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1  |  INTRODUCTION

The COVID-19 pandemic has had severe impacts on population health in the United States. Public health policies aimed at 
limiting the spread of the virus and preventing the healthcare system from becoming overwhelmed had significant effects on 
employment, particularly during the early months of the pandemic (Gupta et al., 2020). Between March and May 2020 (the 
first three months of stay-at-home orders in many states), the United States saw record-level increases in unemployment claims, 
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Abstract
While psychological distress is a common sequelae of job loss, how that relationship 
continued during the COVID-19 pandemic is unclear, for example, given higher 
health risk to working due to disease exposure. This paper examines changes in 
psychological distress depending on job loss among a cohort of randomly selected 
residents living in nine predominantly African American low-income neighbor-
hoods in Pittsburgh PA across four waves between 2013 and 2020. Between 2013 
and 2016, we found an increase in psychological distress after job loss in line with 
the literature. In contrast, between 2018 and 2020 we found change in psychological 
distress did not differ by employment loss. However, residents who had financial 
concerns and lost their jobs had the largest increases in psychological distress, while 
residents who did not have serious financial concerns—potentially due to public 
assistance—but experienced job loss had no increase in distress, a better outcome 
even than those that retained their jobs. Using partial identification, we find job 
loss during the pandemic decreased psychological distress for those without seri-
ous financial concerns. This has important policy implications for how high-risk 
persons within low-income communities are identified and supported, as well as 
what type of public assistance may help.
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with tens of millions of new claims filed (U.S. Department of Labor, 2020). Prior research has established that involuntary 
job separation is associated with decreases in health and well-being, including increased risk of depression and distress, and 
reduced life-satisfaction (Gebel & Voßemer, 2014). Although COVID-19 has posed a significant potential threat to health and 
well-being overall, job loss during the early pandemic may have had more mixed impacts on health. For example, particularly 
among those whose jobs were in a frontline or “higher-risk” position, being separated from the job may have introduced relief 
by reducing exposure to the virus. More robust financial assistance programs during the pandemic, such as federal stimulus 
payments, may further have mitigated the impact of job loss on psychological health operating through financial strain.

Still, lower socioeconomic status populations and certain racial/ethnic minorities, including African Americans, have been 
particularly vulnerable to these negative sequela as they may have been more likely to lose their jobs (Cowan, 2020; Mongey 
et al., 2020; Wozniak, 2020). Lower income individuals in particular have reported having more constrained financial resources 
during loss of employment (Pew Research Center, 2020). Gaffney et al. (2020) showed individuals receiving unemployment 
benefits during the pandemic were more likely to report running out of food and to report having lower self-reported health than 
those working. In response, legislation was passed to assist workers in the United States, including the CARES Act, Paycheck 
Protection Plan, and state-level loosening of unemployment claims requirements. Many workers who lost their jobs during the 
pandemic were eligible to receive benefits greater in size than their lost wages (Ganong et al., 2020). However, despite the 
federal and state-level policies in response to the COVID-19 employment shocks, many people continue to suffer from severe 
economic distress (Beland et al., 2020).

In this paper, we use a longitudinal panel of low-income, predominantly African American older adults to evaluate how 
changes in employment during the early months of the pandemic associate with changes in moderate to serious psychological 
distress. We contrast this relationship using the same longitudinal panel data collected in 2013 and 2016. The panel was initially 
developed using randomly-sampled households enrolled by door-to-door recruitment in 2011 from a selection of predominantly 
African-American neighborhoods in Pittsburgh, Pennsylvania. In this paper, we use the surveys that had questions surrounding 
psychological distress, administered in 2013, 2016, 2018, and during the early weeks of the pandemic in late March to late May 
of 2020.

Our paper has several important findings that can inform public policy as we move through the pandemic and in future 
public health crises. We find an overall increase in the rates of moderate to serious psychological distress from 2018 (19.2%) 
to the early months of the pandemic in 2020 (30.4%). That overall increase in psychological distress in our sample population 
is large, and similar to the magnitude of the increase in psychological distress we estimate for those who transitioned from 
employment to unemployment between 2013 and 2016. Our 2016 estimates for the relationship between job loss and psycho-
logical distress reflect prior research. We find that levels and changes in psychological distress in the early months of the 
pandemic 2020 were similar between employment groups—including those who lost their jobs—in contrast to our own sample 
in 2013–2016 and to the literature on job loss. Although those who lost their jobs had similar rates of psychological distress 
during the pandemic as those who did not lose their jobs, financial distress moderated this relationship. Participants who lost 
their jobs and had financial concerns demonstrated the largest changes in psychological distress, at over a 25% increase from 
2018 to 2020, while those who lost their jobs and did not have financial concerns had lower distress rates than those that kept 
their jobs, at around a 5% decrease. This finding may be pandemic-specific given there are health risks to working in-person, 
and those who do not have financial concerns and can work from home are insulated from changes in psychological distress 
associated with either their job loss or exposure to the virus from work. In addition, there is potential that a higher proportion of 
those who lost their job during the early period of the pandemic (late March to May 2020) viewed the displacement as tempo-
rary and/or felt less stigmatized by COVID-related job loss as compared to job loss occurring in other (non-pandemic) years.

Finally, we use partial identification to put bounds on the causal impact of job loss. Partial identification allows for the 
estimation of the range of potential causal effects under relatively weak assumptions. Weaker assumptions in the model widens 
the bounds yielding higher levels of statistical uncertainty, but with more defensible underlying assumptions (Tamer, 2010). 
For 2013–2016, we estimate a confidence interval around the causal impact of −29.1–16.0% points. Thus, we cannot identify a 
causal impact of job loss on psychological distress. This stands in contrast to our estimate between 2018 and the early months of 
the pandemic, where we find an overall increase in psychological distress across adults regardless of employment category, but 
observe a negative causal impact from job loss, that is, that job loss led to lower psychological distress. This is particularly true 
for those without strong financial concerns, the only group whose confidence interval around the partial identification causal 
estimate interval is entirely negative. The partial identification places the causal point estimate between a 6.8 and 47.4% point 
reduction in the probability of psychological distress from job loss during the pandemic for those without financial concerns. 
During at least the early stages of the COVID-19 pandemic for this low-income population, providing income security, and not 
necessarily job security, was perceived as critical to minimizing psychological distress, especially given the feared health risks 
of working for many individuals. Policies that try to sustain employment through the pandemic may not alone remove increases 
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in psychological distress, given financial security is a critical moderator in the relationship between job loss and psychological 
distress during the pandemic.

1.1  |  Literature review

A large body of prior work has established that economic recessions, job loss, and even the uncertainty about potential job loss, 
may lead to poorer mental health. Margerison-Zilko et al. (2016) and Cooper (2011) provide reviews of the literature of the 
impact of the Great Recession and prior recessions, respectively, and find negative impacts on mental health. The results tend 
to be stronger for self-reported well-being (Gebel & Voßemer, 2014; Michaud et al., 2016). Job loss has been found to lead to 
large decreases in self-reported health, especially for those whose job loss is related to health reasons and depressive symptoms 
(Burgard et al., 2007), as well as increased expenditure on antidepressants (Kuhn et al., 2009). Psychological distress is higher 
for those who lost their job or were unemployed, compared to being employed (Libby et al., 2010).

On the other hand, some research has found that for the average worker (as opposed to the individuals who lost their jobs), 
general health may actually improve in a recession (Ruhm,  2000, 2003). Hypothesized and investigated reasons include a 
decrease in the opportunity cost of time leading to individuals engaging in healthier activities such as more exercise, more 
sleep, and attending to routine doctors visits. Further, health improvements from job loss may be observed if there are hazardous 
working conditions and physical exertion from employment (Dee, 2001; Ruhm, 2000, 2003). Sullivan and Von Wachter (2009) 
found that job loss increased the risk of mortality, and have discussed the differences between the average worker during 
a recession, as would be calculated from Ruhm's  (2000, 2003) approaches using state-level economic conditions, and the 
marginal worker who loses their job. Still, other research has found the opposite. During the Great Recession, there was an 
overall increase in mental illness; with the greatest increase for African Americans (Lo & Cheng, 2014).

Julià et al. (2017) provide an excellent review of the literature on the effect of job precariousness on health, finding across 
several studies that health worsens with higher job insecurity. Perceived job security has strong negative impacts on self-reported 
mental health (Bardasi & Francesconi, 2004; Cottini & Ghinetti, 2018; Kachi et al., 2018; Watson & Osberg, 2018). Low-income 
populations' experience with job loss is particularly concerning. Workers with a priori worse health tend to experience larger 
decreases in physical and mental health from job loss (Schiele & Schmitz, 2016). One third of the decline in health after job loss 
has explained by financial strain, and in analyses which looked at this, income did not mediate this effect (Huijts et al., 2015). 
Adams-Prassl et al. (2020) found during the early pandemic months in 2020 that lockdown measures worsened mental health. 
Breslau, Finucane, et  al.  (2021) demonstrated that there was a significant worsening of psychological distress during the 
COVID-19 pandemic at the national-level, across socio-economic groups. McGinty et al., 2020 also found increases in seri-
ous psychological distress between 2018 and April 2020, which was higher for those with household income below $35,000. 
Holingue et al. (2020) found statistically significant higher levels of distress for those with incomes below $40,000.

There is an emerging literature on the effect of COVID-19 on employment and psychological distress outcomes. Gupta 
et al. (2020) found that stay-at-home restrictions were related to significant increases in unemployment, with the largest effects 
for non-essential industries. Beland et al. (2020) showed an overall increase in unemployment and fewer hours worked. The 
effect was larger in states that implemented stay-at-home orders. Mongey et al. (2020) found workers employed in jobs that 
have more personal-proximity and lower work-from-home are more likely to be impacted by social distancing measures. 
These individuals are disproportionately less educated and lower income. Cowan (2020) found an increase in the likelihood 
of becoming unemployed during the pandemic but a decline in the labor-force participation, an increase in absenteeism, and a 
decrease in hours worked, with more vulnerable populations having worse changes than non-vulnerable populations. Breslau, 
Roth, et al. (2021) found that job loss during the COVID-19 pandemic was significantly related to higher serious psychological 
distress. Further, around one third of the impact of prior psychological distress on subsequent distress could be attributed to the 
relationship between prior psychological distress and loss of job or disruption in health care. Finally, Couch et al. (2020) found 
that unemployment among African Americans increased less than expected when compared to previous recessions. However, 
African Americans were still found to be at increased risk of job loss (Couch et al., 2020).

Together, the literature suggests that job loss during the pandemic for vulnerable populations may lead to heightened psycho-
logical distress rates. Our paper adds to this literature by providing the first estimates of the impact of COVID-19 on changes in 
psychological distress through changes in employment among a low-income African American sample, and comparing those 
changes within-sample to the impacts on psychological distress from job loss pre-pandemic. Given the recent research outlined 
above on the labor market effects of COVID-19 it is likely that our cohort has experienced larger impacts of the pandemic 
than the general population in the United States given they are located in a low-income neighborhood. Furthermore, although 
our data was collected prior to the killing of George Floyd on May 25, 2020 and subsequent Black Lives Matter protests, 
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the movement and raised awareness of racism and inequities particularly for African Americans brought light to the unequal 
impacts of COVID-19 that we observed. This paper is, to our knowledge, the first to use individual-level longitudinal data eval-
uating the impact of COVID-19 on employment outcomes and psychological distress among low-income African American 
workers. Thus, our analysis hopes to add critical information to this research gap and derive important policy considerations.

2  |  CONTEXT

2.1  |  Setting

This paper evaluates a cohort of predominantly African American households (around 95% of our sample) that were originally 
randomly sampled in 2011 from low-income predominantly African-American neighborhoods in Pittsburgh, PA as part of 
the PHRESH (Pittsburgh Hill/Homewood Research on Neighborhood Change and Health) study (Dubowitz et al., 2015). The 
original study was designed to examine the impact of a new full-service supermarket that opened in one of the neighborhoods 
and therefore, in initial recruitment of households the primary food shopper was interviewed (Dubowitz et al., 2019). In the 
original sample enrolled in 2011, there were 1372 households. Of these, 1321 were able to be recontacted in 2013 (and 1190 
were deemed eligible to participate) to form the basis of the cohort we refer to in this paper (i.e., years where data collected 
included employment, psychological, and financial distress) (Dubowitz et al., 2015). Loss to follow-up occurred for multiple 
reasons – including death, inability to re-contact, and moving outside of the study areas. The households were interviewed in 
2013, and again in 2014, 2016, 2018, and 2020.

On March 13, 2020, the Mayor of Pittsburgh declared a State of Emergency which allowed for official cancellation and 
limiting of large gatherings, and events which required City permits. On March 15, 2020, the county called for all non-essential 
businesses to close voluntarily and most schools, including Pittsburgh Public Schools, were closed for in-person instruction. 
The Pennsylvania governor issued a stay-at-home order for the county on March 23, 2020, which is when our survey began. 
Pittsburgh had experienced relatively low exposure to COVID-19 during the sample frame; as of May 25, 2020, Allegheny 
County had a total of 1805 confirmed cases and 160 deaths, for a rate of 1.48 cases per 1000 people. At the time, this rate 
ranked 9th lowest out of the 42 counties in the United States with a population of at least one million people. 1 Thus, the effects 
we see in this early data are expected to be primarily driven by the mitigation policies and decreased labor demand rather than 
the direct health impacts of the virus. 2

2.2  |  Conceptual framework

There are several mechanisms through which job loss could be associated with psychological distress during the COVID-19 
pandemic among a low-income population. First, workers may interpret the loss of the job as a signal of their having lower 
productivity and value in the workforce, which may increase distress. Associated with this, they may feel anxiety or shame in 
telling other people about their job loss (Creed & Muller, 2006). Even with the unemployment benefit system in the United 
States, job loss is typically related to short and potentially long term decreases in income, which also may increase psycholog-
ical distress (Huijts et al., 2015). For those whose health insurance is tied to their employment, job loss may also disrupt health 
coverage and usage, which again is likely to increase distress (Breslau, Roth, et al., 2021). Each of these pathways are not unique 
to the pandemic.

However, there are also potential mechanisms through which job loss may contribute to lower psychological distress—some 
of which may be stronger during the pandemic. Job loss may relax the opportunity cost of time, allowing individuals to engage 
in physically and mentally healthy activities at a higher rate than when they were employed (Ruhm, 2000). Further, if work is 
associated with hazardous health conditions or mentally taxing endeavors, then cessation of work may improve health. This 
may be particularly true during the pandemic for in-person employees, as they face heightened risk of infection of COVID-19. 
Concerns about heightened risk of exposure and infection while on the job may increase psychological distress, which would 
be stronger during the pandemic. Thus, job loss may reduce anxiety surrounding job-related exposure to infection.

Additionally, job loss during the pandemic may be perceived as temporary and attributed to external factors (i.e., the 
pandemic), rather than shortcomings of the individual. As such, pandemic-related job loss may carry less stigma than job loss at 
other times, and subsequently have lesser negative impact on psychological distress. There were also temporary public policies 
put in place to mitigate the economic fallout from the pandemic, including federal stimulus payments and extended benefits 
from the unemployment insurance program. These policies could potentially limit the negative impacts of job loss. Thus, the net 
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effects of job loss during the pandemic on psychological distress are ambiguous given the different hypothesized mechanisms 
operating in different directions.

3  |  METHODS

3.1  |  Key measures

3.1.1  |  Psychological distress

Psychological distress is based on the common Kessler Psychological Distress Scale K6 (Kessler et al., 2002). Respondents are 
asked six questions constructed to determine their level of psychological distress (see Appendix Table A1 for the questions used 
for this scale). They respond using a Likert scale which is scored from 0 (none of the time) to 4 (all of the time), after which the 
scores are summed across the six questions to form the K6 score, with a minimum score of 0 and a maximum of 24. To facilitate 
interpretation, we follow the common classification of moderate to serious psychological distress (which for the purposes of 
this paper we refer to as “psychological distress”) as K6 greater than or equal to 8 based on Kessler et al. (2003), although we 
repeat the main results using the underlying continuous scale and report the regression results in Appendix Table A1.

3.1.2  |  Employment Status

The questions surrounding employment were different depending on the survey wave. In 2013 and 2016, respondents were 
asked if they were working full time, part time, were unemployed, or were out of the labor force. In 2018, they were simply 
asked if they were employed or not working. In 2020, they were asked if they were working immediately before the start of the 
pandemic, and if so, if they were still working the same or more hours; if they were working fewer hours; or if they were no 
longer working.

The different employment categorizations across waves can be seen in Table 1, which reports the counts of individuals 
in each employment group.  Our analysis does not pool across all four waves given changes in the employment questions 
mentioned above. Instead, we examine changes between 2013 and 2016 as well as 2018–2020. For the 2018 to 2020 survey 
waves, although we examine changes in psychological distress between 2018 and 2020, we examine changes in employment 
that occurred between right before the time of the survey, between late March and May 2020, based upon responses in the 2020 
survey. We focus on this time period, during the earliest weeks of the pandemic, because the primary intent of this paper is to 
examine psychological distress arising from employment changes during the pandemic, captured in the 2020 survey questions. 
We do a sensitivity test to compare these main results to any job loss that occurred between the 2018 and 2020 surveys.

Another reason for separating out the two timeframes is that we can observe whether there were decreased work hours in 
the 2020 survey (self-reported), while the earlier waves only collected data on the more coarsely-measured transition between 
full-time to part-time. Additionally, decreased work hours may represent a planned and voluntary scaling down of work time 

BAIRD et al.

2016

Timeframe 1: 2013–2016 Full time work Part time work Unemployed Out of labor force

2013 Full time work a) 123 b) 22 c) 5 d) 19

Part time work e) 19 f) 49 g) 9 h) 24

Unemployed i) 9 j) 12 k) 9 l) 13

Out of Labor force m) 5 n) 18 o) 10 p) 354

2020

Timeframe 2: 2018–2020
Employed 2020 pre-pandemic and during 
pandemic without reduced hours

Hours decreased 
during COVID

Lost job during 
COVID

Not employed 
2020 pre-COVID

2018 Employed q) 99 r) 35 s) 56 t) 31

Not employed u) 21 v) 6 w) 18 x) 330

T A B L E  1   Number of sample respondents in each employment group
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related to partial retirement, which may be optimal for the worker and unassociated with psychological distress. A movement 
to partial retirement may be more likely in the 3 -year gap than the gap between the start of the pandemic and two to 3 months 
later. Third, while in the earlier waves we observed the difference between individuals being out of the labor force and those 
unemployed, we did not collect information on labor force status for those not working in the 2018 or 2020 survey. Therefore, 
we could not distinguish these categories.

From the employment questions in the various survey waves, we create four employment groups per wave, defined in 
Table 2. These are: (1) Employed both time periods without reduction in hours; (2) Employed both time periods but with 
reduced hours; (3) Lost job; and (4) Not working at the outset. While for convenience we categorize the employment changes 
into similar groups between the two timeframes (2013–2016 and 2018–2020), the definitions are not exactly the same, as noted 
above and as defined in Table 2. However, the earlier waves nonetheless offer an interesting within-sample comparison regard-
ing the impact of employment changes on psychological distress.

3.1.3  |  Financial Concerns

A key variable in our analysis is whether the respondent had financial concerns during the 2020 survey. This is based off the 
question “What would you say is your biggest financial concern now?” Options include food, rent/mortgage, medical bills or 
medicine, utilities or not having any financial concerns. Appendix Table A1 reports the full wording of the question and the 
response options. We classify a person as having financial concerns if they report anything but 5: “I do not have any financial 
concerns.”

3.2  |  Sample descriptives

Table 3 presents the summary statistics from our analytic sample. There are between 600 and 700 individuals in our sample in 
each timeframe. Our sample is predominantly low income, with the average annual household income per adult under $20,000. 
The sample is older, with an average age around 60 years old (standard deviation of 15). In 2020, nearly half of the sample had 
no post-secondary education, and 15% held a college degree. The sample is predominantly female, partially due to the primary 
shopper design of the sample. Only 16% of the sample were married. Most respondents lived in the Hill District of Pittsburgh 
(which is the omitted reference group in the analysis).

For each individual who reported that they were working before the pandemic, we asked an open-ended question regarding 
their occupation during the 2020 COVID survey. We categorized their open-ended responses into whether the pre-pandemic job 
was health-related or not, given specific challenges related to healthcare workers during the pandemic. 17 percent of our sample 
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Waves Definition Location in Table 1 N (%)

1. Employed both time periods without reduction in hours

2013–2016 Employed 2013 and 2016 without reduced hours Cells a, e, f 191 (27.3%)

2018–2020 Employed 2020 pre-pandemic and during pandemic without reduced hours Cells q, u 120 (20.1%)

2. Employed both time periods but reduced hours

2013–2016 Full time employed 2013 to part time 2016 Cell b 22 (3.1%)

2018–2020 Employed 2020 pre-pandemic and during pandemic with reduced hours Cells r, v 41 (6.9%)

3. Lost job

2013–2016 Employed 2013 but not 2016 Cells c, g 14 (2.0%)

2018–2020 Employed 2020 pre-pandemic but not during pandemic Cells s, w 74 (12.4%)

4. Not working at the outset

2013–2016 Not employed 2013 or out of labor force 2016 Cells d, h, i-p 473 (67.6%)

2018–2020 Not employed 2020 pre-pandemic Cells t, x 361 (60.6%)

Note: Employment groups for the 2018–2020 timeframe are based on their responses in the 2020 survey which reports on employment both pre-pandemic 2020 and 
early pandemic (late March through May 2020).

T A B L E  2   Definitions of employment groups
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that were working before the pandemic were in a health-related job. We do not classify workers into essential job categories, 
given the wide range of definitions. Additionally, we find 60.7% of the sample had a financial concern.

Table 3 also reports the outcome, the proportion of respondents classified as having psychological distress. In the 2013–2016 
timespan, the rates of psychological distress were similar in both survey waves, at around 20% of the sample. The rate was 
similar in 2018 as well; however, during the pandemic survey in 2020, that value increased to over 30%. Our sample's average 
psychological distress scores in both 2018 and 2020 are above (worse than) the average score for the United States in every year 
reported by Keyes et al. (2014), that is, between 1997 and 2011, which included the Great Recession.

3.3  |  Sample attrition

Given the groupings of waves, we discuss sample attrition in terms of the change within each grouping. There were 1043 
respondents in 2013 who answered the employment and psychological distress questions. Of these, 700 responded again in 
the 2016 survey with responses to the employment and psychological distress questions, for a retention rate of 67.1%. Appen-
dix Table A2 provides the demographics of the 700 respondents in both waves compared to the 343 survey participants who 
responded in 2013 but not 2016. Retained respondents were statistically different along several demographics.

There were 812 respondents in the 2018 survey who answered the psychological distress and employment questions. Of 
these, 569 responded in the 2020 wave, for a retention rate of 70.1%. Appendix Table A3 provides the demographics of the 
two groups. There are again statistically significant differences between the retained and non-retained survey participants. As a 
result of the attrition and statistical differences, for both survey groupings, we generate attrition weights by estimating a logistic 
regression of survey retention on the demographic variables. From the estimated model we predict the probability of retention 
given the demographic variables, and generate the attrition weights as the inverse of the predicted probability of retention. We 
use these attrition weights in all regression analysis in the paper (Holliday et al., 2020). Primary causes of attrition include an 
aging population (i.e., deaths) as well as a highly vulnerable, high-risk population.

BAIRD et al.

2016 (N = 700) 2020 (N = 596)

Mean Std. Dev. Mean Std. Dev.

Prior psychological distress 0.200 0.400 0.192 0.394

Psychological distress 0.190 0.393 0.304 0.460

Change in psychological distress from prior survey −0.010 0.423 0.110 0.513

Baseline income ($1000) 13.845 14.047 15.277 14.826

Age 58.681 15.201 61.824 13.876

Age between 50 and 65 0.410 0.492 0.381 0.486

Age older than 65 0.339 0.474 0.440 0.497

Some college 0.319 0.466 0.393 0.489

College graduate 0.140 0.347 0.148 0.355

Male 0.206 0.405 0.161 0.368

Married 0.166 0.372 0.164 0.371

Lived in homewood 0.257 0.437 0.292 0.455

Didn't live in hill or homewood 0.099 0.298 0.079 0.270

No children at home 0.773 0.419 0.810 0.392

Homeowner 0.277 0.448 0.332 0.471

Health job a 0.067 0.250

Has financial concerns 0.607 0.489

 aHealth job is manually coded based on open responses of job type. Psychological distress is an indicator for having a K-6 score of 8 or higher, which is considered 
moderate to serious psychological distress. Baseline income ($1000) is income per adult in household in baseline year (2013 or 2018) in thousands of dollars. Table A4 
presents the means for each of the four waves for the covariates, while Tables A5 and A6 presents the outcome for the subgroups.

T A B L E  3   Sample statistics
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3.4  |  Modeling

3.4.1  |  Linear regression methodology

We examine how, holding constant individual characteristics, differences in employment changes are related to levels of or 
changes in psychological distress. To estimate these relationships, we use linear regression models (Equations 1 and 2). Equa-
tion (1) estimates the level of psychological distress, while Equation (2) estimates the change in psychological distress from the 
prior to the current period.

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛼𝛼
𝐿𝐿
+ 𝛽𝛽

𝐿𝐿
𝑌𝑌𝑖𝑖𝑖𝑖−1 +𝑋𝑋𝑖𝑖𝑖𝑖𝛾𝛾

𝐿𝐿
+

∑

𝑘𝑘=2,3,4

𝛿𝛿
𝐿𝐿

𝑘𝑘
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸𝐸𝑖𝑖𝑖𝑖 + 𝜀𝜀

𝐿𝐿

𝑖𝑖𝑖𝑖� (1)

𝑌𝑌𝑖𝑖𝑖𝑖 − 𝑌𝑌𝑖𝑖𝑖𝑖−1 = 𝛼𝛼
𝐷𝐷
+𝑋𝑋𝑖𝑖𝑖𝑖−1𝛾𝛾

𝐷𝐷
+

∑

𝑘𝑘=2,3,4

𝛿𝛿
𝐷𝐷

𝑘𝑘
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐸𝐸𝑖𝑖𝑖𝑖 + 𝜀𝜀

𝐷𝐷

𝑖𝑖𝑖𝑖� (2)

Yit is our binary measure of moderate to serious psychological distress. The parameters of interest are 𝐴𝐴 𝐴𝐴
𝐿𝐿

𝑘𝑘
 and 𝐴𝐴 𝐴𝐴

𝐷𝐷

𝑘𝑘
 for k = 2, 3, 

4, which measure the difference in psychological distress for those who were employed both periods but decreased work hours 
(𝐴𝐴 𝐴𝐴

𝐿𝐿

2
 ), those who lost their employment (𝐴𝐴 𝐴𝐴

𝐿𝐿

3
 ), and those who were not working at the outset (𝐴𝐴 𝐴𝐴

𝐿𝐿

4
 ), each compared to the reference 

category, those who were still working with the same or more work hours. Xit controls for the demographics and characteristics 
of the sample, as defined in Table 3. In Equation (1), we additionally control for the prior level of psychological distress as an 
important predictor of current psychological distress.

In these regressions, 𝐴𝐴 𝐴𝐴
𝐿𝐿

𝑘𝑘
 and 𝐴𝐴 𝐴𝐴

𝐷𝐷

𝑘𝑘
 do not necessarily capture the causal impact of job loss or hours decrease on psychological 

distress. There may be reverse causality, selection bias, and omitted variable bias. Measuring the outcome as a change score 
(Equation 2) and controlling for the prior level of distress (Equation 1) alleviate some of these issues, but not all. While the 
causal estimates are of interest and will be bounded in the partial identification analysis described below, the relationships 
captured by these regressions are critical to understand, and may be more relevant in identifying the most at-risk groups. That 
is, there is value in knowing which groups of workers we predict would have the highest level of psychological distress even 
without knowing whether loss of employment causes changes in psychological distress. Knowing if those that have lost their 
job are experiencing high levels of psychological distress and whether they have increased since the start of the pandemic helps 
identify at-risk populations.

Throughout all analysis, we estimate the standard errors using heteroskedasticity-robust (Huber-Eiker-White) standard 
errors, which does not assume homoskedasticity but does assume independence of the error terms across observations.

3.4.2  |  Moderating role of financial concern methodology

We next expand upon the model in Section 3.3.1 by examining whether the relationship between job loss and psychological 
distress is moderated by the financial concern of the individual. While the study population is low-income, there may be varia-
bility in the degree to which they have concerns about their ability to pay for housing, health care, food, or utilities, perhaps due 
to public assistance programs and saving. Given the relatively small sample size for employment groups 2 and 3 (see Table 1), 
for this interaction analysis we combine lost job with decreased hours to form a new employment group, “lost employment or 
reduced work hours during the pandemic,” which we refer to as employment group 2 ∪ 3. We then interacted employment group 
with the financial concerns variable, yielding Equations (3) and (4).
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3.4.3  |  Partial identification methodology

We use partial identification methodology to estimate the place bounds on the causal impact, using the methodology devel-
oped and used in Manski  (1995), Manski  (1997), and Manski and Pepper  (2000), Kreider and Pepper  (2007), and Kreider 
et al. (2012). Given sample size concerns, we again use the combined employment group 2 ∪ 3 and consider this the “treatment” 
group, that is, D = 1 for this group. The treatment effect we are targeting is the change in probability of psychological distress 
from loss of employment, that is, Pr(Y(1) = 1|D = 1)−Pr-(Y(0) = 1|D = 1). The second term is not observed, and we use the 
partial identification methods to put bounds around this difference. Note that in doing so, we drop individuals in employment 
group 4 (those not employed at the outset) in order to have the counterfactual outcome be still working without loss of employ-
ment (D = 0).

Using these groups, we implement partial identification strategies. This allows us to construct ranges in which the causal 
estimate lies depending on different assumptions. Manski's (1995, 1997) ranges hinge on combinations of different assump-
tions. We employ combinations of the monotone treatment selection (MTS) assumption and the monotone instrumental variable 
(MIV) assumption. The partial identification modeling and estimation is as follows. Let Y(t) be the outcome of psychological 
distress if the person was assigned employment-loss status t (t = 1 for having experienced employment loss, and t = 0 for having 
kept their job with the same or more work hours). Let D represent the observed employment loss status of each individual.

MTS assumes for t = 0,1 that

Pr(𝑌𝑌 (𝑡𝑡) = 1|𝐷𝐷 = 0) ≤ Pr(𝑌𝑌 (𝑡𝑡) = 1|𝐷𝐷 = 1)� (5)

This assumption is about the selection process and the resulting bias that arises on estimates. Intuitively, the assumption is 
that individuals who experienced loss of employment, on average, have higher probabilities of psychological distress than indi-
viduals who did not experience loss of employment, regardless of the loss of employment. For example, individuals experienc-
ing more psychological distress in the baseline period may be more likely to quit or lose their jobs than those not experiencing 
distress. Although they may also experience additional psychological distress from job loss (Breslau, Finucane, et al., 2021), 
their propensity to have psychological distress may increase the probability of distress again in the following period. The MTS 
assumption is aligned with such a set-up, as those who lost their jobs would have counterfactually still had higher levels of 
distress than those who did not lose their jobs, if neither group had lost their jobs. We only observe Y(t) for the actual job loss 
status, that is, Pr(Y(0) = 1|D = 0) and Pr(Y(1) = 1|D = 1). The two inequalities (t = 0,1) from Equation (5) help bound this 
counterfactual.

MIV assumes that there exists a variable such that, for each combination of (t,d)

For all 𝑧𝑧1 ≤ 𝑧𝑧2, Pr (𝑌𝑌 (𝑡𝑡) = 1|𝐷𝐷 = 𝑑𝑑𝑑𝑑𝑑 = 𝑧𝑧1) ≤ Pr(𝑌𝑌 (𝑡𝑡) = 1|𝐷𝐷 = 𝑑𝑑𝑑𝑑𝑑 = 𝑧𝑧2)� (6)

For the MIV, we use the negative of the baseline income level (2018 for 2020 and 2013 for 2016) as the monotone instru-
mental variable Z. The MIV assumption for the level of psychological distress then means that, for any individual in a given 
employment loss assignment (t) and actual job loss occurrence (d), the probability of having psychological distress is weakly 
greater if they had lower prior income. This is considerably weaker than the linear IV model assumption of mean independ-
ence, where in this case we would be assuming that baseline income is not associated at all with psychological distress. MIV 
allows for baseline income to be related outside of the endogenous treatment variable, but requires a weakly monotonic rela-
tionship. The MIV assumption can also help tighten the partial identification bounds of the causal impact of employment loss 
on psychological distress.

As Manski and Pepper (2000) show, these assumptions lead to direct estimates of the partially-identified bounds of the 
causal effect of treatment. We use the tebounds package in Stata version 17.0 to estimate these bounds (McCarthy et al., 2015). 
Confidence intervals are bootstrapped in the tebounds package with 100 bootstraps and adjusted for finite sample bias (Kreider 
& Pepper, 2007).

4  |  RESULTS

Prior to examining the relationships between employment and psychological distress, we first examine the characteristics of 
the sample associated with being in each employment group, reported in Appendix Tables A7 and A8. We find that baseline 
income, as measured in thousands of dollars, is an important indicator for change in employment status. Among this already 
low-income population, the coefficient in Table A8 for 2020 of 0.005 implies that in this sample, for each $2000 higher adjusted 
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income in 2018, the person had a 1% point higher likelihood of being in the employment group of retaining their job without 
reduced hours during the pandemic. A one-standard deviation increase in the baseline income (around $17,000) is associ-
ated with over 8% points higher likelihood of retaining employment. Prior income had similar effects in 2016. Some college 
attainment is also associated with higher likelihood of retaining employment. This finding is consistent with Adams-Prassl 
et al. (2020), who found women and those without college degrees were most likely to have lost their jobs during the pandemic.

4.1  |  Linear regression results

Table 4 reports the regressions of psychological distress and change in psychological distress on employment status and controls. 
Transitioning from being employed in 2013 to being unemployed in 2016 is related to a large increase in psychological distress 
(0.236% points), consistent with the literature of the impacts of job loss prior to the pandemic. That difference is statistically 
different from the reference group, those employed 2013 and 2016 without reduced hours. There is also a marginally significant 
increase in the change in psychological distress from 2013 to 2016 for those employed in 2013 but not in 2016 compared to 
those employed in both waves without reduction in hours. During the early months of the pandemic, there was no statistically 
significant difference between the employment groups in psychological distress and the point estimates were much smaller. 
However, as shown previously in Table 3, there was a large overall increase in psychological distress between 2018 and 2020.

We use the regressions to estimate the covariate-adjusted predicted outcome for the change in psychological distress between 
waves in both time groups testing out what the overall sample predicted outcome would be if everyone had been in each given 
employment group. To do so, we estimate the predicted outcomes for the entire sample as if they were in each employment 
group for each prediction. Doing so allows us to adjust for observed differences in the sample of those within each employment 
group and have a covariate-adjusted comparison. Figure 1 presents these predictions, along with 95% confidence interval bars. 
The comparison between the two timeframes is striking. For the change in psychological distress from 2013 to 2016, none of 
the groups had a change that is statistically different from zero, although the group of those who lost their jobs have the only 
positive coefficient and a much larger magnitude coefficient compared to the other employment groups. The increase in prob-
ability of psychological distress from losing a job in 2016 is about equal to that of those who did not lose their job during the 
pandemic. During the pandemic, there was a statistically significant increase in psychological distress for those who lost their 
jobs and for those who did not lose their jobs and had no decrease in hours worked. The prediction for those still working but 
with decreased hours was smaller and not statistically significant. As a result, for the 2018–2020 timeframe there is no large 
increase in psychological distress for those who lost their jobs. This stands in contrast to the 2013–2016 timeframe results and 
the findings in the literature for prior periods.

Several of the other coefficients in Table 4 are of interest. Unsurprisingly, the psychological distress K-6 score from the 
prior wave is a highly significant predictor of current psychological distress. We find no gender differences in psychological 
distress. This stands in contrast to Adams-Prassl et al. (2020), who found that decreases in mental health from lock-down meas-
ures during the pandemic were entirely driven by decreases among women. Those with higher education have lower levels of 
psychological distress during the 2013–2016 timeframe. We did not find the same effect during the pandemic. Older workers 
tend to have lower levels of psychological distress and change in distress in both timeframes.

As a comparison to Table 4, we repeat the model for the 2018–2020 timeframe but further divide the employment groups 
to separate those not employed immediately before the pandemic into two additional groups: (1) those not employed in both 
2018 and immediately before the pandemic, and (2) those employed in 2018 but not immediately before the pandemic. The 
results are presented in Appendix Table A9. The marginally significant finding in Table 4 for change in psychological distress 
being lower for those not employed before the start of the pandemic is separated out into the two coefficients. First, there is a 
significant negative effect for those employed in 2018 but not before the start of the pandemic. Second, there is an insignificant 
effect for those not working in 2018 or 2020.

Table A10 in the Appendix repeats the regressions, but uses the underlying 0 to 24 K-6 score instead of the binary catego-
rization of psychological distress. Overall, the findings were similar when using the continuous distress score.

4.2  |  The moderating role of financial concerns

We next examine how the results are moderated by financial situation during the pandemic. We do not have a parallel question 
in 2016, and so we limit this analysis to 2020. Given the small sample and the intention to stratify by financial concern, we 
combine those with reduced hours with those who lost their job in a single category. Table 5 reports the results (Table A11 in 
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Psychological distress Change in psychological distress

Variables 2016 2020 2013–2016 2018–2020

 

Full time employed 2013 to part time 2016 −0.0358 −0.00671

(0.0450) (0.0569)

Employed 2013 but not 2016 0.236** 0.176*

(0.107) (0.104)

Not employed 2013 or out of labor force 2016 0.0676** 0.0154

(0.0338) (0.0401)

Employed 2020 pre-pandemic and during pandemic with reduced hours 0.00798 −0.0662

(0.0804) (0.0825)

Employed 2020 pre-pandemic but not during pandemic 0.0747 0.0365

(0.0648) (0.0787)

Not employed 2020 pre-pandemic −0.00513 −0.107*

(0.0519) (0.0578)

Psychological distress in prior wave 0.0329*** 0.0319***

(0.00369) (0.00464)

Prior wave's income ($1000) −0.000636 −0.00181 0.00110 −5.93e–05

(0.000779) (0.00140) (0.00104) (0.00185)

Some college −0.0627* −0.0746* −0.0210 0.0108

(0.0324) (0.0431) (0.0408) (0.0514)

College graduate −0.0976** −0.0990* −0.0465 −0.0446

(0.0397) (0.0583) (0.0462) (0.0692)

Male 0.0101 0.00452 0.0450 0.0786

(0.0352) (0.0516) (0.0445) (0.0627)

Married 0.00687 −0.0864* 0.0312 −0.124**

(0.0376) (0.0460) (0.0446) (0.0572)

Age: 50–65 −0.0300 −0.181*** 0.0129 −0.149*

(0.0392) (0.0659) (0.0451) (0.0837)

Age: Older than 65 −0.100** −0.215*** 0.0104 −0.0757

(0.0438) (0.0732) (0.0499) (0.0891)

Homeowner −0.0213 0.0347 −0.0179 0.0148

(0.0331) (0.0426) (0.0404) (0.0525)

No children at home −0.0270 0.0444 −0.0583 −0.0219

(0.0366) (0.0694) (0.0430) (0.0828)

Lives in homewood 0.0208 0.0359 −0.0580 −0.0196

(0.0339) (0.0419) (0.0434) (0.0500)

Doesn't live in hill or homewood −0.0837* −0.0619 −0.0979** −0.0419

(0.0428) (0.0729) (0.0456) (0.0984)

Constant 0.114** 0.356*** 0.0226 0.296***

(0.0476) (0.0692) (0.0571) (0.0729)

Observations 700 569 700 569

T A B L E  4   Regression results for psychological distress
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the appendix contains the full results of the regression for all variables). For both the level of psychological distress during the 
pandemic and the change from 2018 to 2020, among those with no financial concerns, those who lost their job or had decreased 
hours had significantly lower psychological distress than those who kept their jobs without reduced hours (a 16.8 or 20.6% point 
decrease for the two outcomes, respectively). In contrast, that same difference among those with financial concerns is positive 
and not statistically different from zero (e.g., for 2020 psychological distress, −0.168 + 0.257 = 0.089). The difference between 
those contrasts captured by the interaction between financial concerns and lost or decreased employment is highly significant. 
We repeat the analysis of Table 5 for the underlying K-6 score, presented in the Appendix in Table A12, and the results are 
similar.

These results may reflect perceptions of the nature of the pandemic for residents of low-income neighborhoods, where 
employment may be anticipated to entail an increased risk of exposure to the virus and may thus increase psychological distress. 
Therefore, if the person is financially secure, not working during the pandemic may actually benefit psychological well-being.

Figure 2 presents the covariate-adjusted predicted probability of psychological distress (panel a) and change in probability 
of psychological distress (panel b), based on the regressions in Table 5. As in Figure 1, these are calculated as predictions for 
the entire sample, testing how the predictd outcome changes depending on each counterfactual employment group and financial 
concern status. Here, we can more directly see the underlying findings in these figures—the highest levels of distress are for 
those that lost their jobs or had reduced hours, and had financial concerns, with a probability of distress around 40% and an 
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T A B L E  4   (Continued)

Psychological distress Change in psychological distress

Variables 2016 2020 2013–2016 2018–2020

R-squared 0.239 0.169 0.015 0.036

Outcome mean 0.196 0.312 −0.0138 0.114

Note: Baseline income ($1000) is income per adult in household in baseline year (2013 or 2018) in thousands of dollars. Reference education group is high school or 
less. Reference age is 18–64. Reference neighborhood is Hill District. Robust standard errors in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.

F I G U R E  1   Predicted change in psychological distress by employment status. (a) 2013–2016 (b) 2018–2020. Based on predictions from the 
regressions in Table 4 [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b)

https://wileyonlinelibrary.com
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increase of over 20% points. The lowest values are for those who also lost their job or had reduced hours, but did not have finan-
cial concerns, at around 10% probability and no change in the probability of psychological distress. Meanwhile, the predicted 
probabilities for those who kept their job are in between the two probabilities for those who lost their job, with no statistically 
significant difference for those who had financial concerns versus those that did not.

BAIRD et al.

2020 Change from 2018 to 2020

Lost employment or reduced work hours during pandemic −0.168** −0.206**

(0.0703) (0.0888)

Not employed 2020 pre-pandemic −0.101 −0.208**

(0.0685) (0.0830)

Financial concerns 0.0789 0.0827

(0.0799) (0.0830)

Lost employment or reduced work hours during pandemic X financial concerns 0.257** 0.240*

(0.106) (0.124)

Not employed 2020 pre-pandemic X financial concerns 0.116 0.118

(0.0925) (0.102)

Note: N = 590. The regressions additionally include 2018 income, some college, college graduate, gender, age 50––65, age over 65, homeowner, no children at home, 
living in Homewood, and living in a different neighborhood from Homewood and Hill. Appendix Table A11 presents full regression results. Robust standard errors in 
parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.

T A B L E  5   Regression results by financial concerns

F I G U R E  2   Predicted outcomes by financial concern and job loss (a) Probability of psychological distress (b) Change in probability of 
psychological distress. Predictions based on regression results from table 5. Whiskers denote 95% confidence interval. Difference refers to the 
difference between those who lost employment or reduced hours during the pandemic versus those who retained employment during the pandemic 
and had no reduction in work hours. The parameter for No financial concerns difference is given by the coefficient on “Lost employment or reduced 
work hours during pandemic” in Table 5, while the parameter for Financial concerns Difference is given by the sum of the coefficients on “Lost 
employment or reduced work hours during pandemic” and “Lost employment or reduced work hours during pandemic X financial concerns” in 
Table 5 [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b)

https://wileyonlinelibrary.com
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4.3  |  Partial identification results

Finally, we use partial identification methodology to identify the potential range of the causal impact of job loss on psycho-
logical distress, shown in Table 6. As a reminder, in the MTS we assume that people who lose their job will on average have 
higher levels of psychological distress than people do not lose their job, if they had had the same employment outcome. The 
MIV assumption is that, conditional on actual employment status, within a given job loss assignment, lower baseline income is 
weakly monotonically related to higher levels of psychological distress. Starting with the 2016 wave, we can see that under the 
MIV and MTS assumption, the range of causal parameters is wide and crosses zero, such that we cannot with confidence make 
claims in our data that losing a job causes an increase or a decrease in psychological distress.

For the 2018–2020 timeframe, the MIV and MTS assumption interval now only contained in the negative range, although 
the confidence interval does cross zero. Thus, there is some evidence that during the pandemic, the causal impact of a stop in 
working was to decrease the probability of psychological distress.

We next separate the sample into those reporting having financial concerns and those that do not. For the MIV and MTS 
assumption, the bounds and confidence interval on the bounds are strictly negative for those with no financial concerns. Thus, 
we can with reasonable confidence conclude that the causal impact of loss of employment during the pandemic for those with-
out financial concerns among this low-income population was a decrease in the probability of psychological distress, with the 
confidence interval on the bounds spanning a decrease of 6.8–47.4% points. In fact, the MIV assumption is unnecessary for 
this finding for those who lost employment with no financial concerns, as the MTS assumption alone yields a strictly negative 
confidence interval. Examining those with financial concerns, the bounds span zero in every case. Note that the point estimates 
from the linear model are consistent with these results, although the partial identification results tend to be larger in magnitude 
than the linear regression results. For example, for the second column of Table 6, the confidence interval on the MIV and MTS 
assumption of employment loss is −0.519 to 0.164. In Table 4, we find estimates of 0.00798 for those with reduced hours and 
0.0747 for those who lost their job, falling within the higher end of the partial identification confidence interval. For those with 
no financial concerns, Table 5 shows a −0.168 difference or those who had decreased employment versus those who did not, 
in contrast to the MIV and MTS confidence interval here of −0.474 to −0.068. Again, the point estimate from the linear model 
lies within the confidence interval but near the top of the range.

5  |  DISCUSSION

In this study, we examine the relationship between job loss and psychological distress during the early weeks of the COVID-19 
pandemic among a low-income, predominantly African American population in Pittsburgh, PA. We contrast these results 
among the same population a few years prior to the pandemic. Our analyses of the population found that moving to unemploy-
ment was associated with higher levels of psychological distress, mirroring the literature. However, our analysis of the same 
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2016 2020
2020, no financial 
concerns

2020, financial 
concerns

Exogenous selection model

  Bounds [0.058, 0.058] [0.086, 0.086] [−0.150, −0.150] [0.101, 0.101]

  CI [−0.070, 0.204] [−0.039, 0.199] [−0.275, −0.014] [−0.002, 0.287]

No monotonicity assumptions (worst case selection)

  Bounds [−0.242, 0.758] [−0.455, 0.545] [−0.422, 0.578] [−0.468, 0.532]

  CI [−0.291, 0.811] [−0.536, 0.607] [−0.530, 0.663] [−0.532, 0.619]

MTS assumption

  Bounds [−0.242, 0.058] [−0.455, 0.086] [−0.422, −0.150] [−0.468, 0.101]

  CI [−0.291, 0.204] [−0.536, 0.199] [−0.530, −0.014] [−0.532, 0.287]

MIV and MTS assumption

  Bounds [−0.242, 0.046] [−0.455, 0.006] [−0.406, −0.158] [−0.468, −0.051]

  CI [−0.291, 0.160] [−0.519, 0.164] [−0.474, −0.068] [−0.527, 0.277]

Abbreviations: CI, confidence interval; MIV, monotone instrumental variable; MTS, monotone treatment 
selection.

T A B L E  6   Partial identification bounds 
on causal impact of job loss
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sample during the early months of the pandemic demonstrated that on average, increases in psychological distress were approx-
imately equivalent among those who lost jobs and those who retained jobs. The change in level of psychological distress was 
similar to that observed among those that moved from working to not working between 2013 and 2016. However, that average 
increase in psychological distress masked a critical heterogeneity based on the experience of financial strain. Those reporting 
financial concerns who lost their jobs had the highest levels of psychological distress, while those that did not have financial 
concerns but also lost their jobs have the lowest levels (not statistically significant).

Finally, using partial identification, we show that during the pandemic there is evidence that job loss caused a decrease in 
the probability of psychological distress among our sample, a pattern not observed in the 2013–2016 data. In particular, we find 
relatively strong evidence that job loss caused smaller increases in psychological distress among those that have no financial 
concerns compared to other workers who kept their jobs and also had no financial concerns, with the confidence interval for 
the causal impact of job loss ranging between 6.8 and 47.4% lower probability of psychological distress. This may be due to the 
perceived dangers of in-person work during the pandemic as well as a perception of job loss during the pandemic being more 
temporary and less stigmatized than in other periods. These findings have relevance to how public policy is shaped both to 
support individuals experiencing psychological distress and the method by which financial and employment aid are delivered 
by the government.

5.1  |  Limitations

In our regression analysis, we are unable to account for omitted variable bias connecting the likelihood of losing employment 
and changes in psychological distress. Examining changes in psychological distress helps control for such factors, but does not 
eliminate omitted variables that may affect both changes in psychological distress and changes in employment, such as changes 
in health status of loved ones (COVID-19 or otherwise) or a divorce. Additionally, we do not account for reverse causality 
outside of the partial identification—individuals who have an increase in psychological distress may be more likely to lose 
their employment due to their psychological distress. However, the primary purpose of this paper is to understand the ongoing 
pandemic among a particularly vulnerable population, and thus the causal impacts underlying those dynamics are not as impor-
tant to understanding what people are experiencing and which groups are at highest risk. Additionally, we implement partial 
identification to put bounds around the causal impact.

Another limitation is the relatively small sample and thus weak power, with under 600 participants in the 2020 timeframe. 
Additionally, financial distress was analyzed as a categorical variable. Having a more continuous measure of financial distress 
would allow for higher power in separating out the moderating impact under investigation and fewer false positives of true 
financial distress. Also, we only examined one potential mechanism (financial distress), but it is possible that there are other 
mechanisms, and future research could investigate these. Additionally, focusing on one geographic area limits the external 
validity of our findings.

Our study also is limited by examining neighborhoods within one specific metropolitan area that may not necessarily be 
generalizable to other predominantly African American, low-income urban neighborhoods. Also, the sample size is relatively 
limited. Additionally, we had attrition rates between waves of around 30%. Nonetheless, we control using attrition weights to 
correct for non-random attrition from the sample.

Despite these limitations, this study has several notable strengths. The panel nature of our data allows us to track within-person 
changes in the probability of psychological distress. From a policy standpoint, quantifying levels of psychological distress can 
inform policymakers as to which groups are under the most distress and in most need of further resources. This facilitates a 
more targeted policy response in providing additional assistance for newly distressed persons. Additionally, from a statistical 
standpoint, our empirical strategy controls for time-invariant characteristics that are likely correlated with both the well-being 
outcomes and employment status. One advantage of our study being limited to one metropolitan area is that we do not need to 
measure and account for differences in the level of the pandemic and for differences in policy across geographies that may be 
difficult to measure. Geographic or place-based policy differences may impact both employment and psychological distress 
without including additional identifying variation for how we should consider people in different employment scenarios being 
affected.

Next, because our sample consists of primarily African American residents from low-income neighborhoods that are likely 
to already be high risk both for negative employment shocks and high psychological distress, they are also of heightened 
concern for public policy. In 2018, our sample's average psychological distress scores in both 2018 and 2020 were above the 
average score for the United States in every year between 1997 and 2011 (Keyes et al., 2014).
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5.2  |  Conclusion

Our results are part of a constellation of new results in the research community that help policy makers understand the impact of 
the pandemic among low-income workers. These findings are critical for understanding psychological distress among a sample 
of low-income workers living in predominantly African American neighborhoods during the pandemic, as well as potential 
ways to address these outcomes. Given the additional stress of working, at least during times of heightened virus exposure in 
the workplace, we find that losing a job may actually decrease psychological distress if the individuals are financially secure. 
Thus, a major concern of meeting these particular mental health needs of this population is connected to income, and less to 
short-term employment solutions. Our study suggests that public policy aiming to mitigate the detrimental impacts on psycho-
logical distress due to COVID-19 or policies in response to the pandemic should include a focus on those that have low income, 
and in particular, those that are both financially vulnerable and have lost their jobs. Policies that protect employment will not 
be as effective during the pandemic in mitigating increases in psychological distress as policies that provide direct financial 
support, and not require work. This is in contrast to the effect of job loss while not in a pandemic, both according to our findings 
here and to prior research. These findings may be specific to the early pandemic, both given the uncertainty around exposure 
risk by working in person and uncertainty about whether job loss would be temporary (lasting a few weeks or month) or more 
long-term or permanent. Further research could follow-up longer term to examine the extent to which the findings in this paper 
persist over a longer time period.

The low-income African American neighborhoods in Pittsburgh where our cohort lives is not dissimilar from communities 
in other metropolitan areas in the United States, and there may be lessons applicable to these other communities. Policymakers 
should work in, for, and with these neighborhoods to increase financial assistance the number of case workers for mental health 
clinics, and potentially to relax regulations surrounding who qualifies for financial and health benefits. Based on our results, 
these targeted policies will improve the psychological wellbeing of local residents. It is unclear when this population will 
recover from the pandemic, both in terms of employment and in terms of psychological distress. Both the financial and mental 
recovery may not happen at the same time (Huijts et al., 2015). However, smart policy can best position these communities to 
have a more effective and meaningful recovery.
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ENDNOTES
	 1	 Authors' calculations using COVID-19 Dashboard by the Center for Systems Science and Engineering at Johns Hopkins University (2020).
	 2	 During the survey time period, COVID-19 infection rates were very low in Pittsburgh. A question around COVID-19 diagnosis was introduced 

about three-quarters of the way through data collection; of the one quarter of the sample asked, only two respondents reported having COVID-19. 
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Given our high level of missing data on that question and the low rate of infection at this time, we do not include a control for this in later regression 
analysis.
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