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Abstract

Pathway analysis methodologies couple traditional gene expression analysis with knowl-

edge encoded in established molecular pathway networks, offering a promising approach

towards the biological interpretation of phenotype differentiating genes. Early pathway

analysis methodologies, named as gene set analysis (GSA), view pathways just as plain

lists of genes without taking into account either the underlying pathway network topology or

the involved gene regulatory relations. These approaches, even if they achieve computa-

tional efficiency and simplicity, consider pathways that involve the same genes as equiva-

lent in terms of their gene enrichment characteristics. Most recent pathway analysis

approaches take into account the underlying gene regulatory relations by examining their

consistency with gene expression profiles and computing a score for each profile. Even

with this approach, assessing and scoring single-relations limits the ability to reveal key

gene regulation mechanisms hidden in longer pathway sub-paths. We introduce MinePath,

a pathway analysis methodology that addresses and overcomes the aforementioned prob-

lems. MinePath facilitates the decomposition of pathways into their constituent sub-paths.

Decomposition leads to the transformation of single-relations to complex regulation sub-

paths. Regulation sub-paths are then matched with gene expression sample profiles in

order to evaluate their functional status and to assess phenotype differential power.

Assessment of differential power supports the identification of the most discriminant pro-

files. In addition, MinePath assess the significance of the pathways as a whole, ranking

them by their p-values. Comparison results with state-of-the-art pathway analysis systems

are indicative for the soundness and reliability of the MinePath approach. In contrast with

many pathway analysis tools, MinePath is a web-based system (www.minepath.org) offer-

ing dynamic and rich pathway visualization functionality, with the unique characteristic to

color regulatory relations between genes and reveal their phenotype inclination. This

unique characteristic makes MinePath a valuable tool for in silico molecular biology experi-

mentation as it serves the biomedical researchers’ exploratory needs to reveal and interpret
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the regulatory mechanisms that underlie and putatively govern the expression of target

phenotypes.

Author Summary

It is generally recognized that using different sources of information and knowledge is bet-
ter than just using a single source. This is most profound in the post-genomics era. On one
hand, the advent of genomic high-throughput technologies realized by DNA microarray
and next generation RNAseq technologies enabled a ‘systems level analyses’ by offering
the ability to measure the expression status of thousands of genes in parallel. On the other,
molecular pathway networks depict the interaction of DNA segments during the tran-
scription of genes into mRNA. The prominent and vital role of pathways in the study of
various biology processes is a major sector in contemporary biology research. We intro-
duce MinePath, a pathway analysis methodology that amalgamates information and
knowledge from gene expression profiles and molecular pathways. The novelty of Mine-
Path resides in its ability to target not just the genes involved in the pathways, as most of
existing methodologies and tools do, but directly their interrelations and interactions.
With this approach, the regulatorymachinery that putatively governs and guides the
expression of disease phenotypes can be explored and revealed.

Introduction

Gene expression profiling via high throughput technology, either in the form of microarrays or
in the form of next generation sequencing (NGS) and the subsequent quantitative measure-
ment of RNA abundance in bio-samples, has generated (and continuous to generate) mass
gene expression data streams for a number of targeted phenotypes and diseases. After the early
years of microarray technology several research efforts were devoted towards the improvement
of the quality of gene expression profiling protocols as well as for the standardization of the
generated data, with the respective NGS based gene expression quantification to follow a simi-
lar progress [1]. On one hand, the selection of the most relevant features (gene transcripts),
and the discovery of (diagnostic and prognostic) predictive biomarkers seems to have reached
a mature state. On the other hand, the reliability and robustness of the induced biomarkers and
predictive models as well as the translation of these models into clinical practice and the devise
of respective trustworthy clinical decision-making scenarios remain open [2],[3]. The problem,
already known and addressed by the machine learning and data mining research community,
signifies domain dimensionality reduction denoted as feature selection [4],[5]. Initial expecta-
tion was that high throughput technologywould reveal specific gene co-expression patterns for
various phenotypes, but the utility of gene expression profiling seems to be bound to a number
of limitations, mainly due to the complexity of the individual variations as well as the heteroge-
neity associated with the selected features and the induced gene signatures [6],[7],[8],[9].
In the last years, the bioinformatics research community has focused on more enhanced

gene selectionmethods that amalgamate high-throughput gene expression measurements with
knowledge from other bio-sources such as molecular pathways. As it is stated in [10], page 1:
“Given the functional interdependencies between the molecular components in a human cell, a
disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations
of the complex intracellular and intercellular network”. In this sense, a network focus enables a
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more effective inference of key transcriptional changes, which are related to the specific pheno-
types, by examining multiple downstream (or cross-talk) effectors of the target. The reached
conclusion states that there is progress towards a reliable network-based approach to disease
modelling, and at the same time it stresses the fact that progress is currently limited by the
incompleteness of the available interactomemap and the inadequacies in the existing pathway
analysis methodologies and tools [10].
To reveal the problem and a way-out solution that also guided our research, Fig 1 provides

an indicative example of the gene-selection limitations when analyzing solely gene expression
data. Consider a dummy pathway that involves four artificial genes A, B, C and D (Fig 1A). Fol-
lowing a discretized setting, the gene expression levels are assigned to the binary values ‘1’ and
‘0’ meaning that the gene for the respective sample is up-regulated or down-regulated, respec-
tively. The ‘!’ symbol represents and denotes an activation or expression relation that receives
the following semantic interpretation: up-regulation of the source gene (i.e., taking the binary
value ‘1’) makes its target gene also up regulated. The ‘–|’ symbol denotes an inhibition relation,
i.e., up-regulation of the source gene makes its target gene down regulated (i.e., taking the
binary value ‘0’). Note that the inhibition relation could be also considered as functional in the
case where the inhibitor gene is down-regulated and the target gene is up-regulated (more
about this ‘dual’ interpretation of the inhibition relation can be found in sections ‘From gene
sets to topology and regulatory pathway machinery’). The input gene expression profile
involves the four artificial genes (columns) and five samples (rows), with samples S1, S2, S3

Fig 1. Limitations of analyzing solely gene expression profiles. (A) A dummy pathway. (B) The input (artificial) gene expression profile. (C)

Functional status of sub-paths–the shaded cells indicate that sub-path A! B–| C is functional in the corresponding samples.

doi:10.1371/journal.pcbi.1005187.g001
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assigned to Phenotype-1 and samples S4 and S5 to Phenotype-2 (Fig 1B). Looking at the gene
expression profiles we may observe that no sole gene or group of genes can (perfectly) differen-
tiate between the two phenotypes. Inducing a decision-treewith input this artificial binary
gene expression dataset could prove it, i.e., all the branches of the induced tree conclude to con-
flicting phenotype assignments. In contrast, molecular pathways encompass additional biologi-
cal features and knowledge–from the topology of the respective pathway network to the
underlying gene regulatory relations (i.e., expression, activation, inhibition etc.), that may effi-
ciently address the relevant gene selection barriers. In particular, gene interaction knowledge
solves the major problem of conflicting constrains when two significantly up-regulated genes
increase the enrichment of the gene-set in expression data, even if one of the genes acts as
inhibitor of the other. Fig 1C shows the functional status of four sub-paths that may be formed
after decomposing the dummy pathway into all of its component sub-paths (including the
overlapping ones). It can be observed that the second sub-path, A! Β –| C, matches the gene
expression profiles of the Phenotype-1 S1 and S2 samples (shaded cells) and none of the Pheno-
type-2 ones. So, the sub-path could be considered as functional for samples S1 and S2 and non-
functional for samples S3, S4 and S5. The regulatory fingerprint reflected by this sub-path could
be considered to ‘govern’ the expression status of the involved genes, and in a way it presents a
putative cause for the expression of the specific phenotype in two, from the total of three, Phe-
notype-1 samples. Moreover, the pathway sub-paths could take the place of descriptors on the
basis of which highly predictive phenotype differential models (decision trees or other) could
be induced and formed.

MinePath: Towards phenotype differentiating sub-paths

MinePath aims to address and cope with the aforementioned traditional pathway analysis
problems and overcome the gene-set oriented visualization limitations, i.e., what color should
be assigned to a target gene when, for one phenotype it is activated by an activator source gene,
and for another phenotype it is inhibited by another source gene. MinePath fully exploits the
topology as well as the underlying pathway gene regulatory relations, including the type and
direction of these relations. Having on our disposal the sub-paths resulting from the functional
decomposition of a pathway and the gene expression data, MinePath proceeds to the identifica-
tion of the sub-paths that functionally differentiate between the targeted phenotype classes.
The aim is the identification of those sub-paths that exhibit a high differential power to dis-
criminate between the expression profiles of samples assigned to different phenotypes.
Existing and widely utilized pathway databases provide pathways of proved molecular

value. Relevant on-line public repositories contain a variety of information that includes not
only the pathway network per se but also incorporate links and rich annotations for the respec-
tive nodes (genes) and edges (regulatory relations). In its current implementation MinePath
utilizes the KEGG pathways repository (www.genome.jp/kegg/pathway.html) [11]. KEGG
pathways are widely utilized as a reference knowledge base for understanding biological path-
ways and the function of respective cellular processes. MinePath reads pathways directly from
their original KGML representation format (KEGGmarkup language; www.genome.jp/kegg/
xml). It is also able to cope with the richer XGMML format (a graph XML representation
schema, also utilized by Cytoscape, wiki.cytoscape.org/XGMML)and so, it could be easily
extended to manage other relevant pathway resources like, BioCarta [12], ReActome [13], and
Pathway Commons [14].
Here we have to note that protein regulationmay occur in both translational and post-

translational levels, and KEGG encompasses and reports both protein and expression changes.
Even thoughMinePath cannot directly detect post-translational modifications, the quantitative
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relations due to differences in gene expression are a strong indicator of protein regulation, and
thus identification of related sub-paths remains a powerful tool for the identification of biologi-
cally significant relations. More details on this in section ‘Results/MinePath and mutation-
based/drivenor post translational modifications’.

From gene sets to topology and regulatory pathway machinery

The main goal of this paper is to present MinePath–a pathway analysis approach that directly
utilizes and exploits the underlying pathway topology and regulatorymachinery, and contrast
it with respective state-of-the-art approaches. As a systematic review of pathway analysis meth-
odologies is out of the scope of this paper, we refer the reader to relevant extensive reviews
[15], [16], [17] and [18].
A number of recent pathway analysis methodologies take advantage and exploit the topol-

ogy and the gene regulatory relations of pathways. Furthermore, some of the relevant tools
implement and offer network visualization functionality in order to map and display the
underlying regulationmachinery of pathways. Based on a literature search we identified rele-
vant pathway analysis methodologies and tools that are presented in Table 1. The identified
state-of-the-art methodologies and tools are presented in a unified and standardized notation,
which expose their common characteristics in terms of the pathway features that they tend to
utilize in their core processes.
ObservingTable 1 a general remark concerns the pathway knowledge that is utilized by

each methodology. A bunch of pathway analysis approaches (#1–8 in Table 1) focus on the
identification of differentially expressed genes. These approaches ignore, and do not employ in
their methodology the topology and the underlying regulatory relations with an exception of
the 7th and 8th method/tool in Table 1 that take into account only the pathway topology.
Another group of pathway analysis methods (#9–31 in Table 1) move one-step further trying
to identify discriminant pathways, even if they do not fully exploit the underlying pathway reg-
ulatorymachinery. As a general remark we may state that: (a) most of the current pathway
analysis tools focusmainly on the pathway enrichment characteristics of the target genes, and
(b) they compromise the connectivity in favor of computational simplicity since the topology
and the type of pathway relations are ignored or under-represented [59].
It is generally recognized that in order to efficiently address and to overcome the statistical

barriers in traditional gene selectionmethodologies, the pathway topology and the underlying
gene interactions should be taken into account [60]. Even in its infancy, this approach is fol-
lowed by most of the recent pathway analysis methodologies (#32–38 in Table 1). They present
a promising alternative towards the identification of the hidden underlying regulatorymachin-
ery that putatively governs and explains the expression of specific phenotypes. Representative
systems include GGEA [58], SPIA [53], TEAK [54], HotNet [55], Paradigm [56], and
PATHOME [57]. Moreover, even if these methodologies exploit the underlying pathway regu-
latory machinery, they reside on ‘summing’ over the functional status of the pathway regula-
tory gene relations without considering the exact functional status of each pathway relation or
sub-path. Most of these approaches generate overall pathway ranks, with an exception of
GGEA and Paradigm that provide respective sub-path views.
A key-component in order to indicate the predictive sub-paths and their power to differen-

tiate between the target phenotypes is the efficient visualization of the pathway analysis results,
which unfortunately most of these systems do not support. This obstructs the inspection of
results and limits the user exploratory potential. Systems such as KEGGAtlas/Mapper [61],
WebGestalt [62], NetworkTrial [63], Graphite Web [64], AltAnalyze [65], ReactomeFIViz [66]
and EnrichNet [67] visualize just the pathway genes using a color-coding schema to indicate
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the strength of a pathway relation. The same holds for TEAK and GGEA that use a color-cod-
ing schema to visualize just the functional status of genes, not the functional status of sub-
paths. In its extended version, Paradigm [68], visualizes the altered status of genes in the

Table 1. Scopes and main features of pathway analysis methodologies and tools. Each pathway analysis methodology is reported and referred by the

first author of the original publication where the pathway analysis methodology and/or tool was presented, followed by the respective reference (column 1);

the systems with names in bold (DAVID, SPIA, PATHOME, GGEA and GSEA) are the ones with which the MinePath is compared (section ‘Results’). The

publication year is reported in column 2; the third column reports the respective ‘Pathway DBs/schemas’: pathway databases and schemas supported by the

tool, where (1) represents KEGG, (2) ReActome, (3) BioCarta, (4) Pathway Commons, (5) WikiPathways, (6) Panther DB, (7) NDEx/PID, (8) MSigDB, (9)

sbml, (10) xgmml, (11) BioPax, (12) GPML; the next columns refer to the main functionality offered and the features utilized by the respective method, i.e.,

‘G’: Genes, ‘T’: Topology, ‘R’: Regulation, ‘GS’: Gene Selection, ‘PS’: Pathway Selection, ‘SPS’: Sub-Path Selection, ‘W’: Web-based, ‘Vg’: Visualization

support using genes color coding, ‘Vi’: Interaction features of the visualization, ‘Vr’: Visualization support using relations color coding.

# Publication [Ref] Publ. Year PathwayDBs / schemas G T R GS PS SPS W Vg Vi Vr

1 Siu [19] 2009 1,3 ✓ ✓

2 Wang [20] 2008 1 ✓ ✓

3 Braun [21] 2008 1 ✓ ✓ ✓

4 Tai [22] 2007 1 ✓ ✓

5 Sfakianakis [23] 2010 1 ✓ ✓

6 Beltrame [24] 2009 1,2,3 ✓ ✓

7 Clément-Ziza [25] 2009 1,11 ✓ ✓ ✓ ✓

8 Smoot [26] 2011 11 ✓ ✓ ✓ ✓

9 Cline [27] 2007 10,11,12 ✓ ✓ ✓ ✓ ✓

10 Zhang [28] 2011 11 ✓ ✓ ✓ ✓

11 Ibrahim [29] 2011 1 ✓ ✓ ✓ ✓

12 Glaab [30] [31] 2010–12 1,3,5,6 ✓ ✓ ✓ ✓ ✓ ✓

13 Subramanian[32]-GSEA 2005 8 ✓ ✓ ✓

14 Draghici [33] 2003 1 ✓ ✓

15 Rhodes [34] 2007 1,3 ✓ ✓

16 Cavalieri [35] 2007 1,2,3 ✓ ✓

17 Adewale [36] 2008 8 ✓ ✓

18 Ma [37] 2010 1 ✓ ✓

19 Kelley [38] 2004 1 ✓ ✓ ✓

20 Warde-Farley [39] 2010 2,4,7 ✓ ✓ ✓ ✓ ✓

21 Nacu [40] 2007 1 ✓ ✓ ✓

22 Chen [41]—DAVID 2011 1,3 ✓ ✓ ✓ ✓ ✓

23 Ulitsky [42] 2010 1,8 ✓ ✓ ✓ ✓

24 Alcaraz [43,44] 2011–14 11 ✓ ✓ ✓ ✓ ✓

25 Ideker [45] 2002 11 ✓ ✓ ✓

26 Farfán [46] 2012 1,2,3,5,6 ✓ ✓ ✓ ✓

27 Wu [47] 2012 1,2,6,7 ✓ ✓ ✓

28 Martini [48] 2013 1,2,3,7 ✓ ✓ ✓ ✓

29 Kazmi [49,50] 2008–10 1.3 ✓ ✓ ✓ ✓

30 Li [51] 2009 1 ✓ ✓ ✓ ✓ ✓

31 Xia [52] 2010 1 ✓ ✓ ✓ ✓ ✓

32 Tarca [53]—SPIA 2009 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓

33 Judeh [54] 2013 1 ✓ ✓ ✓ ✓ ✓ ✓

34 Vandin [55] 2011 1 ✓ ✓ ✓ ✓ ✓

35 Vaske [56] 2010 7, 12 ✓ ✓ ✓ ✓ ✓ ✓

36 Nam [57]-PATHOME 2014 1 ✓ ✓ ✓ ✓ ✓

37 Geistlinger[58]-GGEA 2011 1 ✓ ✓ ✓ ✓ ✓ ✓

38 MinePath ---- 1, 10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

doi:10.1371/journal.pcbi.1005187.t001
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pathway while EnrichmentBrowser [69] R package enables the application of a range of set-
based and network-based enrichment methods and provides visualization of results.
With the gene-set oriented visualization approach the problem is apparent even for small

sub-paths like the single inhibition relation A—| B (A inhibits B; A, B represent genes). The
inhibition relation exhibits a ‘dual’ character and could be considered as functional in a specific
sample in two cases: when A is up-regulated and B is down-regulated or, when A is down-regu-
lated and B up-regulated. In the first case, up-regulation of the A inhibitor causes the down-
regulation of B. In the second case, the down-regulation of the inhibitor in a sense ‘allows’ B to
be expressed and up-regulated. So, each of the genes should be visualizedwith a different color
(just to indicate its expression status). The situation becomes evenmore complicated when one
has to visualize the phenotype inclination of an interaction, for example when an inhibition
relation is functional just for one phenotype and not for the other. Coloring and visualizing the
functional status of pathway relations seems a promising alternative, and this is the approach
that MinePath adopts and follows (see sections ‘Functionality and visualization capabilities of
MinePath‘ for more details on the MinePath visualization conventions and functionality). The
MinePath web-application may be accessed by www.minepath.org.

Results

Validation of MinePath

Self-assessment:Predictive performance. In order to assess the predictive performance
of MinePath we used three publicly available breast cancer (BrCa) gene expression datasets
from the Gene Expression Omnibus (GEO) repository (www.ncbi.nlm.nih.gov/geo)) namely,
GSE3494 [70], GSE2034 [71], and GSE7390 [72] (all from the U133A Affymetrix platform,
and available in the MinePath repository).We utilized the mygene information server
(mygene.info) [73] to annotate and assign the respectivemicroarray probe-sets to KEGG
(Entrez) gene identifiers. From the initial U133A 22283 probe sets, 20902 share at least one
Entrez gene identifier. As a gene can be mapped to more than one Entrez identifier, the expres-
sion profiles of these genes are replicated for all the Entrez identifiers, resulting into 22645
probe-sets—Entrez-id paired features for the input gene expression profiles. In all datasets, the
estrogen-receptor status (ER+ and ER-) of the samples is reported. GSE3494 contains 213 ER+
and 34 ER- sample cases; GSE2034 209 ER+ and 77 ER-; and GSE7390 134 ER+ and 64 ER-
(samples with missing ER status information were removed). ER represents a critical BrCa
characteristic, with the activation and the underlying regulatorymachinery of various growth-
promoting pathways to be considered as most critical for the molecular characterization and
prognosis of BrCa (e.g., the ErbB signaling pathway).
MinePath was applied on the three BrCa/ER datasets using all the human (hsa) KEGG path-

ways for respective train vs. test validation experiments (a total of 299 in the latest KEGG
update; the nine global pathways maps were not retrieved). The decomposition of all input
pathways resulted into a total of 34844 sub-paths, with an average of 137 sub-paths per path-
way. The results, produced using theWeka/SMO (SMO is Weka’s support vector machine/
SVM implementation) induction algorithm, are summarized in Table 2.
The predictive performance of the inducedmodels, in terms of ACC/AUC, ranges from

69.2% / 0.785 (for GSE7390 vs. GSE2034) to 92.3% / 0.782 (for GSE7390 vs. GSE3494). On
average (‘Average ACC’), the best accuracy, 89.7%, is achieved by GSE3494. The figures signify
that the selectedmost discriminant sub-paths (963.3 at an average across all datasets) achieve
moderate to good predictive performance over independent datasets.
In an attempt to assess the generalization power of the MinePath identified discriminant

sub-paths we conducted the following experiment on each of the three BrCa datasets. Each
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dataset is split into training and test datasets starting from a 15% training split (the rest used
for testing) and increasing it with 5% step. Note that the respective training and test data are
discretized separately. Each step is iterated 100 times with respective random training-test
splits, and the corresponding average accuracy figures are recorded. The result is the learning
curve shown in Fig 2 (based on the average accuracy figures). The following observations could
be made: (i) for the highly unbalancedGSE3494 dataset (213 ER+ vs. 34 ER- samples), about
75% of the data are needed in order to reach a stable accuracy performance (around 85%); (ii)
for the more balanced datasets, GSE2034 (209 ER+ vs. 77 ER-) and GSE7390 (134 ER+ vs 64
ER-), stabilization of accuracy performance is achieved at about 35–40% of the data (around
83% and 87% accuracy for GSE2034 and GSE7390, respectively). The stabilized accuracy fig-
ures are comparative to the independent train-test experiment (reported in Table 2). The find-
ing is indicative of MinePath’s ability to assess and select differential and discriminant sub-
paths that does not suffer from overfitting, a situation that occurs in many traditional differen-
tial gene expression studies [74], [75].

Table 2. Predictive performance of MinePath on three BrCa/ER datasets Rows and columns refer to training and test data, respectively. Bold fig-

ures for ‘Average ACC’ indicate superior performance; ‘SP’–sub-path, ‘ACC’–prediction (on unseen/test data) accuracy, ‘AUC’–Area Under the Curve, ‘Aver-

age ACC’–average accuracy, i.e., the average accuracy of GSE3494 over GSE2034 (89.5%) and GSE7390 (89.9%) is 89.7%.

Discriminant SPs GEO dataset GSE2034 GSE3494 GSE7390 AverageACC%

ACC% AUC ACC% AUC ACC% AUC

888 GSE2034 --- --- 89.1 0.652 83.3 0.767 86.2

1111 GSE3494 89.5 0.863 --- --- 89.9 0.767 89.7

891 GSE7390 69.2 0.785 92.3 0.782 --- --- 80.8

Average: 963.3

doi:10.1371/journal.pcbi.1005187.t002

Fig 2. MinePath learning curve on three BrCa/ER datasets

doi:10.1371/journal.pcbi.1005187.g002
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The number of discriminant sub-paths across datasets ranges from 888 (for GSE2034) to
1111 (for GSE3494); less than 3.5% of the total 34844 (decomposed) sub-paths. The Venn dia-
gram in Fig 3 shows the overlap between the discriminant sub-paths across the three datasets.
A total of 79 discriminant sub-paths are shared across the datasets, and these sub-paths involve
159 genes.
Self-assessment:Robustness analysis via permutation testing. It is important to verify

that MinePath provides low false positive rates and delivers robust results, assessing if the dis-
criminant sub-paths are not inferred just by chance. For this, we obtained permutation tests
and computed respective false discovery rate (FDR) estimates. FDR assesses the expected pro-
portion of statistically significant test results that are false positives, with FDR figures of less

Fig 3. Venn diagram of the MinePath discriminant sub-paths that are shared among the three BrCa/ER

datasets.

doi:10.1371/journal.pcbi.1005187.g003

MinePath

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005187 November 10, 2016 9 / 40



than 5% to indicate that the selected discriminant sub-paths are not selected by chance. The
generation of respective permuted datasets achieved by shuffling the sample phenotype labels
and preserving the balance of the phenotype assignments to the samples. For each of the three
BrCa datasets (for the same ER+ vs. ER- differentiation task) and for each permutation we
applied MinePath and identified the most discriminant sub-paths. The procedure was repeated
1000 times (resulting into an empirical null distribution of the selected sub-paths) and measured
the FDR for the selected sub-paths on the original dataset. The GSE2034 selected sub-paths (888)
exhibit FDR figures of less than 1%; the GSE3494 sub-paths (1111) exhibit FDR figures of less
than 5% (with 125 out of them to exhibit FDR figures of less than 1%); and the GSE7390 891
sub-paths exhibit FDR figures of less than 5%, with 846 of them to exhibit FDR figures of less
than 1%. The selected discriminant sub-paths for the GSE3494 dataset showed the worst perfor-
mance, but still less than 5%. This could be attributed to the high imbalance of the GSE3494 data-
set with respect to the targeted ER phenotypes, 213 ER+ vs. 34 ER-, with this unbalance to be
reflected in the respective permutated datasets. In general, the permutation test results are indica-
tive of the MinePath reliability in selecting robust phenotype differentiating sub-paths.
Self-assessment:MinePath for meta-analysis of gene expression studies.The ‘3ER

GSE2034-3494-7390’ dataset (available in the MinePath repository) is a combination of the
aforementioned three independent gene expression BrCa/ER studies (GSE2034, GSE3494 and
GSE7390). Each dataset was discretized individually and the three discretized datasets were
merged into the ‘3ER GSE2034-3494-7390’ dataset that contains 556 ER+ and 175 ER- sample
cases. The merged dataset was analyzed in order to gain biological insights into the differentia-
tion between the ER+ and ER- BrCa phenotypes. Application of MinePath on the merged data-
set resulted into 26 pathways that exhibit p-values of less than 0.05 (see section ‘Identification
of the phenotype differential sub-paths’ for the details on the MinePath process that assess the
significant status of whole pathways). The ErbB pathway is in the top of the significant path-
ways (ranked fourth in the p-value ordered list of the total 299 targeted pathways, p-value ~
0.000011). The ErbB pathway is known for its activation and over-expression in many cancers
[76] and especially in BrCa [77]. The central role of ErbB pathway in the development of solid
tumors, its availability to extracellularmanipulation as well as its detailed understanding of the
underlying biochemistry has made ErbB an attractive target for pharmacological intervention.
Hence, ErbB signaling pathway is one of the most important pathways to explore. An edited
and simplified (as resulted by various network rearrangements that are offered by respective
MinePath visualization functionality) version of the ErbB pathway is shown in Fig 4.
Both ER phenotypes have extra-cellular origins (Fig 4). MinePath identified that the ER+

inclined path (in green) originates from the extra-cellular NRG1, NRG2 (neuregulin1, 2)
growth factors that activate ERBB3 (erb-b2 receptor tyrosine kinase 3) viral oncogene, which
in-turn activates PIK3R5 (phosphoinositide-3-kinase, regulatory subunit 5). The regulatory
relation PIK3R5! AKT3 (v-akt murine thymoma viral oncogene homolog 3) has no discrimi-
nant power since it is almost always functional for both phenotypes (functional in 726 out of
the 731 input samples). MinePath visualizes relations and sub-path that are functional for both
phenotypes (in black color) since such parts can link the gap between two discriminant sub-
paths. Then, AKT3 activates MTOR (mechanistic target of rapamycin), which in-turn inhibits
EIF4EBP1 (eukaryotic translation initiation factor 4E binding protein 1) that blocks ‘Protein
synthesis’ events and initiates the mTOR pathway. Here we have to note that any other path-
way analysis methodologywould reject the PIK3R5! AKT3 relation as being discriminant
because it possesses no differential power and so, it would miss the extra-cellular triggering of
the whole ER+ sub-path, NRG1,2! ERBB3! PIK3R5! AKT3!MTOR—| EIF4EBP1.
For the ER- phenotype, MinePath identified a discriminant sub-path that is also triggered

from extra-cellular factors, HBEGF (heparin-binding EGF-like growth) or BTC (betacellulin),

MinePath

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005187 November 10, 2016 10 / 40



which in turn activate EGFR (epidermal growth factor receptor). Then, the receptor initiates
the path GRB2! GAB1! PIK3R5! AKT3 (note that PIK3R5! AKT3 relation is shared
with the aforementioned ER+ discriminant sub-path). At last, AKT3 inhibits CDKN1B (p27,
Kip1, cyclin-dependent kinase inhibitor 1B) that blocks ‘Cell cycle progression’ events and ini-
tiation of the ‘Cell cycle’ pathway.
The aforementioned results are quite relevant to the BrCa/ER status. In [78] it is concluded

that cell-cycle progression in ER- breast cancer cells can be regulated by nuclear factor Nf-kB
with inhibitory activity being a potentially novel therapeutic agent for ER- breast cancer
patients. Recent studies show the significant role of both ErbB3 and ErbB4 as alternative targets
for the treatment of breast cancer patients suggesting a pan-ErbB inhibitor strategy that is able
to interfere the cross-talk between the various ErbB receptors [79]. As noted in [80] “the initial
growth inhibitory effects of fulvestrant appear compromised by cellular plasticity that allows
rapid compensatory growth stimulation via ErbB-3/4. Further evaluation of pan-ErbB receptor
inhibitors in endocrine-resistant disease appears warranted”. In addition, in [81] it is investi-
gated whether induction of ErbB3 and/or ErbB4may provide an alternative resistance mecha-
nism to anti-hormonal action. The conclusion is that fulvestrant treatment is sensitive to the
actions of the ErbB3/4 ligand HRGb1 (NRG1) with enhanced ErbB3/4-driven signaling activity
and significant increases in cell proliferation.
MinePath and individualizedmedicine. One of MinePath’s visualization capabilities

concerns the information of the single regulatory relations. By clicking an edge the user may
get relevant information for the respective relation: polarity score, p-value, fdr, coverage (white
rectangle in Fig 4). From the information we may observe that the extra-cellular pathway trig-
gering relation NRG1! ERBB3 covers 43.9% of the ER+ cases (244 out of 556), with the final
sub-path inhibition relation MTOR—| EIF4EBP1 to cover 36.2% of them (210 out of 556). In
other words, the whole ER+ differentiating sub-path fromNRG1 to EIF4EBP1 is functional for
a subset of ER+ cases, with the rest of cases to be covered by other sub-paths. This is a unique
feature of MinePath that could be directly linked to the concept of individualized (or personal-
ized)medicine, i.e., each individual (or groups of them) exhibit different molecular regulation
characteristics that may influence and guide respective diagnostic, prognostic and therapeutic
decisions. Towards this line of research MinePath has already been applied on the pediatric

Fig 4. The MinePath identified sub-paths for the ‘3ER GSE2034-3494-7390’ merged dataset that discriminate between the ER+ and ER-

phenotypes in the ErbB pathway. Edges colored in red indicate regulatory relations functional for the ER- phenotype, green for the ER+ phenotype, and

black for relations that are functional for both phenotypes.

doi:10.1371/journal.pcbi.1005187.g004

MinePath

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005187 November 10, 2016 11 / 40



nephroblastoma cancer domain in an effort to reveal the role of targeted miRNAs in the dis-
ruption of engaged pathways [82].

Comparing MinePath with state-of-the-art pathway analysis

methodologies

The main goal of the comparison is to contrast MinePath with those state-of-the-art pathway
analysis tools that utilize and exploit in their methodology the topology and/or the regulatory
machinery of the pathways. Note that for most of these state-of-the-art tools, the comparison
could not be performed directly on the level of the identified discriminant sub-paths since
most of the methodologies do not report information per sub-path. However, we attempt
such a comparison in order to assess to which extent the different approaches are able to
identify and reveal biologically important regulatory pathway relations and sub-paths (see
below the sub-section ‘Identification of discriminant cancer-related regulatory relation and
sub-paths‘).
The heterogeneity in the pathway representation formats utilized by the various pathway

analysis tools constraints their thorough comparison. This is also apparent for those tools that
exploit in their methodology the topology and/or the regulatory relations of pathways. Either
an alternation of pathway formats or an alteration of the underlying tools’ algorithmic process
is required in order to accommodate the differences [17]. Various pathway analysis methodol-
ogies (e.g., Paradigm) support the BioPAX (level 2) standard (www.biopax.org) to represent
pathways whileMinePath and other (e.g., GGEA and SPIA) support the KGML KEGG stan-
dard (www.kegg.jp/kegg/xml). Therefore, we decided to conduct the comparison either with
state-of-the-art pathway analysis systems that offer free implementations (e.g., GGEA and
SPIA) or with systems for which the original publications report results on experiments that
could be also conducted with MinePath (e.g., PATHOME, DAVID and SPIA).

Comparing MinePath with SPIA and GGEA

Predictive performance. We compare MinePath with SPIA and GGEA utilizing again the
aforementioned three BrCa/ER gene expression datasets (GSE3494, GSE2034 and GSE7390).
The comparison experiments were conducted using the Enrichment Browser R/Bioconductor
package (www.bioconductor.org/packages/release/bioc/html/EnrichmentBrowser.html)) that
supports the GGEA and SPIA algorithms. Special functions of EnrichmentBrowser were uti-
lized in order to download all human KEGG pathways. First we have to mention that the aver-
age execution time for the three datasets, taking into account all the (locally downloaded and
retrieved) human KEGG pathways, was 330 seconds for SPIA, 353 for GGEA and 41 for Mine-
Path, highlightingMinePath’s real-time operational efficiency.
SPIA and GGEA assess the consistency and compute the phenotype differential power of a

sub-path based on the differential power of its constituent single regulatory gene relations. In
contrast, MinePath computes directly the differential power of sub-paths, single or more com-
plex ones. Due to this limitation, we had to conduct the comparison on the level of single-rela-
tions. So, we extracted all single-relations involved in the sub-paths that MinePath assessed as
discriminant. In addition, since each gene is mapped to one or more transcripts, we created all
the combinations of transcript relations for the respective gene relations. Furthermore, as SPIA
and GGEA ignore the indirect KEGG relation, the respective transcript relations were ignored.
Under the above assumptions a training single-relations binarymatrix was formed for each
method and for each of the three BrCa/ER dataset. The rows represented the single-relations
selected as discriminant by each tool, the columns hold the samples, and each cell take the
value ‘1’ when the relation is considered as functional for the respective sample, and ‘0’
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otherwise.TheWeka SMO/SVM induction algorithmwas used in order to assess and compare
the respective predictive performances. The results are presented in Table 3.
SPIA exhibits the worst performance except for the GSE7390 vs. GSE3494 experiment

(91.5%). GGEA performs better than MinePath in three of the six experiments: 83.8%
(GSE2034 vs. GSE7390), 79.7% (GSE3494 vs. GSE2034), and 84.8% (GSE3494 vs. GSE7390).
MinePath performs better than GGEA in two experiments: 89.9% (GSE2034 vs. GSE3494), and
83.9% (GSE7390 vs. GSE2034). The above performances achieved with a different number of
selected relations for each tool, at an average 484, 741.3 and 2187.7 for SPIA, GGEA and Mine-
Path, respectively. It is notable that MinePath includes a big number of single-relations com-
pared to SPIA and GGEA. This is due to the fact that MinePath works and assesses the
differential power of complex sub-paths instead of single-relations. As a consequent, the
decomposition of each sub-path into its constituent relations results into a big number of sin-
gle-relations. Table 4 shows the average predictive performance figures achieved by each
method on each dataset. Rows ‘MinePath_sp’ and ‘MinePath_sr’ shows the performance

Table 3. Predictive performance of SPIA, GGEA and MinePath on three BrCa/ER datasets utilizing single-relations Rows and columns refer to

training and test data, respectively. Abbreviations are the same with those used in Table 2; bold figures indicate superior performance.

SPIA

Discriminant SPs GEO dataset GSE2034 GSE3494 GSE7390 Average ACC%

ACC% AUC ACC% AUC ACC% AUC

569 GSE2034 --- --- 86.2 0.549 79.3 0.708 82.8

414 GSE3494 79.4 0.637 --- --- 71.7 0.571 75.6

469 GSE7390 80.1 0.691 91.5 0.815 --- --- 85.8

Average: 484.0

GGEA

Discriminant SPs GEO dataset GSE2034 GSE3494 GSE7390 Average ACC%

ACC% AUC ACC% AUC ACC% AUC

1006 GSE2034 --- --- 87.9 0.559 83.8 0.770 85.9

693 GSE3494 79.7 0.722 --- --- 84.8 0.881 82.3

525 GSE7390 77.6 0.630 89.9 0.632 --- --- 83.8

Average: 741.3

MinePath

Discriminant SPs GEO dataset GSE2034 GSE3494 GSE7390 Average ACC%

ACC% AUC ACC% AUC ACC% AUC

1271 GSE2034 --- --- 89.9 0.657 68.7 0.516 79.3

2375 GSE3494 75.5 0.562 --- --- 71.2 0.555 73.4

2917 GSE7390 83.9 0.722 87.0 0.740 --- --- 85.5

Average: 2187.7

doi:10.1371/journal.pcbi.1005187.t003

Table 4. Average predictive performance of ‘MinePath_sp’, ‘MinePath_sr’, SPIA and GGEA. The best accuracies from Tables 2 and 3 are shown;

‘MinePatgh_sp’–MinePath using discriminant sub-paths; ‘MinePath_sr’–MinePath using the single-relation involved in the discriminant sub-paths (bold fig-

ures indicate superior performance).

Methodology GSE2034 GSE3494 GSE7390 Average ACC%

ACC% ACC% ACC%

MinePath_sp 86.2 89.7 80.8 85.6

MinePath_sr 79.3 73.4 85.5 79.4

SPIA 82.8 75.6 85.8 79.9

GGEA 85.9 82.3 83.8 84.1

doi:10.1371/journal.pcbi.1005187.t004
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figures of MinePath when the discriminant sub-paths and when the single-relations (involved
in sub-paths) are used, respectively. MinePath provides comparative, and on average superior
accuracy figures with the respective figures achieved by SPIA and GGEA, even though no sta-
tistical significant difference could be observed (using the Friedman's statistical test). The
MinePath sub-paths (‘MinePath_sp’) approach exhibits the best performance for two datasets,
86.2% (GSE2034) and 89.7% (GSE3494), with SPIA to exhibit the best performance for just
one dataset, 85.8% for GSE7390. At an average, the original ‘MinePath_sp’ approach achieves
the best performance (85.6%) compared with ‘MinePath_sr’ (79.4%), SPIA (79.9%) and GGEA
(84.1%).
Identification of discriminant cancer-related regulatory relation and sub-paths. The

three pathway analysis methodologies are based on the assessment of the differential power of
pathway gene single-relations. MinePath computes a rank for the whole sub-path in order to
select the most discriminant sub-paths, while SPIA and GGEA provide (binary) consistency
scores for single-relations, with ‘1’ to be assigned to a single-relation found to be consistent
with the expression status of the genes involved in the specific relations, and ‘-1’ otherwise. To
make the comparison feasible we consider and interpret the consistency of single-relations as
equivalent to the single-relations involved in the sub-paths found as discriminant by
MinePath.
For the comparison we target the p53 pathway using the BrCa/ERGSE3494 dataset, as this

is the only pathway shared as significant between the three methodologies.The differential
power (with respect to ER+ vs. ER- phenotypes) of the p53 pathway is excepted to be high
since 91% (31 out of the 34) of the ER- samples are characterized as p53-mutated, in contrast
to the 19% (41 out of the 213) for the ER+ samples [71] (the mutation information is reported
in the respective GSE3494 clinical data). The p53 signaling pathway is widely recognized as a
key cancer related pathway [83], with ERbeta to present a therapeutically critical target for the
decrease of the survival of p53-defective cancer cells after DNA damage [84]. It is also known
that p53 is a major mediator for chemotherapy therefore, understanding the crosstalk between
p53 and ER signalingmay provide important clues to improve current BrCa treatment strate-
gies. Even if various BrCa studies have given conflicting results, the strong correlation between
ER factors and p53 is generally acceptable, with p53 to be considered as primarily wild-type in
ER+ and mutated in ER- BrCa phenotypes [85].
MinePath identified 37 discriminant sub-paths, 5 for ER+ and 32 for ER-; SPIA and GGEA

identified 49 discriminant single-relations, 30 consistent and 19 inconsistent. For the specific
dataset and the p53 pathway, the results of SPIA and GGEA are completely in agreement. Fig 5
presents and contrasts the results produced by SPIA, GGEA and MinePath. Different direct
edge (activation/expression or inhibition) colors are used to contrast between the different
methodologies.Black edges represent relations identified as discriminant by all methodologies
(i.e., found as consistent by SPIA and KEGG, and discriminant for MinePath; note that SPIA
and GGEA induce the same relations as consistent). Red and green represent relations identi-
fied as discriminant only by MinePath for the ER- and ER+ phenotypes, respectively, while
blue represents relations identified as consistent only by SPIA and GGEA.
Examining Fig 5 the following observations could be made:

1. Upstream of tp53: First, DNA damage response (DDR) patterns are mainly controlled by
two signaling relations, ATM! CHEK2 and ATR! CHEK1, each with its distinct role in
cancer evolution and therapy [86]. MinePath is the only among the three methodologies
that identifies as discriminant the ATM! CHEK2 relation, with CHEK2 to be considered
as a susceptibility gene for inherited BrCa, also related with the mutation status of the well-
known BrCa susceptibility genes BRCA1 and BRCA2 [87]. We also note that the ATM!

MinePath
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CHEK2 relation is considered as discriminant for the ER- phenotype, a finding that is in
agreement with the fact that many ER- patients show less sensitivity to DDR agents [88]
exhibiting also much higher expression levels of ATM [89]. Second,MinePath is also the
only methodology that reveals the role of MDM4 as an important inhibitor of p53 (the col-
ored red MDM4—| TP53 inhibition relation in Fig 5), with SPIA and GGEA being unable
to establish this relation as discriminant. It is demonstrated that MDM4 (or MDMX) is
highly expressed in ductal epithelial breast cells and its down-regulation is sufficient to sig-
nificantly mitigate tumor growth and progression, a fact that suggest the targeting of
MDMX as an attractive strategy for the treatment of BrCas that express wt p53 (~70% of all
cases) [90].

2. Downstream of p53: First note that none of the three pathway analysis methodologieswere
able to identify sub-paths or single-relations that guide to cell cycle arrest events (top-right
shaded area, with the ‘?’ sign to indicate that the involved single-relations found as non-dis-
criminant). According to literature, clinical-trials highlight the role of the involved cyclin-
dependent kinases CDK4/6 complexes in BrCa, with their inhibition to present promising
targets for BrCa progression-free survival, especially for the BrCa ER+ phenotype [91]. Sec-
ond, MinePath is the only methodology that indicates BBC3 or PUMA as up-regulator of
p53 (BBC3! TP53 activation relation in green). PUMA is an estrogen target gene that is
vastly down-regulated in response to estrogen in BrCa cell lines, and it is up-regulated by
tamoxifen treatment. In addition, low expression of PUMA is significantly associated with
BrCa-specific death and worse tamoxifen treatment outcome [92]. Third, MinePath is also
the only methodology that induces as discriminant the sub-paths that guide to Apoptosis.

Fig 5. Contrasted SPIA, GGEA and MinePath results for the p53 pathway using the GSE3494 ER+ vs. ER-

dataset. The legend shows the meaning of the edge colors used to contrast between the results produced by the

three pathway analysis methodologies.

doi:10.1371/journal.pcbi.1005187.g005
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Two such paths are identified, the extrinsic path TP53! TNFRSF10B/TRAIL/DR5!
CASP8/FLICE! CASP3 ––>Apoptosis. TNFRSF10B (or TRAIL, DR5) is a TNF-related
apoptosis-inducing ligand that possesses the unique capacity to induce apoptosis selectively
in many cancer cells in vitro and in vivo, with CASP8 (or FLICE) to be recruited for down-
stream death signaling induction which is, in turn, sufficient to directly and fully activate
the effector CASP3, resulting in apoptosis. A number of preclinical studies demonstrated
the robust anticancer activity of TRAIL-receptor agonists and the stimulation of the extrin-
sic apoptosis pathway is bound to be more effective than chemotherapy for treating cancers
with TP53 mutations [93]. Furthermore, with respect to the intrinsic sub-path TP53!
SIAH1! CYCS! CASP9! CASP3 ––>Apoptosis, a path that passes through SIAH1, it
is known that up-regulated SIAH1 acts as a tumor suppressor [94], [95].

Identification of biology important pathways. SPIA and GGEA compute the significance
of a whole pathway based on the differential power of the involved genes. MinePath utilizes the
pathway sub-paths (functional or not) in order to assess the differential power and significance
(p-value) of the whole pathway. In this modeMinePath may be directly compared with SPIA
and GGEA on the pathway level. Here we should notice that MinePath assesses the significance
of pathways not on the basis of the involved genes but on the functional status of sub-paths in
the pathways. In this respect we could say that MinePath comprises a sub-path set enrichment
analysis methodology, just in analogy with gene set enrichment analysis methodologies (see
section ‘ Identification of the phenotype differential power of sub-paths‘ / ‘Assessment of path-
way significance’ for more details). The comparison is performed by targeting a set of known
ER-related pathways. Various molecular pathways mediate endocrine resistance and evaluated
for BrCa/ER therapeutic targets. The review in [96] reports the growth factor receptor signaling
pathways as basic targets, as these factors are implicated in the development of endocrine resis-
tance in the management of ER status. A total of six pathways are reported as significant:
HER2 (ErbB) that causes endocrine resistance through crosstalk with ER; PI3K–AKTwhich is
augmented in long-term estradiol-deprived cell-lines that have developed endocrine resistance;
JAK–STAT which is activated by HER family receptors; Ras–Raf/MEK–ERK(engaging the
MAPK and RAS KEGG pathways) that plays a role in HER receptor family-mediated endo-
crine resistance; and mTOR which is inhibited. For GSE2034, SPIA identified 17 significant
pathways, GGEA 44 and MinePath 26, without a common pathway shared among the three
methods. For GSE3494, SPIA identified 12 significant pathways, GGEA 25 and MinePath 17,
with just the p53 pathway shared among the three methodologies. For GSE7390, SPIA identi-
fied 12 significant pathways, GGEA 21 and MinePath 19, with no common pathway among
the three methodologies.The significant pathways shared among the three methodologies, and
the list of the six significant BrCa/ER pathways are shown in the Venn diagram of Fig 6. SPIA
shares no significant BrCa/ER pathways, GGEA share just one (JAK-STAT), and MinePath
shares five of them: JAK-STAT (also shared with GGEA), ErbB, MAPK, RAS and mTOR.
MinePath selected ErbB and MAPK pathways as significant in all three BrCa/ER datasets. The
findings are suggestive for the ability of MinePath to identify important and biology relevant
pathways.

Comparing MinePath with PATHOME, DAVID and GSEA

PATHOME is one of the most recent pathway analysis tools that compute the differential
power of regulatory relations in order to assess the phenotype differential significance of the
whole pathway. In the system’s original publication [57], PATHOME was compared with two
well-known pathway analysis tools, namely GSEA and DAVID. GSEA (Gene Set Enrichment
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Analysis, www.broadinstitute.org/gsea) follows a gene-set enrichment methodology in order to
identify statistically significant phenotype differentiating gene-lists by assessing their functional
enrichment in targeted pathways [32]. DAVID (Database for Annotation, Visualization and Inte-
grated Discovery, david.ncifcrf.gov) is a widely utilizedweb-based environment that offers a set
of functional annotation tools to reveal, assess and comprehend the underlying biologicalmean-
ing of genes [59]. The comparison was made on the basis of a public Gastric Cancer (GC) gene
expression dataset (GSE13861, with the IlluminaHumanWG-6 v3.0 expression beadchip; it
includes 65 primaryGC frozen tissue samples and 19 normal appearing gastric tissue samples).
Gastric cancer is the second leading cause of cancer-related death worldwide with most of the
patients to receive similar treatment, typically surgery followed by chemotherapy, as there are no
reliable biomarkers to optimize therapy [97]. For the comparison we used a reference standard of
nine cancer-related pathway categories as reviewedby Vogelstein and Kinzler in [83]. Each
pathway category refers to various single KEGG pathways (from a total of 15): HIF1 (mTOR/
hsa04150, Pathways in cancer/hsa05200, Renal cell carcinoma/hsa05211), p53 (hsa04115), RB
(Cell cycle/hsa04110), Apoptosis (Apoptosis/hsa04210), GLI (Hedgehog/hsa04340), APC (Wnt/
hsa04310), RTK (ErbB/hsa04012, Pathways in cancer/hsa05200), SMAD (TGF-β/hsa04350) and
PI3K (ErbB/hsa04012, Pathways in cancer/hsa05200,mTOR/hsa04150, MAPK/hsa04010, Insu-
lin/hsa04910, Focal adhesion/hsa04510, Chenokine/hsa04062,VEGF/hsa04370).
In the original publication of PATHOME the authors do not provide access to the tool or

the source code.We conducted the same experiment with MinePath (i.e., using the same

Fig 6. Venn diagram of the selected (significant) pathways shared among SPIA, GGEA, MinePath and the

six significant BrCa/ER pathways

doi:10.1371/journal.pcbi.1005187.g006
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dataset and all the KEGG human pathways) in order to compare with the results reported in
[57]. Furthermore, even though PATHOME computes the differential power of sub-paths in
order to assess the significance of the whole pathway, in the original publication only the signif-
icant pathways are reported. Under the aforementioned restrictions, the comparison is limited
on the identified significant pathways. The significant pathways were identified on the basis of
FDR (as reported in the original publication)–FDR< 0.05 for PATHOME and MinePath,
(Benjamini) FDR< 0.3 for DAVID, and FDR (q-value)< 0.3 for GSEA that results into 27
selected significant pathways for PATHOME, 17 for GSEA, 15 for DAVID and 28 for Mine-
Path. The comparison results are summarized in Table 5. MinePath identified as significant 5
out of the 15 reference cancer-related single KEGG pathways (MAPK, P53, mTOR, Wnt, Focal
adhesion) that cover 4 out of the 9 reference standard cancer-related pathway categories (PI3K,
P53, HIF1, APC); PATHOME identified as significant 6 out of the 15 reference cancer-related
KEGG pathways (MAPK, Chenokine,Wnt, Focal adhesion, Insulin, Pathways in cancer) that
also cover 4 out of the 9 reference standard cancer-related pathway categories (PI3K, APC,
HIF1, RTK); DAVID identified as significant just one KEGG pathway (Focal adhesion) that
covers just one cancer-related pathway category (PI3K); and GSEA just one KEGG pathway
(Cell cycle) that covers just the RB/Cell cycle pathway category. Furthermore, the authors
reported that five genes, WNT5A, VANGL1, SFRP2, FZD1 and PLCB1 are up-regulated in GC
cases. Note that the APC/Wnt pathway is already validated as a pathway associated to gastric
cancer [98].
Fig 7 visualizes the discriminant functional sub-paths identified by MinePath in theWnt

pathway. As it can be observed,MinePath is in accordance with the specific outcome reported
in [83], identifying the functional GC-related sub-path (indicated with the green colored
edges),WNT16 (WNT5A)! FZD10 (FZD1)!DVL1 which, after a number of gene bind-
ings/associations (engaging VANGL1,2) activates LEF1 which in turn activates MYC, FOSL1
and MMP7 to enter the Cell cycle pathway. Note also that MinePath was the only methodology
that identified the P53 pathway as significant.

Table 5. Comparative results for PATHOME (P), DAVID (D), GSEA (G) and MinePath (MP) in terms of selected pathways with reference to nine

gold standard cancer-related pathway categories (see text for more details); PI3K –phosphoinositide-3-kinase; RTK–protein-tyrosine kinase;

RB–retinoblastoma; HIF1 –hypoxia inducible factor; APC–antigen-presenting cell; GLI–glioma-associated oncogene; ‘✔’ identified as

significant.

Cancer PW categories KEGG PW code Pathway name PATHOME DAVID GSEA MinePath

PI3K hsa04010 MAPK signaling ✔ ✔
PI3K, RTK hsa04012 ErbB signaling

PI3K hsa04062 Chemokine signaling ✔
RB (Cell cycle) hsa04110 Cell cycle ✔
P53 hsa04115 P53 signaling ✔
HIF1, PI3K hsa04150 mTOR signaling ✔
Apoptosis hsa04210 Apoptosis

APC hsa04310 Wnt signaling ✔ ✔
GLI hsa04340 Hedgehog signaling

SMAD hsa04350 TGF-β signaling

PI3K hsa04370 VEGF signaling

PI3K hsa04510 Focal adhesion ✔ ✔ ✔
PI3K hsa04910 Insulin signaling ✔
HIF1, PI3K, RTK hsa05200 Pathways in cancer ✔
HIF1 hsa05211 Renal cell carcinoma

doi:10.1371/journal.pcbi.1005187.t005
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MinePath on RNAseq data

In order to validate and assess the ability of MinePath to cope with RNAseq gene expression
data we applied it on the domain of BrCa targeting the ER phenotype (ER+ vs. ER-). The RNA-
seq data comes from a large scale multicenter BrCa study performed by the Sweden Cancerome
Analysis Network—Breast (SCAN-B) Initiative [99] (GEO accession: GSE60788, 54 BrCa
cases, 40 ER+ and 14 ER-). In addition, we applied MinePath on the ‘3ER GSE2034-3494-7390’
microarray (MA) gene expression dataset that was used for the validation of MinePath (section
‘ Self-assessment:MinePath for meta-analysis of gene expression studies’). Aiming to contrast
betweenmicroarray and RNAseq gene expression measurements on the pathway level we
focus on the ErbB pathway. The results are illustrated in Fig 8 where, different arrow types and
colors are used in order to visualize the commonalities and similarities between the two dataset
types.
Different types of arrows and colors are used in order to contrast between the relations and

sub-paths identified as discriminant between the RNAseq and microarray datasets; drawing of
the different types of lines was done manually in order to visually contrast between the two
datasets. In general, the results from both RNAseq and microarray datasets are similar. For the
ER- phenotype, the EGFR (epidermal growth factor receptor) is activated by the extra-cellular
factors (direct arrow lines in red; see the explanatory legend at the top-right of the figure) BTC
for both RNAseq and microarray, HBEGF for only microarray and EREG for only RNAseq in
order to enter the intra-cellular regulation by the activation of GRB2, which in turn activates
GAB1. The relation GAB1! PIK3R5 is functional for both RNAseq (red dotted line) and
microarray (black dashed line that is also functional for the ER- phenotype). Then, the func-
tional sub-path continues with the common to the two datasets relation PIK3R5! AKT3 and
the inhibition of CDKN1B. Similar regulations hold for the ER+ phenotype (indicated by
‘green’ lines in Fig 8). It is notable that for both RNAseq and microarray datasets the cyclin-
dependent kinase inhibitors CDKN1A and CDKN1B are inhibited and block the triggering of
cell cycle events. A finding that is of interest concerns the ‘strength’ of the regulations identified
as functional and discriminant for the two datasets. The AKT3—| CDKN1B inhibition relation
covers 78.6% of the RNAseq ER- samples, compared with the respective 33.1% of the samples
covered for the microarray dataset (the percentage figures are shown in Fig 8 over the inhibi-
tion relation). This may be suggestive for the superiority of RNAseq technology to measure
RNA abundance more objectively because of its ability to detect low abundance transcripts and
genes with higher fold-changes, as well as to avoid technical issues related to microarray
hybridization [100]. The RNAseq experiment presents a first attempt towards the comparison
between different gene expression profiling technologies on the level of molecular pathways,
and at the same time it demonstrates the ability of MinePath to make such research quests
feasible.

Fig 7. Part of the WNT signaling pathway for gastric cancer that shows the MinePath discriminant sub-

paths. Green edges indicate discriminant functional relations for GC cases; edges in black indicate discriminant

functional relations for both CG and normal cases; undirected yellow edges denote binding/association relations.

doi:10.1371/journal.pcbi.1005187.g007
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MinePath and mutation-driven or post translational modifications

Protein regulation can occur in both translational and post-translational level, and it is true
that KEGG pathways engage and report both protein and expression changes (in the respective
pathway maps and XML/KGML formatted files). As most gene set and pathway enrichment
analysis approaches are based solely on gene expression measurements and data, they could
not capture regulatorymechanisms that may not be reflected in gene expression data, such as
post-translational modifications or kinetic control of biochemical reactions [101]. Quantitative
relations due to differences in gene expression however, remain a strong indicator of protein
regulation, and thus a useful tool for the identification of protein relations/regulation. Even
thoughMinePath cannot directly detect post-translational modifications, the available infor-
mation in KEGG pathways could be utilized for mapping differential gene expression and iden-
tification of relevant differential sub-paths. Under this setting, it remains a powerful tool for
the identification of indicative and biologically significant relations. Moreover, as it is reported
in a study about the connectivity of cancer co-expression networks, “. . . the biological meaning
of co-expression changes can be interpreted in terms of modifications of cancer genome landscape
. . . that confirms the hypothesis that loss of connectivity fingers toward genes harbouring alter-
ations (e.g.mutations, losses and deletions, promoter DNA methylation) or affected by post-
translational modifications (e.g. phosphorylation, acylation,methylation, etc.) in tumors.”
matching of multi-dimensional data with samples for each kind of mutations is suggested in
order to validate the hypothesis [102]. Under this driver, and on the basis of respective gene
expression data, we assess the utility of MinePath in cases where mutations in an upstream reg-
ulatory factor can cause differential expression of target genes affecting their regulation. Assess-
ment is based on the application of MinePath on a study that explores the principle role of the

Fig 8. Contrasting between RNAseq and microarray gene expression profiling technologies on the pathway level

doi:10.1371/journal.pcbi.1005187.g008

MinePath

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005187 November 10, 2016 20 / 40



SDF1/CXCR4 axis in the homing and engraftment of hematopoietic stem/progenitor cells
(HSPCs), with the proper functioning of CXCR4 downstream signaling to depend upon consis-
tent optimal expression of both SDF-1 ligand and its receptor CXCR4 [103]. In this study,
CXCR4 constitutive active mutations–CXCR4-CAMs (N119A and N119S) in K562 (human
immortalizedmyelogenous leukemia) cell line were engineered. These CXCR4 mutations are
able to induce autonomous downstream signaling in a regulatedmanner. To assess the effects
of the specific CXCR4 mutations, the genome wide differential gene expression (microarray)
profiles of three-(3) wild-type and six-(6) mutated samples were generated (with the Agilent-
027114/CustomHuman Whole Genome 8x60k Microarray; GEO accession: GSE76544). The
CXCR4-CAMs resample the post translational modifications (PTMs) involved in the active
state of the CXCR4 gene product. The task is to assess the ability of MinePath to identify and
reveal potential regulatory relations and sub-paths caused by the corresponding gene expres-
sion alternations. It was encouraging to observe that most of these relations indeed affect gene
targets that are downstream of CXCR4. The MinePath analysis results are illustrated in Fig 9
where, the downstream CXCR4 mutation signaling and the corresponding regulatory events
(‘red’ colored edges) are mapped on an integrated regulatory network. The results are in accor-
dance with the findings reported in the original study, most of the reported in the study paper
CXCR4-mutation affected pathways are ranked as significant, with ‘MAPK’, ‘Phosphatidylino-
sitol signaling’ and ‘Axon Guidance’ to be on the top of the reportedMinePath list. In particu-
lar, and inspecting the network in Fig 9, the following observations could be made: (i) all the
reported (in the study paper) genes are present in the network (shaded rectangular nodes), (ii)
the non-shaded rectangles are genes (GRK7, FGR, PTK2, MAPK14, IGF1R, RASGRP1,
RRAS2, RRAS) which are not reported in the study paper, and present putative targets for fur-
ther research–especially the GRK7-CXCR4 axis is of interest for future studies, (iii) a positive
regulation ‘loop’ between genes PTK2 and PIK3R3 is imprinted in the network (PTK2 and
PIK3R3 are intracellular binding proteins involved in stromal contact in the bone marrow
microenvironment [104]), a finding that is in accordance with a relevant comment in the study
paper: “the differential gene expression profile of CXCR4 mutants reveals a positive loop of
genes related to homing and engraftment”.
The aforementioned results and the integrated network in Fig 9 were produced by the fol-

lowing off-line analysis methodology:(i) the file of the differential sub-paths (as saved by
MinePath) was processed, and all the single relations of each sub-path were extracted; (ii) a net-
work with all the extracted relations was generated and imported in Cytoscape; (iii) using spe-
cial functionality of Cytoscape the nodes/genes (and their synonyms) that are reported in the
study paper were retained. The resulted integrated network, after rearranging its topology
(view) layout, and renaming some of the nodes (to reflect their grouping in the KEGG path-
ways) is shown in Fig 9. The color of the edges follows the already represented coloring scheme,
with ‘red’ and ‘green’ for the CXCR4-mutated and wild-type functional relations, respectively,
and ‘black’ for relations which are functional for both cases. It is in our plans to automate and
encompass the presented off-line analysis methodology in MinePath towards the creation of
integrated networks with differential sub-paths that range across different pathways.

Discussion

Integration of heterogeneous sources represents an effective venue, as compared to working
within the boundaries of a single domain. This realization is particularly valid for the bioinfor-
matics domain [105]. Bioinformatics and systems biology have demonstrated that knowledge
across domains can better aid relevant scientific communities in their research. Pathway analy-
sis methodologies that exploit the underlying regulatorymachinery of pathways and the
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identification of phenotype differentiating sub-paths addresses and solves a typical problem of
set enrichment strategies that is: the conflicting constrains betweenmolecular pathways and
gene expression data. An example is reflected in situations where two significantly up-regulated
genes increase the enrichment of the set in gene expression data, even if one of the genes acts as
an inhibitor of the other.
MinePath introduces a pathway analysis methodology that directly exploits the topology as

well as the underlying pathway regulatorymechanisms, including the direction and the type of
the engaged regulatory relations. This is in contrast with the traditional pathway analysis
approaches that employ the so called Gene Set Analysis (GSA) [6] or Gene Set Enrichment
Analysis (GSEA) [32] methodologies,with the target to identify the most significant (with
respect to the target phenotypes) pathways. Even if there are some differences between the two
methodologies (mainly with respect to the background statistical framework that they utilize)

Fig 9. The integrated network that reflects the CXCR4 mutation downstream signalling events

doi:10.1371/journal.pcbi.1005187.g009
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their fundamental characteristic is that they face pathways not as networks but just as groups
(plain list) of associated genes. Both GSA/GSEA aim towards the reduction of differentially
expressed gene lists (as assessed by gene ranking and selection) to biology relevant short lists
that exhibit over-representation characteristics in targeted biological processes and molecular
functions such as the ones present in pathways. Even in the lack of differentiating gene lists,
GSA/GSEAmay assist the identification of phenotype associated genes by taking advantage of
the fact that many genes in a gene list may exhibit changes in their expression status under dif-
ferent functional conditions [106], and in some cases proved effective in improving predictive
performance [15], [107]. Nevertheless, pathways are richer and encompass much more knowl-
edge than just a plain list of genes, such as the topology and the involved gene regulatory rela-
tions recorded in the respective pathway networks. This important drawback of the GSA/
GSEA approaches limits their ability to capture and model the multiple roles that genes take in
the various molecular pathways. GSA/GSEA base their analysis on the cellular components
(i.e., genes, proteins etc.) and not on the pathway networks’ connectivity (topology and interac-
tion types) just because they compromise the underlying networks’ complexity in favor of
computational simplicity [60]. Even if some of the existing pathway analysis methodologies
and tools, like GSEA, take into account the topology and the underlying regulation machinery
of pathways, a fundamental difference contrast them with the methodology followed by Mine-
Path. The difference resides in the handling of the pathway gene regulatory relations. Most of
these systems follow a scoringmethodology in which, each regulatory relation is scored accord-
ing to its status in the input gene expression data with activations to receive a ‘+1’ and inhibi-
tions a ‘-1’ score, depending on their consistency with the respective gene expression sample
profiles. A final score per sub-path is calculated and a final rank score per pathway is provided
—an exception holds for GGEA, which provides sub-path qualitative consistency assessments.
With such a ‘summation’ approach the risk to miss important regulations is increased (such a
case is shown in the ‘Results’ section).
A final remark concerns the ability of MinePath to assess the phenotype differential power

of pathway sub-paths and not the respective power of single regulatory relations. This unique
feature of MinePath makes it a valuable tool for in silicomolecular biology experimentation,
and serves the biomedical researchers’ exploratory needs to reveal and interpret the underlying
pathway regulatorymechanisms that putatively govern the expression of the target
phenotypes.
The performance of MinePath was assessed using publicly available BrCa and CG gene

expression data. The results demonstrate the validity of the MinePath methodology in devising
sub-path based predictive models. It would be of interest to compare and contrast the predic-
tive performance of MinePath with the performance of traditional differential gene expression
analyses, as well as the degree of overlapping genes between different datasets and phenotypes.
Such a comparison is out of the scope of the current paper, as the main focus is on the detailed
presentation of MinePath sub-path based pathway analysis methodology and its comparison
with relative state-of-the-art pathway analysis methodologies.A fair comparison with tradi-
tional gene expression analyses methodologieswill require a large enough collection of diverse
gene expression datasets as well as different (algorithmic) parameterization arrangements, and
it is in our plans to set-up and conduct such a systematic and large-scale assessment study.
The comparison of MinePath with state-of-the-art pathway analysis methodologies like

SPIA, GGEA, DAVID, GSEA and PATHOME highlights the value of the system, not only for
its ability to identify important molecular regulations but also for its web-based implementa-
tion as well as, for its interactive visualization capabilities that facilitates the biological interpre-
tation of the findings. Using a meta-analysis approach on three merged BrCa ER datasets, and
focusing on the well-known ErbB signaling pathway, we provided indicative evidence for the
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power of MinePath to identify and reveal important molecular cancer-related regulatory opera-
tions that governs the expression of specific BrCa phenotypes. Although protein regulation can
occur in both translational and post-translational level, quantitative relations of gene expression
still remain a strong indicator of protein regulation, and thus a useful tool for the identification of
protein relations/regulation. As an example, MinePath was able to reveal the downstream effects
and the corresponding regulatorymachinery that underlies CXCR4-mutant affected genes).
MinePath is in active continuous development with ongoing work and planned extensions

to target and include: (i) automation of the CXCR4-mutant analysis methodology in order to
create integrated networks with differential sub-paths that range across different pathways; (ii)
support multi-class gene expression data in order to differentiate betweenmore than two target
phenotypes–exploiting relevant research from the machine learning field, transformation of a
multi-class problem to different two-class/binary problems seems a promising direction to fol-
low–optimization approaches are also of relevance [108], and will be assessed for their custom-
ization to the MinePath methodology;(iii) adaptation of more pathway databases and relative
pathway representation formats (except from KEGG)–such an extension will enable the assess-
ment of the robustness of results across different pathway databases; (iv) offer services for auto-
mated uploads of gene expression data repositories (e.g. from Gene Expression Omnibus
(GEO) and TCGA/CancerGenome Atlas Research Network (cancergenome.nih.gov)); (v) pro-
vide more enriched annotations and respective links for the visualized results (genes, relations,
pathways etc)–such an extension will ease the users to focus their inquiries on specific genes of
interest (e.g., genes that belong to particularmolecular function), and will enable the respective
filtering and restriction of the input gene expression profiles just to these genes and (vi) visuali-
zation of differential genes, e.g., gene signatures from various studies, could be also supported
(a first attempt, to be included as a stable component of MinePath, is implemented in the appli-
cation of MinePath on a study that concerns the determination of the biological relevance of
transcription factor binding sites over functional pathway sub-paths [109]).

Materials and Methods

The overall MinePath methodology encompasses and implements five modular components:
(i) discretization of gene expression data; (ii) decomposition of pathways into their constituent
sub-paths; (iii) matching and assessment of the functional status of sub-paths in gene expres-
sion sample profiles, (iv) assessment of the phenotype differential power of the decomposed
sub-paths; and (v) visualization of the results. MinePath generates a set of informative and phe-
notype differentiating pathway sub-paths that uncover the molecular regulatorymechanisms,
and putatively govern the expression of targeted phenotypes. The web-basedMinePath envi-
ronment offers a rich visualization framework where the user may adjust the differentiating
power of targeted pathways according to his/her research exploratory needs.

Discretization of gene expression values

In gene expression studies, the quest is not only to identify genes that differentiate between
phenotype classes but also to uncover putative correlations between these genes. Such an
approach seemsmost reasonable in pathway analysis, in the sense that gene biomarkers need
to be mapped to some biological function. As biochemical reactions are governed by discrete
events (at least at the lowest reaction levels–oxidation, reduction, catalysis etc.) it is reasonable
to consider gene expression values by a ‘qualitative’ manner–with the underlying assumption
that mRNA transcriptomic measurements capture and represent abundance sufficiency in a
binarymode, i.e., “Is the gene up-regulated or down-regulated?” “Is the gene expressed or not?
“Is the gene expression high or low?”. As it is noted by Hartemink in his thesis on the discovery
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and validation of gene regulatory networks [110], discretization of gene expression values shows
a number of advantages. First, it allows modelling of qualitative relationships between genes
while reducing considerably the domain dimensionality. Second, discrete state representation of
gene expressions approximate regulatory transcriptional equilibria can be captured and repre-
sented by qualitative statements. Third, under rational (domain dependent) assumptions the dis-
cretization introduces a measure of robustness against error, including errors in gene expression
measurements and their normalization. Fourth, at one extreme, discretized gene expression val-
ues present approximations to the reported continuous ones and at the other, continuous gene
expression measurements present an approximation of the underlying discrete processes and
events within the cells. Biologically driven discretization of gene expression values could be done
on the presence and knowledge of some experimentally determined control value—the respective
continuous values are assigned and transformed into respective binary representatives depending
whether they are lower or greater than the respective control [111]. On the absence of such
knowledge that is normally difficult to be objectively determined and assessed, automated and
statistically driven approaches are followed. Discretization of gene expression values is already
followed in many microarray studies and respective data analysis approaches [112], [113].
Among the various discretizationmethods, the supervisedEntropy-based global discretiza-

tion approach (ED in short) gained a lot of attention. In a global data pre-processing mode, ED
follows a top-down splitting process examining all putative split-points which then are itera-
tively re-split to incrementally form the respective discretization intervals [114]. One of the
most inspiring and well-definedmethod is presented by Fayyad and Irani in [115]. For a given
set of sample cases S, and a feature A the method chooses (in an iterative top-downmode) a
cutting point TA (selected among the class borderlines) in a way that the joint class information
entropy E(TA;S) is minimized. A similar approach is also introduced by Li andWong [116].
Experimental results on benchmark datasets for various discretization approaches showed that
the Fayyad and Irani ED discretizationmethod is by far the best performingmethod [117]. In
addition, in [118] is shown that ED binary discretization does not suffer from data fragmenta-
tion and so, no significant accuracy degradation occurs.
MinePath follows and implements an ED binary discretization process in order to trans-

form gene expression values into high (expressed / up-regulated) or low (not-expressed /
down-regulated) gene expression binary equivalents. Our method resembles the Fayyad &
Irani and Li &Wong approaches. Even if both methods employ entropy-based statistics they
do not incorporate an explicit parameter to force binary splits, a fact that may result to uncon-
trolled numbers of discretization intervals (more than two), which would be difficult to inter-
pret in the presence of two phenotype classes. Below we give a general description of the
MinePath discretization process that unfolds into four steps [119]:

1. The expression values of a gene over the total number of input samples are sorted in
descending order;

2. The midpoints between each two consecutive values are calculated;

3. For each midpoint, μi, the Information Gain (IG) of the system is computed—IG offers a
way to optimally differentiate (with the gene at hand) between sample cases taking into
account their prior phenotype class assignment, and it is mainly used by decision-tree
induction algorithms [120]. Let IG(S,μi) to denote the IG of the system for midpoint μi,

IGðS;miÞ ¼ EðSÞ � EðS;miÞ

EðSÞ ¼ �
X

i

PðCi; SÞ � logðPðCi; SÞÞ
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where, E(S) is the entropy of the system taking into account the prior assignment of sample
cases into phenotype classes, P(Ci,S) the proportion of samples in S that belong in Class C
and E(S,μi) the respective entropy of the system taking into account its division into sub-
groups around midpoint μi. The midpoint with the highest information gain is selected as
the discretization point.

4. The sample cases with expression values lower than the discretization point are assigned the
‘0’ value (meaning that the gene is under-expressed), and the sample cases with expression
values bigger that the discretization point are assigned the ‘1’ value (the gene is over-
expressed). The discretization process is applied for each gene separately, and the final data-
set is a matrix of discretized, actually binarized, values. Fig 10 illustrates the MinePath dis-
cretization process using a ‘dummy’ gene expression dataset.

Every probability distribution is trivially a maximum entropy probability distribution under
the constraint that the distribution have its own entropy. Entropic formulas are applicable not
only to uniform distributions but also to Poisson or negative binomial distributions (as a mix-
ture of Poissons) [121]. Hence, the MinePath entropy based discretization is appropriate and
applicable also to RNAseq data since it is known that RNAseq data normally follow Poisson or
negative binomial distributions [122].
For a reliable and effective pathway analysis methodology, both the pathways and the gene

expression data have to use the same nomenclature. Pathways use gene ids (KEGG uses Entrez
gene IDs) while gene expression platforms use probeset ids. The mapping from a gene nomen-
clature and thesaurus to another rises the many-to-one issue where, many probesets are
assigned to the same Entrez /KEGG gene ID. Multiple probesets targeting the same gene do
not (should not) show different expression levels’. Thus, taking into account the expression sta-
tus of just one of the probes would be enough. Since we cannot assure consistency between the
different microarray platforms, MinePath checks the multiple probesets for each gene and
infers a combined expression value by applying a logic OR between the respective probeset val-
ues. This is actually the same as selecting the probe value that exhibits the highest intensity out
of all the probes that map to the same gene.

Fig 10. Discretization of gene expression values in MinePath. At the left a ‘dummy’ gene expression profile is shown, the profile refers to five genes

(rows) and to six samples (columns); at the right its discrete binarized version of the gene expression profile is shown; in between the respective (for each

gene) computed discretization cut-off points are shown.

doi:10.1371/journal.pcbi.1005187.g010
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Functional sub-paths: Matching sub-paths with gene expression profiles

Amolecular pathway is considered as a graph with nodes to represent genes, groups of genes
and compounds, and edges to represent regulatory gene relations such as activation, inhibition,
expression, indirect, phosphorylation, dephosphorylation, ubiquitination, association and dis-
sociation. Each pathway is decomposed into all of its constituent sub-paths following a depth-
first search approach, implemented as a ‘find all’ functionwhich is able to identify all paths
from a node to every other node. As an example consider the four (artificial) genes A, B, C and
D and an artificial pathway consisting by just one path: A! B! D—| C. The pathway is
decomposed into six sub-paths, the single-relation sub-paths A! B, B!D, and D—| C; the
overlapping sub-paths A! B!D and B!D—| C; as well as the original pathway (consid-
ered as a sub-path) A! B!D—| C.
After the decomposition of each a pathway into its constituent sub-paths, each sub-path is

matched against the input binary gene expression sample profiles. The functional status of a
sub-path in a sample is assessed by a set of binary (Boolean) operations and a set of semantics
that decipher the exact molecular nature of the involved gene relations. Table 6 summarizes
the types of KEGG relations and the respective semantics that MinePath employs for their
modeling. Activation is modelled and implemented with the AND Boolean operator, meaning
that A! B is functional in a sample if and only if both A and B are up-regulated. In all other
cases the activation relation is considered as non-functional. Inhibition possesses a dual inter-
pretation which is modelled by the XOR (exclusive OR) Boolean operator. So, A—| B is

Table 6. Semantics of pathway gene relations in MinePath ‘UP’, ‘DOWN’ stand for up-regulation and down-regulation of genes, respectively.

Relation Truth Table MinePath Semantics

Activation B

If A is UP then B is UP
A➔B

UP DOWN

A
UP ✔ ✕

DOWN ✕ ✕
Inhibition B

If A is UP then B is DOWN or if A is DOWN then B is UPA⊣B

UP DOWN

A
UP ✕ ✔

DOWN ✔ ✕

Expression
As Activation

A➔o➔B

Indirect effect
As Activation

A─➔B

Phosphorylation

A+p➔B As Activation

A+p⊣B As Inhibition

De-Phosphorylation

A-p➔B As Activation

A-p⊣B As Inhibition

Ubiquitination

A+u➔B As Inhibition

Association/Binding B

A—B UP DOWN

Dissociation
A

UP ✔ ✔
A-|-B DOWN ✔ ✔

doi:10.1371/journal.pcbi.1005187.t006
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considered as functional either if A is up-regulated and B is down-regulated or, if A is down-
regulated and B is up-regulated, in the sense that gene B is allowed to be up-regulated and
active because its inhibitor A is down-regulated. There are relevant studies that adopt such a
dual interpretation of inhibition [123]. In a more theoretical framework, the effect of an inhib-
iting gene depends on its level of expression: when it is up-regulated it has a negative effect, i.e.,
down-regulates its targets, and when it is down-regulated it holds a positive effect, i.e., up-regu-
lates its targets [124]. MinePath considers ‘Binding/Association’ and ‘Dissociation’ as special
pathway relations that do not exhibit a specific regulatory effect but as a condition in which
specific genotypes are associated with other factors [125]. Therefore, MinePath identifies and
visualizes binding/association and dissociation relations independently of the expression status
of the engaged genes.
MinePath copes with two basic single gene regulatory relations, activation/expression and

inhibition, encoded by the AND and XOR Boolean operators, respectively. For more complex
sub-paths MinePath takes into account the binary value of the path’s last relation and the
binary value of the sub-path’s part examined so-far, and combines them with an AND opera-
tor. Fig 11A illustrates the matching operation based on a ‘dummy’ binary gene expression pro-
file. Consider the artificial sub-path A! B! D—| C. Initially, and using the AND operator,

Fig 11. Identification of functional sub-paths in gene expression sample profiles (matching operation). (A) Identification of functional sub-paths

and their matching with gene expression profiles; a ‘dummy’ binary gene expression profile is used with four genes and six samples assigned to two

phenotype classes; ‘1’ represents up-regulated and ‘0’ down-regulated statues of gene, respectively. (B) The binary sub-path expression matrix produced

by MinePath.

doi:10.1371/journal.pcbi.1005187.g011
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the truth-value of A! B is assessed for each truth binary value in each of the input samples; if
A and B are both up-regulated (i.e., both takes the value ‘1’ in the discretized binary gene
expression matrix) the relation is considered as functional in the sample. The same process is
followed in order to assess the binary value of A! B!D. That is, the binary values of A! B
and B! D are combined using again the AND operator. Then, the resulting binary values of
A! B!D and D—| C are combined, using again the AND operator, to form the final binary
value of the input sub-path. Note that the matching process computes not only the binary
value of the input sub-path but the respective binary values of all overlapping sub-paths as well
(including the sub-path’s single-relations).
The final outcome is the sub-path (binary) expression matrix, just in analogy with tradi-

tional gene expression matrix, with rows all the decomposed pathway sub-paths (including the
overlapping ones), columns the input samples, and each cell to get the values ‘1’ or ‘0’ for the
functional status of the corresponding sub-path in the respective sample (Fig 11B). For the
example of Fig 11, the sub-path A! B! D—| C is functional for cases S1 and S3, the sub-path
A! B!D is functional for S1, S3, S5 and S6, and D—| C is functional in all Phenotype-1 and
non-functional in all Phenotype-2 samples. The B!D—| C sub-path exhibits the highest phe-
notype differential power as it perfectly discriminates between the two phenotypes.

Identification of the phenotype differential power of sub-paths

The sub-path expression matrix does not aim to reduce the dimensionality of gene expression
profiles. In fact, it may involve more sub-path features than the number of genes present in the
original input gene expression matrix. For this reason, and in analogy to gene selection,Mine-
Path encompasses and implements a multi-parametric sub-path selection process for the iden-
tification of the most discriminant sub-paths. The selection process is implemented by the
employment of feature-selection and classification techniques (see below). MinePath saves the
Weka version of the sub-path expression matrix that contains just the most significant and
selected sub-paths. The user may then input this file to Weka in order to induce a variety of
predictive models in the form of decision trees, support vector machines, Naïve Bayes classifi-
ers etc.
On the complete sub-path dataset, a set of various filters are applied in order to exclude

non-informative sub-paths and select the most significant of them. This process acts as a gen-
eral filtering approach and may be used independently as a generic gene expression pre-pro-
cessing strategy. Filtering has been demonstrated to be very useful for p-value adjustment and
information elucidation [126]. MinePath encompasses three distinct filters in order to assess
the phenotype differential power of sub-paths and select the most discriminant from them
namely, coverage, p-value and polarity with a respective configurable threshold to each one of
them.
Coverage. The percentage of samples (for a specific phenotype) in which the sub-path is

functional should be at least 25%.
p-value. MinePath uses the Fisher exact test or the D. Benjamini & Hochberg False Dis-

covery Rate (‘B&H adjusted fdr’) [127] (as a default option in the MinePath user interface) in
order to compute a two-tailed p-value or adjusted p-value for each sub-path and assess its sig-
nificance. Sub-paths that exhibit a p-value less than 0.05 pass the filter. The formula used to
compute the p-value of each sub-path is:

p � value ¼
aþb
a

� �
cþd
c

� �

aþbþcþd
aþc

� � ¼
ðaþ bÞ!ðcþ dÞ!ðaþ cÞ!ðbþ dÞ!
ðaþ bþ cþ dÞ!a!b!c!d!
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where, a and b are the number of phenotype-1 and phenotype-2 samples in which the sub-path
is functional, respectively; c and d the number of phenotype-1 and phenotype-2 samples in
which the sub-path is non-functional, respectively. The D. Benjamini & Hochberg False Dis-
covery Rate is computed using the following formula:

B&H adjusted fdr ¼ p � value �
m
i

wherem is the number of all sub-paths and i is the rank of the sub-path in the ascending order
of the respective p-values.
Polarity. The formula below computes the polarity rank, rsb, for each sub-path; the metric

measures the power of the sub-path to distinguish between the two target phenotypes (a, b, c
and d as above):

rsb ¼
a

aþc �
b

bþd
a

aþcþ
b

bþd

The polarity formula provides positive values for sub-paths that are functionalmainly in
phenotype-1 samples, and negative values for sub-paths that are functionalmainly in pheno-
type-2 samples. The sub-paths that exhibit absolute polarity value higher than 0.5 are consid-
ered discriminant (a user defined threshold that could be tuned in the MinePath user
interface).
Only the sub-paths that pass all the respective filters are selected and retained as most dis-

criminant. Permutation tests using FDR (as described in section ‘Self-assessment: Robustness
analysis via permutation testing’) prove that MinePath provides low false positive rates and
delivers robust results.
Here we have to note that even though the sub-path polarity metric is independent from the

sample size, and can be effectively utilized for small (per target phenotype) sample sizes, the
sub-path p-value, and especially the ‘B&H adjusted fdr’ estimate cannot be used with small
sample sizes. It is known that most of the differential gene expression analyses require a mini-
mum of five to eight samples per class for a two classes dataset [128], [129]. This presents just a
minimum but not optimum requirement [130]. Even if a minimum of five samples per class is
required for reliable p-value calculations, the differential expression of sub-paths may be
assessed using less samples if we opt to ignore the significance implications (p-value) of the
sub-paths (this option available only for the standalone version of MinePath).
In addition, MinePath identifies those sub-paths that are almost always functional for both

phenotypes (e.g., over 90% of the samples for each phenotype, also a user tuned threshold).
Such sub-paths possess no phenotype differential power but are important in order to fill-in
the gap between two discriminant sub-paths, and enable the formation of long sub-paths that
reveal biologically relevant routes in pathways.
The filter-based assessment of the differential power of sub-paths does not aim to infer

causal or even phenotype-associated sub-paths. It just infers a set of highly predictive sub-
paths. The causal or associative interpretation of the selected sub-paths requires further investi-
gation and a subsequent downstream analysis.
Assessing the significanceof pathways as a whole. MinePath assess also the significance

and ranks the pathways according to their p-values. The pathway p-value is calculated based
on a more strict variation of the Fisher exact test, similar to the EASE score proposed by
DAVID (david.ncifcrf.gov/content.jsp?file=functional_annotation.html—fisher) [126]. The
difference is that MinePath identifies functional and discriminant sub-paths instead of genes,
and this make the normal EASE score inappropriate as we face the problem of overlapping
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sub-paths, e.g., the path A! B—| C!D is decomposed into six sub-paths, even if it involves
just three gene regulatory relations. So, we run the risk of high numbers of functional sub-
paths that leads to too low p-values. For this reason,MinePath computes the (one-tailed) path-
way p-value taking into account the unique single-relations involved in the functional sub-
paths, forming and utilizing the contingencymatrix shown in Table 7. Note that, even though
the EASE formula is the same for MinePath and DAVID, MinePath uses counts for the single
relations involved in the identified functional and differential sub-paths, while DAVID uses
differential genes while DAVID uses counts of discriminant genes.
Based on the aforementioned contingencymatrix, MinePath uses the formula below to

compute the p-value of each pathway.

p � valuep ¼

ðap � 1Þþbp
ap � 1

� �
cpþbp
cp

� �

n
ðap � 1Þþc

� �

The p-value formula takes in consideration all the pathway functional single relations (as
part of functional sub-paths) regardless of their phenotype inclination–ap is the sum of func-
tional relations in either phenotype-1 or phenotype-2 samples. So, it presents an estimate of
“how much functional the pathway is” and not “the differential power of the pathway”. In other
words, MinePath follows and implements an enrichment pathway-analysis approach, just in
analogy with GSEA approaches, with a critical difference that highlights the MinePath para-
digm shift in pathway analysis. That is, instead of looking for gene set enrichment features,
MinePath assesses the sub-path set enrichment characteristics of a pathway, taking in consider-
ation the functional status of the single relations of the decomposed pathway functional sub-
paths. This approach has the following influential effects: (a) the risk to consider equivalent
pathways with the same genes is avoided, (b) the underlying (functional) regulatorymachinery
of the pathways is fully reflected in the assessment of pathway significance, and (c) the signifi-
cance of a pathway gets a more natural meaning in terms of the number of functional relations
and sub-paths used to differentiate between the target phenotypes–an effect that could be fur-
ther exploited by the MinePath visualization operations and services.The final result of Mine-
Path is a p-value ranked list of pathways from which the user may select a pathway to visualize
and explore.

Functionality and visualization capabilities of MinePath

MinePath identifies and visualizes the differentially expressed sub-paths utilizing and appro-
priately customizing the Cytoscape graph visualizationWeb library (js.cytoscape.org). In addi-
tion, the system supports active interaction and re-adjustment of the visualized network as it is
equipped with special network editing capabilities that enable the reduction of pathways’ com-
plexity. To the best of our knowledgeMinePath is the only tool that visualizes differentially
expressed pathway relations and sub-paths instead of differential genes, and this is done with a
color-coding schema that reflects the phenotype inclination of relations.

Table 7. Contingency table for pathway p-value calculation For each pathway p, the quantities ap

and bp represent the number of functional single relations (as part of functional sub-paths) and the

total number of relations in the pathway, respectively; the quantities cp and dp represent the corre-

sponding quantities in all other pathways.

Functional relations Total relations

In pathway ap bp

Not in pathway cp dp

doi:10.1371/journal.pcbi.1005187.t007
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The MinePath web-server is a Web 2.0 application. It relies on the frontend-backend soft-
ware design using AJAX calls for the communication. The layout, appearance and interface of
the front-end have been implemented in JavaScript. For the visualization of pathways the
Cytoscape.js library is deployed and expanded. The MinePath backend is implemented as a
java-based application.
In its current version MinePath supports 299 KEGG signaling pathways, from which the

user may select/deselect as the input target pathways for further analysis. The system provides
also a number of stored gene expression profiles (mainly from the GEO repository) but the
user may format and upload its own gene expression profile (relative help material is provided
to assist the user to form and format custom gene expression datasets). Optionally, the user
may adjust various parameters such as the minimum threshold percentage of sub-paths that
are functional for both phenotypes (default value is set to 90%), the minimum polarity rank
threshold to decide if a sub-path is discriminant or not (default value is set to 0.5), the optional
use of p-value or ‘B&H adjusted fdr’ as the threshold (sub-paths with p-values more than 0.05
are ignored), and fold change as a threshold to filter sub-paths (only the sub-paths that exhibit
at least a two-fold change between the two target phenotypes are retained).
One of the key features that distinguishMinePath from other pathway analysis methodolo-

gies and tools rests in the system’s visualization functionality, and especially in the visualization
of functional gene regulatory relations and sub-paths that differentiate between the target phe-
notypes (see Fig 12). MinePath visualizes differentially expressed relations. It also retains the
KEGG topology layout of the pathway, a layout that illustrates the underlying biology of the
network, ease its exploration and give insight into the underlyingmolecular regulation mecha-
nisms of the pathway (see the ErbB pathway shown in Fig 12D). The gene regulatory relations
are mapped with different colors in order to reveal their phenotype inclination: green for rela-
tions being functional in phenotype-1 samples; red for relation being functional in phenotype-
2 samples; black for relations considered as functional in both phenotypes; As an example con-
sider the sub-path A! B! C that is found to be functional for phenotype-1, and sub-path
X! A! B! Y to be functional for phenotype-2. The common sub-path A! B is shared by
both phenotypes and so, the activation ‘!’ relation is colored in black. Grey color is used for
non-functional and yellow for associations/dissociationrelations. MinePath is equipped with
special interactive visualization functionality that enables the reduction of network’s complex-
ity and re-orientation of its topology. Moreover, in MinePath there are links for each of the
visualized gene (by clicking on it) to the respective gene and drug-related KEGG sections as
well as to PharmGKB (www.pharmgkb.org) relevant gene variants and associated drugs, as a
first approach to offer putative clinical utilization of the system.With the ‘Controls’ panel (Fig
12B) the user may dynamically set (via sliders) stricter thresholds for the most discriminant
sub-paths to display (based on their polarity score). Via a pop-up menu (Fig 12C) the whole
pathway may be easily simplified (e.g., delete genes and non-functional relations), edited, re-
shaped and re-arranged; Fig 12E shows the simplified version of the original ErbB pathway
shown in Fig 12D. The list of all pathways is displayed in a special window (Fig 12A), sorted
according to their p-values (or other metrics) from which the user may select the pathway to
visualize.

Fig 12. MinePath pathway visualization functionality and capabilities. (A) Sorted (by p-value) list of pathways accompanied by other statistics

computed by MinePath–the user may select the pathway to visualize. (B) MinePath ‘Controls’ panel. (C) MinePath pathway editing panel. (D) The original

ErbB pathway with its KEGG layout preserved. (E) The edited and simplified ErbB pathway

doi:10.1371/journal.pcbi.1005187.g012
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