overall, our results suggest that incorporating
the chitosan nanofibers and anthocyanins into gelatin films can increase their resistance to
water transport, which may be an advantage for some applications.

3.5.6. Thickness

The thickness of food packaging films impacts their physicochemical and functional
properties, such as their mechanical strength, light transmission, and barrier properties. Our
measurements showed that all the films had thickness values ranging from around 88.5 to
118 µm (Table 1). In general, the incorporation of the anthocyanins caused a significant
increase in film thickness (p < 0.05). However, films containing barberry pigment (118 µm)
were thicker compared to saffron pigment (115 µm). This effect may be related to the ability
of the anthocyanins to weaken the attractive interactions between the biopolymer molecules
in the composite films. Other researchers have reported a similar trend. For instance, the
incorporation of red apple peel extract into N, N dimethylacrylamide/gelatin/citric acid
films was shown to increase the thickness of the films [29]. Similarly, the incorporation of
Syzygium cumini extracts into methylcellulose films was also shown to increase the thickness
of the films [30]. Presumably, the ability of anthocyanins to weaken the interactions between
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the biopolymer molecules led to greater swelling during film formation, thereby leading to
thicker films.

3.6. Antimicrobial Activity

The ability of biopolymer films to inhibit the growth of spoilage and pathogenic
microorganisms is beneficial for improving the shelf life and safety of foods. For this
reason, we examined the impact of the different additives on the antimicrobial activity
of the gelatin films using E. coli and S. aureus as model organisms (Table 1). The pure
gelatin film was unable to inhibit the growth of the bacteria because this protein has little
or no antimicrobial activity. In contrast, incorporating chitosan nanofibers into gelatin films
increased their ability to inhibit bacterial growth. This effect can be attributed to the ability
of the cationic chitosan nanofibers to disrupt the anionic cell walls of bacteria by increasing
their permeability. The incorporation of the anthocyanins into the composite films further
increased their ability to inhibit microbial growth. This effect may be because anthocyanins
contain phenolic groups that are known to increase cell membrane permeability and reduce
bacteria viability [1]. The anthocyanins were able to inhibit S. aureus growth more than E. coli
growth, which can be attributed to differences in the cell wall structure of gram-positive and
gram-negative bacteria [21]. However, the antimicrobial effect between the two pigments
was not statistically significant. Other researchers have also shown that the addition of
pigments containing phenolic compounds inhibits the growth of microorganisms [13].

3.7. Antioxidant Activity

The ability of films to inhibit oxidative reactions is also important in certain kinds of
food products, especially those susceptible to lipid or protein oxidation. In this study, the
impact of the different additives on the antioxidant activity of the gelatin films was therefore
determined. The pure gelatin film did not exhibit any antioxidant activity, which is because
this protein does not contain many antioxidant side groups. Incorporation of the chitosan
nanofibers into the gelatin films increased their antioxidant activity, which may be due to
the presence of the free amine groups in the chitosan molecule, which reacted with the free
radical DPPH. In contrast, incorporating the barberry (~82%) and saffron (~83%) pigments
into the composite films greatly increased their antioxidant activity and radical scavenging
activity. However, the antioxidant effect was slightly higher for saffron pigment. These
effects can mainly be attributed to the presence of antioxidant phenolic compounds in the
anthocyanin molecule [25]. Other researchers have reported that the incorporation of black
rice bran anthocyanins into chitosan/chitin nanocrystal films increased their antioxidant
activity [16]. Similarly, the incorporation of anthocyanin-rich purple and black eggplant
extracts into chitosan films has also been shown to increase their antioxidant activity [18].
These results suggest that anthocyanin-loaded biopolymer films may be able to increase
the stability of foods that are susceptible to oxidation.

3.8. Monitoring Fish Samples

Finally, the ability of the anthocyanin-loaded composite films to monitor and extend
the quality of packaged seafood. The color changes before and after storage in the food
sample are shown in Figure 6. Anthocyanin-based colorimetric indicators may be used
to detect changes in fish freshness because there is a change in pH and the release of
nitrogenous compounds (such as TVBN and ammonia) when fish spoil [8]. In this study,
the colorimetric indicators were incubated with packaged fish stored at room temperature
for 72 h, and changes in their color were monitored. During storage, the saffron pigment
changed from purple to green, while the barberry pigment changed from red to yellow. The
pH of the fish increased from around 6.3 to 8.0 during storage, which would partly account
for the observed changes in the color of the pH-sensitive anthocyanins in the composite
films. In addition, some of the observed color changes may have been due to the release
of the nitrogenous compounds from the fish when its freshness decreased during storage.
Other researchers have also reported that anthocyanins can be used as natural sensors
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to monitor changes in the freshness of packaged foods during storage, which were also
attributed to alterations in pH and the release of nitrogenous compounds [28].
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4. Conclusions

Gelatin/chitosan nanofibers-based smart colorimetric indicators were formulated
using a simple casting method that contained barberry and/or saffron petal anthocyanins
as colorimetric indicators. The compositional, physicochemical, mechanical, optical, barrier,
antimicrobial, and antioxidant properties of the films were then characterized. Spectro-
scopic analysis suggested that hydrogen bonding played an important role in the formation
and properties of the composite films. The incorporation of the barberry and saffron
anthocyanins into the composite films improved their ability to absorb UV-visible light,
which may be advantageous for protecting foods that are susceptible to photodegradation.
However, the barberry and saffron anthocyanins gave the films a reddish and violet tinge,
respectively, which might affect consumer acceptability. The incorporation of the antho-
cyanins into the composite films decreased their mechanical strength but increased their
flexibility, which was accredited to the ability of the anthocyanin molecules to disrupt the
attractive interactions between the biopolymer molecules in the film. The introduction of
the anthocyanins increased both the antimicrobial and antioxidant activity of the composite
films, which was mainly accredited to the presence of chitosan and phenolic compounds
(anthocyanins) with preservative properties. Overall, this study shows that loading biopoly-
mer films with anthocyanins can improve their functional attributes, which may increase
their potential application as smart packaging materials in the food industry. Nevertheless,
more research is still required to ensure they can be produced economically on commercial
scales and that they will continue to display their desirable functional attributes under
real-life conditions.
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