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Quantitative evaluation of comb-
structure correction methods for 
multispectral fibrescopic imaging
Dale J. Waterhouse  1,2, A. Siri Luthman1,2, Jonghee Yoon1,2, George S. D. Gordon1,2,3 & 
Sarah E. Bohndiek  1,2

Removing the comb artifact introduced by imaging fibre bundles, or ‘fibrescopes’, for example in 
medical endoscopy, is essential to provide high quality images to the observer. Multispectral imaging 
(MSI) is an emerging method that combines morphological (spatial) and chemical (spectral) information 
in a single data ‘cube’. When a fibrescope is coupled to a spectrally resolved detector array (SRDA) 
to perform MSI, comb removal is complicated by the demosaicking step required to reconstruct the 
multispectral data cube. To understand the potential for using SRDAs as multispectral imaging sensors 
in medical endoscopy, we assessed five comb correction methods with respect to five performance 
metrics relevant to biomedical imaging applications: processing time, resolution, smoothness, signal 
and the accuracy of spectral reconstruction. By assigning weights to each metric, which are determined 
by the particular imaging application, our results can be used to select the correction method to achieve 
best overall performance. In most cases, interpolation gave the best compromise between the different 
performance metrics when imaging using an SRDA.

Fibrescopes relay elements of an image via total internal reflection of light along individual fibrelets of a flexible 
fibre optic bundle. The term ‘fibrescope’ was first used in 1954 to describe an instrument intended for medical 
use in endoscopy1. Today, fibrescopes are used in many applications that exploit their small diameter and high 
flexibility, such as inspection of engines, fine diameter pipework and boilers2, but they are still most prominent in 
medical imaging, where they are known as endoscopes.

Endoscopes typically contain < 50,000 fibrelets giving a maximum resolution of <240 × 240 pixels3. Despite 
camera-on-tip endoscopes gaining popularity in many indications due to their potential for high definition imag-
ing4, fibrescopes remain useful due to their superior ability to access small complex locations within the body, for 
example, in bronchoscopy5,6, cysto-nephroscopy7 and naso-laryngo-pharyngoscopy8,9 and particularly in paedi-
atric patients where cavities are narrow. Fibrescopes also offer the ability to easily implement advanced imaging 
techniques, such as endomicroscopy10 or Raman spectroscopy11, when introduced into the accessory channel of 
camera-on-tip endoscopes12. For example, a commercial endomicroscope can capture high resolution in vivo 
‘optical biopsy’ information by relaying a fluorescence signal emitted from a stain applied to the tissue (typically 
fluorescein) through a bundle of 30,000 fibrelets10.

Recent research efforts have focused on adding extra functionality to medical endoscopes to improve their 
ability to resolve early signs of disease, in particular, pre-cancerous lesions. One example is the integration of 
multispectral imaging (MSI), which enables both spatial (x, y) and spectral (wavelength, λ) information to be 
recorded from the tissue. MSI can extend the acquisition of spectral image data beyond the current clinically 
implemented endoscopic methods of autofluorescence imaging and dye-based or virtual chromoendoscopy13. 
Spectral data contains chemical information about the composition of the tissue and has been demonstrated in 
a wide range of potential applications in biomedical imaging14,15. MSI, in combination with data analysis using 
spectral unmixing algorithms, has been used to: visualize the vascular pattern and the oxygenation status of 
blood16–22; to improve detection of gastric23 and colorectal lesions;24–26 to identify residual tumour27; and to per-
form tissue segmentation28,29. MSI may also be used to improve delineation of stains applied during molecular 
endoscopy30 based on the absorption or fluorescence properties of the stain22,31.
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Clinical implementations of spectral endoscopes are, however, currently limited by the high cost and com-
plexity of the equipment, as well as the resulting complexity of data analysis and interpretation32. Several of the 
previously reported spectral endoscopy systems include multiple bandpass filters25,33, tuneable filters24,34, laser 
lines35–37, or detectors dedicated to separate spectral bands35,36; the use of multiple expensive optical components 
makes the systems both bulky and costly.

Recently reported spectrally resolved detector arrays (SRDAs) have the potential to overcome this problem 
by providing a robust compact solution for multispectral endoscopic imaging22,38. SRDAs integrate spectral fil-
ters directly onto the imaging detector, advancing on the conventional 2 × 2 Bayer colour filter array (CFA) 
super-pixel of red, green and blue filters with 3 × 3, 4 × 4 or even 5 × 5 CFA super-pixels. SRDAs therefore 
have an inherent trade-off between spectral and spatial resolution. Furthermore, in fibrescope applications, the 
number of individual fibrelets further limits the spatial resolution and introduces a comb artifact into the images 
due to the opaque cladding between fibrelets. It should be noted that ‘comb’ refers to an irregularly shaped and 
irregularly spaced artefact, whereas ‘honeycomb’ generally refers to the regular case39. Processing multispectral 
fibrescope images, for example during image co-registration or feature classification, requires careful attention to 
both removal of the comb artifact (“decombing”) and separation of the spectral bands (“demosaicking”), in order 
to maintain image quality but perhaps more importantly, spectral fidelity40.

Decombing methods have been extensively explored in the literature41. Winter et al. developed several 
Fourier-based filtering techniques and compared these to median and Gaussian filters in terms of smoothness 
(image variance-based) and detail preservation (resolution-based)39. They also developed an alternative algo-
rithm to accurately locate and interpolate between fibrelet centres42,43, testing a number of interpolation strategies 
developed in other fields. Standard linear interpolation was found to be most suitable when low processing times 
are required, as in video-rate imaging44. Later work by Lee et al., Regeling et al. and Han et al. further considered 
different shapes and sizes of Fourier and Gaussian filters for decombing, but none of these compared their meth-
ods to the other correction strategies40,45,46. Additionally, none of these prior studies considered the impact of 
decombing on signal preservation, or quantitatively compared methods or smoothing kernel sizes. Furthermore, 
as they used monochrome cameras, none encountered the challenge of combined decombing and demosaicking. 
A recent paper by Wang et al. did assess an interpolation strategy similar to the method of Elter et al. in the con-
text of a multispectral fibrescope with an SRDA, but only with respect to the accuracy of the spectral reconstruc-
tion and without comparison to other methods47.

Here, we seek to address the limitations of these previous studies by performing a thorough quantitative 
comparison of fibrescope decombing techniques combined with demosaicking with respect to five performance 
metrics defined for imaging applications: processing time, resolution, smoothness, signal and accuracy of spectral 
reconstruction. We test the comb correction methods of median, Gaussian and Fourier filtering, against inter-
polation and physical blurring in simulated monochrome images, captured monochrome images and captured 
multispectral images. We then evaluate the impact of demosaicking in combination with these comb corrections 
with respect to the same performance metrics. Finally, we create graphs from which the preferred method can be 
chosen based on the most important performance metrics for a given application.

Results
We captured images experimentally by building a multispectral imaging capability into our previous endoscope 
design38 (Fig. 1a). Exemplar images captured using a monochrome camera (Fig. 1b) and multispectral SRDA 
(Fig. 1c) clearly demonstrate the need for comb correction and demosaicking within fibrescopic data.

Performance of monochrome corrections to simulated monochrome images. All metrics used 
for evaluation of the correction methods are defined in the Methods. The scores for resolution (Fig. 2a), smooth-
ness (Fig. 2b) and signal (Fig. 2c) as a function of the characteristic filter size for 4 decombing methods tested 
in simulated monochrome images were calculated for three different sized comb structures, M = 0.7, M = 1.0 
and M = 1.3. These structure sizes were chosen to represent a range from 7500–30000 fibrelets within a bundle, 
magnified to fill a similar ~1000 pixel square sensor. For physical blurring, the correction occurs in hardware at 
the point of imaging. The current approach does not replicate the full imaging process, so accurate simulation of 
physical blurring was not possible. We do not test speed with simulated mages, since the size of the comb struc-
ture makes no difference to computation time.

The size of the fibrelet has little effect on the overall trends. This is confirmed in Fig. 3, which shows the overall 
performance for the simulated images with different fibrelet sizes. The general shape of the optimal performance 
space remains constant, with the only change being a preference for median filtering in a tiny region of the perfor-
mance space (around wsmooth = 0.85, wsignal = 0.15) for the smaller fibrelet dimensions (M = 0.7). This is because 
median filtering performs better when the filling factor, the fraction of the image filled with data (fibrelet) versus 
artifact (cladding), is larger, as is the case for the smaller fibrelet size. This is confirmed by cross-referencing with 
Fig. 3c, where the M = 0.7 median data follows a different trend to the M = 1.0 and M = 1.3 data, giving a higher 
signal score.

Since fibre diameter made little difference to the overall layout of performance space, we continued our inves-
tigation using captured data from our endoscope, which produced images corresponding to M = 1.0.

Performance of monochrome corrections to captured monochrome images. The scores for res-
olution (Fig. 4a), smoothness (Fig. 4b), signal (Fig. 4c) and speed (Fig. 4d) as a function of the characteristic filter 
size for the 5 decombing methods tested in experimental monochrome endoscopic imaging enable direct com-
parisons to be made regarding their individual performance. Example images are shown in Supplementary Fig. 1.
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A qualitative comparison with our simulated monochrome image corrections (Fig. 2) shows our experimental 
data (Fig. 4) yields similar trends. This suggests that our algorithm implementation is performing as would be 
expected.

The main difference is that interpolation appears to achieve an enhanced resolution score in experimental 
data compared to simulated data, suggesting the noise component of simulated data may have been slightly over-
estimated. Overestimation of the noise component would disproportionately degrade the performance of inter-
polation relative to the other correction methods; it is more susceptible to noise as it relies on data from a single 
pixel per fibrelet.

The results from our monochrome data corrections are summarised in Fig. 4e,f. For preservation of resolution 
and signal, interpolation clearly provides the optimal solution. If image smoothness is our only priority, Gaussian 
filtering is preferred. Otherwise, Fourier filtering provides a compromise between smoothness and resolution.

Performance of multispectral corrections to captured multispectral images. The scores as a func-
tion of characteristic filter size for the 5 correction methods including decombing and demosaicking as applied 
to multispectral images are shown in Fig. 5 for the five metrics: resolution (Fig. 5a), smoothness (Fig. 5b), signal 
(Fig. 5c), speed (Fig. 5d) and accuracy of spectral reconstruction (ASR) (Fig. 5e).

The ASR score is highest for interpolation, which is expected since interpolation removes the erroneous pixels 
from the cladding region. The other methods yield reduced ASR scores since they mix together the ‘true’ spectra 
from fibrelet centres and the ‘erronous’ spectra from the cladding, which is particularly evident in two cases. 
Firstly, in median filtering, where the sparsity of ‘true’ pixels, from the compound sampling of mosaic and comb, 
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Figure 1. Schematic of the fibrescope and exemplar images (a) The system is based around the PolyScope 
disposable endoscope (PolyDiagnost, Germany). Illumination is provided by an ultra high-powered LED 
(UHP-T-LED-630, Prizmatix, Israel). Light from the PolyScope 10,000 fibre imaging bundle is focused onto 
either a monochrome camera (Grasshopper 3, Point Grey, Canada) or an SRDA based multispectral camera 
(CMS-V, SILIOS, France). Inset: Zoom of the imaging fibre tip. Rays are exaggerated for clarity. (b) Example 
comb structure from the monochrome fibrescope. Raw image of a USAF test target taken with monochrome 
fibrescope (cropped to ~980 × 980). Inset: Zoom of the comb structure showing irregular arrangement 
and shape of fibrelets. (c) Example comb structure and colour filter array (CFA) mosaic pattern from the 
multispectral fibrescope. Raw image of a USAF test target taken with multispectral fibrescope (cropped to 
~980 × 950). Inset: Zoom of the comb structure showing the superimposed mosaic due to the pixel-by-pixel 
transmission variations of the 3 × 3 mosaic of filters deposited pixel-wise on the sensor.
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Figure 2. Performance scores for 4 correction methods applied to simulated monochrome images for 
magnifications M = 0.7, 1.0 and 1.3. (a) Resolution score. Rmax = 82.3, 102, 103 pixels (648, 803, 809μm) 
and Rmin = 21.4, 22.4, 23.5 pixels (169, 177, 185 μm) for M = 0.7, 1.0, 1.3 respectively. (b) Smoothness score. 
σmax = 20.3, 19.9, 20.1 and σmin = 0.638, 0.388, 0.346 for M = 0.7, 1.0, 1.3 respectively. (c) Signal score. Smax = 151, 
156, 156 and Smin = 118, 117, 118 for M = 0.7, 1.0, 1.3 respectively. Gaussian filtering (sky blue), median filtering 
(bluish green), Fourier filtering (orange), interpolation (blue). Dotted line M = 0.7, Solid line M = 1.0, Dashed 
line M = 1.3. Since interpolation between irregularly spaced points is a complex spatially variant filter, the 
characteristic filter size is not well defined, so the score for interpolation is represented as a horizontal line in 
each graph.
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can result in median filters removing ‘true’ pixels over the more common ‘erroneous’ pixels. Secondly in physical 
blurring, where the ‘true’ and ‘erroneous’ spectra are mixed before detection.

The computation time in multispectral corrections is increased by around one order of magnitude, as expected 
since there are nine images to correct rather than one. The computation time of physical blurring represents dem-
osaicking alone. If direct demosaicking were performed, resulting in 9 images each with a 9-fold reduction in total 
image pixels, the computation time would be significantly reduced.

The overall performance is shown in Fig. 6. In the context of multispectral imaging, we find that interpolation 
frequently provides the optimal solution for correction, as was the case for monochrome imaging. Only if we 
prioritise smoothness does interpolation fail to provide the best solution. In this special case, Gaussian, median or 
Fourier filtering would be preferred, with Fourier filtering providing a better solution if we also wish to preserve 
resolution. Example multispectral images of colour scenes are shown in Supplementary Fig. 2.

Discussion
Multispectral endoscopic imaging is an emerging fibrescope application in medicine. When implemented with 
spectrally resolved detector arrays (from simple 2 × 2 Bayer up to larger 3 × 3 + filter arrays) complexities arise in 
image processing for decombing and demosaicking. We sought to compare commonly used methods of decomb-
ing and evaluate their performance first in monochrome imaging and then establish how the performance would 
be affected by multispectral imaging using a spectrally resolved detector array. By defining scores relating to 
resolution, smoothness, signal, speed and accuracy of spectral reconstruction, we were able to test each of these 
correction methods within the parameter space of relevance for fibrescope imaging. We found that interpolation 
provides the optimal solution in most cases for both monochrome and multispectral imaging, failing only when 
image smoothness is highly prioritised, in which case Gaussian filtering is preferred. Fourier-filtering can be used 
in cases requiring a compromise between smoothness and resolution.

The optimal choice of correction method is application-dependent, hence rather than providing absolute rec-
ommendations, we objectively prepared overall performance scores composed of weighted sums of performance 
metrics. Weightings depend on the imaging priorities in a given application, which will vary significantly. To give 
some examples, visual inspection in real time puts speed as a high priority while inspection of detailed surface 
features, such as mucosal patterns or vasculature, will put resolution as a high priority. For autofluorescence imag-
ing or fluorescence molecular imaging, where signal is relatively limited due to low abundance of fluorescence 
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Figure 3. Optimum correction method based on overall performance score (OP) for weightings wres, wsmooth 
and wsignal for simulated images with magnifications M = 0.7, 1.0 and 1.3. (a) The correction method that gives 
highest OP. (b) The characteristic filter size used with this correction method to achieve the highest OP. Since 
interpolation between irregularly spaced points is a complex spatially variant filter, the characteristic filter size 
is not well defined, so it is represented as zero in the graphs. Speed is not included in the OP since it is possible 
to optimise speed independently. Gaussian filtering (sky blue), median filtering (bluish green), Fourier filtering 
(orange), interpolation (blue).
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molecules in vivo, signal should be maximised to facilitate detection of these fluorescence markers. In cases 
requiring supervised classification of spectral signatures, such as in evaluation of oxy- and deoxy-haemoglobin 
concentrations during multispectral imaging, the accuracy of the spectral reconstruction is vital.

While previous works have established decombing methods for monochrome imaging, only interpolation has 
been used in multispectral imaging47. This previous method of implementation demosaicked the multispectral 
images prior to interpolation, which has several disadvantages. In particular, the fibre-centre-finding algorithm 
must be applied to each of the L2 individual spectral images (where L is the side length of a square super-pixel), 
requiring L2 manually input thresholds, and potential for spectral corruption is not well accounted for. In our 
work, we perform simultaneous demosaicking and decombing using a single fibre centre map generated from 
the L-fold higher resolution raw image. Furthermore, we explore four alternative correction methods for SRDA 
based multispectral fibrescope images, and assess them with respect to 5 performance metrics relevant to bio-
medical imaging applications.

Our results enable comparison of the performance of these different correction methods across a range of 
applications. Nonetheless, there remain some limitations to this study. Firstly, we only considered the case where 
the fibrelet image size on the sensor is greater than the size of a super-pixel. In practical applications, appropriate 
lenses could be used to magnify the image to ensure that this constraint is fulfilled. A consequence of this con-
straint is that demosaicking should not affect resolution. Indeed, the endoscopic imaging performed using the 
monochrome sensor and multispectral sensors had respective maximum resolutions of 240 ± 20 μm and 228 ±  
18 μm (errors determined from errors in a linear fit to Michelson contrast data). Secondly, the magnification 
approach we used in simulation does not quite recapitulate all possible combs, since it magnifies both the cores 
and the cladding, whereas in reality, the same amount of cladding may be used or it may scale differently. Edge 
enhancing demosaicking methods48 were not investigated here, but could be applied to simultaneous decombing 
and demosaicking in future work. Finally, we did not consider the effect of compound methods such as interpo-
lation followed by Gaussian smoothing.

Conclusions
We assessed five comb correction methods with respect to five performance metrics relevant to biomedical imag-
ing applications: the processing time, the resolution, the smoothness, the signal and the accuracy of spectral 
reconstruction. Interpolation provides the highest performance, failing only when image smoothness is highly 
prioritised, in which case Gaussian filtering is preferred. Otherwise, Fourier-filtering provides a good compro-
mise between smoothness and resolution. With given weightings to each metric, which are determined by the 
particular imaging application, our results can be used to guide the selection of the correction method that best 
preserves overall performance.
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Figure 4. Performance scores for 5 correction methods applied to experimentally acquired monochrome 
images. (a) Resolution score. Rmax = 500 μm and Rmin = 228 μm. (b) Smoothness score. σmax = 32.2 and 
σmin = 3.85. (c) Signal score. Smax = 157 and Smin = 114. (d) Time to correct each frame. Since interpolation 
between irregularly spaced points is a complex spatially variant filter, the characteristic filter size is not 
well defined, so the score for interpolation is represented as a horizontal line in each graph. (e) Optimum 
correction method based on highest overall performance score OP for weightings wres, wsmooth and wsignal. (f) The 
characteristic filter size used with this correction method to achieve the highest OP. Speed is not included in the 
OP since it is possible to optimise speed independently. Gaussian filtering (sky blue), median filtering (bluish 
green), Fourier filtering (orange), physical blurring (vermillion), interpolation (blue). Since interpolation 
between irregularly spaced points is a complex spatially variant filter, the characteristic filter size is not well 
defined, so it is represented as zero in the graphs.
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Methods
Experimental system. The system is based around the PolyScope endoscope with disposable catheter 
sheath (PolyDiagnost, Germany), which can be introduced into the accessory channel of a larger endoscope 
(Fig. 1a). A narrow band ultra-high power LED (UHP-T-LED-630, Prizmatix, Israel) was coupled into the 
PolyScope illumination channel using a custom coupler (Prizmatix, Israel). The detection pathway consisted of an 
objective lens (NA = 0.5, UPLFLN20x, Olympus, Japan) and a tube lens (f = 100 mm, ACA254-100-A, Thorlabs, 
Germany), which focused light from the 10,000-fibrelet fibrescope onto a monochrome CMOS sensor (CMOSIS 
CMV4000-3E5) packaged into a USB3 camera (Grasshopper 3 GS3-U3-41C6M-C, Point Grey, Canada) or a 
monochrome CMOS sensor (NIR Ruby sensor, UI1242LE-NIR, IDS) packaged into a USB3 compact SRDA 
(CMS-V, SILIOS, France) (square pixel sizes 5.5 μm and 5.3 μm respectively). The SRDA consists of 9 spectral 
filters (8 narrow bands; average FWHM 30 nm; centre wavelengths 553, 587, 629, 665, 714, 749, 791, 829 nm; 1 
broad band; 500–850 nm), which can be customized, deposited as a 3 × 3 super-pixels across the CMOS sensor. 
The spatial resolution of the endoscope is fundamentally limited by the Nyquist sampling limit at the plane of 
the imaging fibre tip, which is half the frequency of the fibrelet spacing – objects with higher spatial frequencies 
than this will experience aliasing. The spatial frequency limitation corresponds to different spatial resolutions at 
different working distances because the imaging optics do not project orthographically onto the fibre i.e. are not 
telecentric. The experimental system was configured such that at least one super-pixel fits within the image of a 
single fibrelet as recorded by the SRDA, ensuring each fibrelet captures complete spectral information.

Simulations. We simulated monochrome images (outlined in Supplementary Fig. 3) using Matlab® 2016b 
(MathWorks, USA). Briefly, an experimental monochrome comb image was binarised to yield an ‘ideal’ comb 
mask; the mask was then magnified by different factors, M, relative to the original in order to investigate the effect 
of using different fibrelet diameters. We then generated a set of ‘ideal’ test images: a series of USAF targets to test 
resolution; an image with uniform intensity to test smoothness; and an image with a region of high intensity to 
test signal. The ideal binary comb masks and the test images were Gaussian blurred to represent imperfections in 
the fibrelets and imperfections in the test targets respectively. Noise was added to the ideal test images.

Next, each of the comb masks, C x y( , ), was used to mask each test image as follows:

 1. The comb mask, C x y( , ), was split into individual fibrelet masks, C x y( , )i .
 2. Each individual fibrelet mask was binarised to generate binarised individual comb masks:

=

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C x y
C x y
C x y

( , )
1, ( , ) 0 1
0, ( , ) 0 1i

B i

i

 3. In the region defined by C x y( , ),i
B the mean of the test image, T x y( , ), was taken:
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Figure 5. Performance scores for 5 correction methods applied to multispectral images. (a) Resolution 
score. Rmax = 440 μm and Rmin = 260 μm. (b) Smoothness score. σmax = 13 and σmin = 0.73. (c) Signal score. 
Smax = 28.1 and Smin = 10.6. (d) Speed. (e) Accuracy of spectral reconstruction (ASR) score. Qmax = 0.0138 and 
Qmin = 0.0060. Gaussian filtering (sky blue), median filtering (bluish green), Fourier filtering (orange), physical 
blurring (vermillion), interpolation (blue). Since interpolation between irregularly spaced points is a complex 
spatially variant filter, the characteristic filter size is not well defined, so the score for interpolation is represented 
as a horizontal line in each graph.
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∑ ∑=M T x y C x y C x y( , ) ( , )/ ( , )i
x y

i
B

x y
i
B

, ,

 4. This was multiplied by the individual fibrelet masks, C x y( , )i , to generate the simulated image, Isim:

∑=I x y C x y M( , ) ( , )sim

i
i i

Finally, Gaussian noise was added to reach the final simulated images.

Monochrome image corrections. All image analysis was performed in Matlab® 2016b (MathWorks, 
USA). Five different decombing methods were applied directly to simulated and captured monochrome images. 
For all methods we define the amount of filtering by a dimensionless characteristic filter size r, which we varied. 
Gaussian blur was achieved by convolving the images with a 2-D Gaussian smoothing kernel with a standard 
deviation of r (1 < r < 50 pixels) via the Matlab function ‘imgaussfilt’. Median filtering was achieved by taking the 
median value of each 2r-by-2r-pixel region (1 < r < 50 pixels) via the Matlab the function ‘medfilt2’. For Fourier 
filtering a discrete Fourier transform of the image was performed via the Matlab fast Fourier transform function 
‘fft2’. The Fourier transform image was cropped to remove any frequencies above f0, the cut-off frequency, and the 
inverse discrete Fourier transform applied using the Matlab function ‘ifft2’, to obtain the corrected image. The 
cut-off frequency was defined as:

=f
r

1
20

where r is the characteristic filter size input (1 < r < 50 pixels) and corresponds to the smallest resolvable feature 
size in the inverse Fourier transformed image according to Nyquist’s theorem.

Figure 6. Optimum correction method based on overall performance score (OP) for weightings wres, wsmooth, 
wsignal and wASR. (a) The correction method that gives highest OP. (b) The characteristic filter size used with this 
correction method to achieve the highest OP. For each ternary plot, the weighting not shown on the axes is set to 
zero. Since interpolation between irregularly spaced points is a complex spatially variant filter, the characteristic 
filter size is not well defined, so it is represented as zero in the graphs. Speed is not included in the OP since it 
is possible to optimise speed independently. We do not show the trade off between resolution, smoothness and 
ASR, since in all combinations interpolation gives the best overall performance. Gaussian filtering (sky blue), 
median filtering (bluish green), Fourier filtering (orange), physical blurring (vermillion), interpolation (blue).
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Interpolation relies on the location of each individual fibrelet in the image, for which we used an algorithm 
based on the work of Elter et al.42 similar to that applied in our previous work49:

 1. Acquire a bright field calibration image I.
 2. Candidate points are selected based on their brightness in relation to their local neighbourhood. Around 

each pixel (x,y) define a neighbourhood

= − + − +N I x d x d y d y d( : , : )

where the size of the neighbourhood D = 2d + 1 and D is roughly the diameter of a single fibrelet.
Given a minimal intensity difference Imin, which is chosen by the user as the expected minimum intensity 
difference between fibrelets and cladding, a pixel (x, y) is considered as a candidate centre point if

− >N N Imax( ) min( ) min

 3. For each candidate centre point, (xc, yc), a score, sc, is calculated indicating how well a 2D quasi-Gaussian 
surface fits the neighbourhood around this point:

∑= −s G x y I x y( ( , ) ( , ))c
N

2

where

= −G He l D/24 2

with l the distance from the candidate point and H = I(xc, yc).
 4. Order candidate centre points (xc, yc) by ascending score sc.
 5. Starting from the highest ranked centre (lowest score), sequentially place each candidate fibre centre (xc, yc) 

onto a centre map if and only if the candidate centre is a minimum distance of one fibre diameter from all 
centres (xm, ym) already in the map:

− + − > ∀x x y y D m( ) ( ) ,c m c m
2 2

 6. Fibre centres are added for as long as this criterion is satisfied until all candidates have been added to the 
map or rejected.

Decombing is then achieved using bilinear interpolation of the pixel values recorded at the fibre centres, 
I(xm, ym). We also performed physical blurring of our image by experimentally defocusing the image of the fibre-
scope face. We displaced the fibrescope along the optical axis by 5 μm in both directions and recorded images. 
In order to plot the results of physical blurring alongside the results of other correction methods, we arbitrarily 
defined the dimensionless characteristic filter size, r, as

µ
=

.
r displacement

0 5 m

Multispectral image corrections. Multispectral images consist of a mosaic of spectral information due to 
the filter deposition pattern of the CFA. In a process known as demosaicking (Fig. 7a), the final colour image is 
reconstructed by splitting the raw camera output into 9 incomplete mosaic pattern images that are subsequently 
interpolated. Demosaicking must occur prior to decombing with Gaussian, median and Fourier filtering, as mix-
ing information from adjacent pixels on the raw image would corrupt the recorded spectral information. When 
physical blurring was applied to the image at the point of capture, light spreads from each fibrelet decombing the 
image prior to its passage through the CFA, so following demosaicking, no further filtering takes place.

Interpolation between fibrelet centres must occur in parallel to demosaicking (Fig. 7b). This was implemented 
as follows:

 1. Acquire a bright field calibration image, I(x, y), with broadband illumination to ensure a signal is recorded 
in all spectral bands.

 2. Apply a Gaussian blur to the bright field calibration image in order to smooth out the mosaic pattern due 
to the CFA.

 3. Find the centres of the fibrelets, (xm, ym), using steps 2–6 of the centre finding algorithm outlined in ‘Mono-
chrome image corrections’.

 4. At each fibrelet centre point (xm, ym), we need to know the image intensity in each spectral band k, 
Ik(xm, ym). The centre point corresponds to a pixel with one spectral filter, giving us the intensity in one of 
the spectral bands. For the other spectral bands, we assume the intensity at the centre point is the same as 
the intensity at the nearest neighbour with the correct spectral filter. We know the filter deposition pattern 
on the sensor:
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Figure 7. Schematic of the multispectral demosaicking and comb removal algorithms. An example image is 
shown with two fibrelet centres found as described in ‘Monochrome image corrections’. The corresponding 
filter deposition pattern for a 9-band colour filter array is shown to its right. (a) Simple demosaicking according 
to the filter deposition pattern is shown for band 5. Following this, bilinear interpolation is used to fill out the 
image. Finally, filtering of each image occurs, with either a Gaussian, median, or Fourier filter as described in 
‘Monochrome image corrections’, or no filter in the case where physical blurring was applied to the image at the 
point of capture. (b) Fibre centre-based mosaicking is shown for bands 5 and 2 to illustrate the process outlined 
in detail in ‘Multispectral image corrections’. Briefly, at each fibre centre location, the intensity in each band is 
determined by taking the intensity at the nearest neighbouring pixel with the corresponding band filter. This is 
followed by interpolation between fibre centres, which can be implemented with a single look up table, since in 
every band and every image we interpolate between the same centre points.
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where (xNN, yNN) is the nearest neighbour pixel with the spectral filter k:

=P x y k( , )NN NN

This process should result in image data for all spectral bands and at all centre locations:

∀I x y k m( , ) ,k
m m

This is generalisable to any size mosaic as long as the ratio, T, between the super-pixel size and the fibrelet size 
on the sensor, obeys the criterion:

= <T L
D

1

where L is the side length of a super-pixel and D is the diameter of the fibrelets on the sensor. Though not used 
here, even valued super-pixels (e.g. 2 × 2, 4 × 4) can result in some image points having two equally distant near-
est neighbours in some spectral bands so an appropriate randomised selection or average of these would need to 
be taken. Finally, we reconstruct a comb free image for each spectral band using bilinear interpolation of the pixel 
values at fibre centres within that spectral band.

Performance metrics. In order to determine the performance of comb removal, we assessed 4 performance 
metrics for monochrome imaging and 5 performance metrics for multispectral imaging.

Resolution. Resolution was determined by capturing images of a 1951 USAF resolution test target (#53–714, 
Edmund Optics, USA) illuminated externally with a broadband halogen light source (OSL2, Thorlabs, Germany). 
The Michelson contrast50 was calculated for each element. The resolution, R, was determined as the line spacing 
when Michelson contrast dropped below 5% by fitting a smoothing spline to the Michelson contrast versus the 
line spacing. A contrast threshold of 1% has previously been reported to be applicable across a wide range of 
targets and conditions50, but we chose 5% to avoid effects arising from noise at very low contrast. We also placed 
a condition requiring data points with contrast >1% at >3 distinct line spacings to ensure there were a reason-
able number of non-noise data points to fit a spline. If this condition was not met, a spline was not fitted and the 
resolution was not defined. For multispectral imaging, the resolution is taken as the average of the resolution 
determined for each of the 9 spectral bands. The resolution score39, Sres, was defined as

= −





−
−






S R R
R R

1res
min

max min

where Rmax and Rmin are the maximum and minimum resolutions calculated across all correction methods, 
defined such that scores of 1 and 0 represent the best and worst resolution achieved respectively.

Smoothness. For monochrome imaging, smoothness was determined by using images of white areas of a 1951 
USAF resolution test target (#53–714, Edmund Optics, USA) illuminated externally with a broadband halogen 
light source (OSL2, Thorlabs, Germany). For multispectral imaging, smoothness was determined using images 
of a white reflecting target (paper) illuminated with a narrow band LED (UHP-T-LED-630, Prizmatix, Israel).

The spatial standard deviation of the image was calculated39. The average of this across 9 spectral band images 
was taken for multispectral imaging. The smoothness score39, Ssmooth, was defined as:

σ σ
σ σ

= −





−
−






S 1smooth
min

max min

where σmax and σmin are the maximum and minimum standard deviations calculated across all correction meth-
ods, such that scores of 1 and 0 represent the best and worst smoothness achieved respectively.

Signal. Fluorescence signals with broad spectral features were acquired by capturing images of a 30 μL solution 
of 1 mg/mL of the fluorescent dye AF647 (Invitrogen, USA) dissolved in phosphate buffered saline (PBS) in a well 
plate (μ-Slide 18 Well—Flat, ibidi GmbH, Germany) using illumination from a 630 nm LED (UHP-T-LED-630, 
Prizmatix, Israel) and a long pass emission filter (ET700/75 m, Chroma, USA). The mean pixel intensity, S, was 
calculated in a region of interest (ROI) drawn manually inside the well on the image. For multispectral imaging, 
the average pixel intensity was extracted from those bands that overlap with the emission spectrum of AF647 
(narrow bands: 665 nm, 714 nm, FWHM, 27 nm, 26 nm; broadband: 500–850 nm).

The average pixel intensity, S, was used to determine the signal score Ssignal

=
−

−
S S S

S Ssignal
min

max min

where Smax and Smin are the maximum and minimum signals calculated across all correction methods, such that 
scores of 1 and 0 represent the best and worst signal achieved respectively.

Speed. Speed was determined by measuring the total Matlab® computation time per frame on a MacBook Pro 
(Processor 2.4 GHz Intel Core i5, Memory 8 GB 1600 MHz DDR3).
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Accuracy of spectral reconstruction (Multispectral Performance Metric Only). For multispectral imaging, it is 
crucial that the information from different pixels on the SRDA is not mixed by the comb correction process. In 
order to assess the performance of each correction method, we defined a score to represent the accuracy of spec-
tral reconstruction (ASR). To extract this score, the following steps were performed:

 1. Using our multispectral endoscope, we captured images of a white reflecting target (paper) illuminated 
with a narrow band source (UHP-T-LED-630, Prizmatix, Israel).

 2. These images were demosaicked and decombed as outlined in Section 5.4 to provide an MSI cube of 
data: = −I k, 1 9k  where k indicates the spectral band.

 3. The ‘ground truth’ spectral properties of the image data were determined. The spectrum, G(λ), of the target 
was captured using a reference spectrometer (AvaSpec-ULS2048, Avantes, Netherlands); the spectral 
response of our endoscope in each spectral band k, Rk(λ), was determined as described previously38.

 4. The ‘ground truth’ spectrum was multiplied by the response of our endoscope to predict the ‘ground truth’ 
recorded spectrum:

∑ λ λ= = −
λ

E G R k( ) ( ), 1 9k k

The normalised (to AUC = 1) average (over all pixels in the image) spectrum collected with the endoscope was 
compared to the predicted ‘ground truth’ spectrum and the mean squared difference was determined by:

∑=

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where the bar represents normalisation of spectra to AUC=1.
The accuracy of spectral reconstruction score, SASR, is defined as

= −





−
−




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S Q Q
Q Q

1ASR
min

max min

where Qmax and Qmin are the maximum and minimum mean squared differences calculated across all correction 
methods, such that scores of 1 and 0 represent the best and worst SASR achieved respectively.

By spatially (pixel-by-pixel) averaging the spectra prior to normalisation and calculation of the mean square 
difference, we reduce the influence of non-smoothness of the images, since this effect is already accounted for in 
the smoothness metric.

Overall performance. Since there are trade-offs between the performances of the metrics, the overall per-
formance of a particular correction method depends on which of the metrics are prioritised in a given applica-
tion. To account for this, we constructed an overall performance score, OP, defined as:

= + + +OP w S w S w S w Sres res smooth smooth signal signal ASR ASR

with adjustable application-dependent weightings, w, to emphasize a priority metric, such that:

+ + + =w w w w 1res smooth signal ASR

Speed was not included in OP since it is possible to independently optimise speed by improving hardware 
and parallelising software. For monochrome imaging wASR = 0. Since weightings are application-dependent, we 
calculated OP for all weightings, such that the reader may visually select the optimum correction method.

Data Availability
The datasets generated and analysed during the current study are available in the University of Cambridge Re-
search Data Repository (DOI will be generated upon acceptance of manuscript).
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