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Abstract: Titanium is a biocompatible material that is frequently used for making implantable
medical devices. Nanoengineering of the surface is the common method for increasing material
biocompatibility, and while the nanostructured materials are well-known to represent attractive
substrata for eukaryotic cells, very little information has been documented about the interaction
between mammalian cells and bactericidal nanostructured surfaces. In this study, we investigated
the effect of bactericidal titanium nanostructures on PC12 cell attachment and differentiation—a cell
line which has become a widely used in vitro model to study neuronal differentiation. The effects of
the nanostructures on the cells were then compared to effects observed when the cells were placed
in contact with non-structured titanium. It was found that bactericidal nanostructured surfaces
enhanced the attachment of neuron-like cells. In addition, the PC12 cells were able to differentiate
on nanostructured surfaces, while the cells on non-structured surfaces were not able to do so.
These promising results demonstrate the potential application of bactericidal nanostructured surfaces
in biomedical applications such as cochlear and neuronal implants.
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1. Introduction

Recent advances in the ability to fabricate large-scale topographical nanofeatures have
provided researchers with the opportunity to combat the bacterial contamination of surfaces
using a next-generation technology. This technology promises to provide long-lasting and
durable mechanobactericidal activity without risking the emergence of bacterial resistance [1,2].
Conventional antibacterial surfaces rely on the diffusive release of antibacterial agents with which
the material has been impregnated [3,4]. The leaching of antibiotics and other antimicrobial agents
into the environment poses a considerable risk to non-target organisms and may be contributing to an
increase in the emergence of multi-drug-resistant pathogenic bacteria. Therefore, antibacterial surfaces
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that employ non-diffusive techniques are highly preferred and thus have been the focus of a great deal
of recent investigation [3].

The ability of certain nanoscale structures to kill bacteria via physico-mechanical means has been
investigated over the past few years [5–7]. The first observed mechanobactericidal surface was of
biological origin; the dense nanopillar array on the surface of the wings of the cicada Psaltoda claripennis
were observed to selectively kill bacteria [5,6]. Since this time, many new surface structures have been
designed, largely modelled upon the surface nanoarchitecture of insect wings, plant leaves, and animal
skin [5,8,9]. Such surfaces utilize biomimetic nanoarchitecture in order to achieve regular arrays of
nanoscale pillars that are capable of delivering a lethal mechanical force to bacterial cell membranes
coming into contact with the surface.

Resistance to bacterial contamination is of particular importance for the manufacture of
orthopaedic implants. Nanoengineering of titanium and titanium alloys has been performed in
order to generate surfaces possessing nanotopographies that are not only antibacterial, but also display
biocompatibility towards human cells [10–12]. Considerable progress in implant technologies over
the last decade has demonstrated the significance of micro-structured topographies which are able to
guide cell growth and tissue development. These surfaces also have the ability to control cell migration
and alignment [10–12], yet currently the impact of the surface nanoscale topographical features on
the growth of mammalian cells is only an emerging area of research, and hence very little is known
on this topic. In addition, it is important to proceed with cell-surface interaction investigations in a
standardised manner which accounts for superficial modifications of the biomaterials and modification
to the culture conditions, all of which may have an impact on the response of cells grown on the
studied materials, ensuring greater accuracy of the measurements obtained [13]. Mimicking the surface
nanoarchitecture of the dragonfly, hydrothermally etched titanium surfaces have been shown to possess
selective bactericidal activity while enhancing the attachment and proliferation of primary human
fibroblasts [2]. Another study has shown that the titanium dioxide nanowire arrays inspired by cicada
wing surfaces can also be selectively bactericidal, but are capable of guiding human osteoblast-like
cell proliferation depending on the presence of a distinct nanostructure [14]. These studies provide
examples of the ability of nanostructured titanium surfaces to resist bacterial contamination yet provide
a biocompatible scaffold for the attachment and proliferation of mammalian cells.

Pheochromocytoma (PC12) cells are a commonly studied representative of a neuronal cell line
which is often used in in vitro studies to examine the degree of differentiation and neurotoxicity
commonly associated with neurodegenerative diseases [15,16]. Under common laboratory culture
conditions, PC12 cells adhere poorly to culture flasks and prefer to grow while floating in cell
aggregates [17]. Therefore, to encourage cellular attachment, tissue culture surfaces are frequently
functionalised with a protein. Once adhered to a substratum, PC12 neuron-like cells display growth,
proliferation, differentiation, and development of neurite outgrowths [15].

While the presence of micro-scale topographical features on substrata are known to enhance cell
attachment [18–20], the influence of these bactericidal nanostructured surfaces on the cell behaviour
has not been investigated to the same extent, and therefore this study was aimed to fill this gap in
existing knowledge. The results demonstrate that mechanobactericidal nanostructures generated on
the surface of commercially pure grade titanium can promote the attachment of PC12 cells and enhance
the extent of cell differentiation. The cell attachment behaviour on the nanostructured surfaces was
compared to that obtained on non-structured titanium surfaces coated with poly-L-lysine.

2. Materials and Methods

2.1. Preparation of As-Received and Hydrothermally Etched Titanium Discs

Titanium rods, 1 cm in diameter, were cut into 2 mm billets using a Secotom 50 automatic
grinder (Struers, Milton, QLD, Australia). Prior to hydrothermal treatment, Ti discs were polished
with silicon carbide grinding paper (grit size 1200) and cleaned ultrasonically in MilliQ water,
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100% ethanol, 100% acetone, and finally 50% ethanol for 6–8 min each, respectively. This cleaning
process was performed to remove organic and inorganic contaminants produced during polishing
steps. Afterward, cleaned and polished Ti discs were dried at 37 ◦C overnight.

Hydrothermal treatment (HTE) of the as-received (AR) titanium billets was performed by
immersion in 1 M KOH solution in a Teflon container as described elsewhere [2]. The resulting samples
were cleaned with 75% ethanol and sterilised under UV radiation for 30 min prior to experiments
being undertaken.

2.2. Culturing and Seeding of PC12 Cells

The pheochromocytoma cells (PC12) were purchased from the American Type Culture Collection
(ATCC, Manassas, VA, USA)) and were cultured in complete Gibco™ RPMI medium (Thermo Fisher
Scientific, Waltham, MA, USA) supplemented with 10% Gibco™ horse serum (HS, Thermo Fisher
Scientific, Waltham, MA, USA), 5% Gibco™ foetal bovine serum (FBS, Thermo Fisher Scientific,
Waltham, MA, USA), and 1% Gibco™ penicillin/streptomycin (PS, Thermo Fisher Scientific, Waltham,
MA, USA) at 37 ◦C and 5% CO2 in a 95% humidified incubator. The medium was changed every
two days and passaged accordingly when cell confluence reached 90%.

For each independent experiment, PC12 cells were seeded at a density of 10,000 cells per 100 µL
on AR-Ti and HTE-Ti samples. After 1-, 5-, and 7-day incubation periods, the samples were prepared
for imaging as described in the following sections. Cell proliferation and total protein count assays
were performed after 1 day of incubation to study the attachment patterns. All experiments were
approved under the Swinburne Biosafety Project 2014/SBC01.

2.3. Cellular Morphology

Scanning electron microscopy (SEM) was used to assess the cell morphology following incubation
on AR and HTE Ti surfaces. Prior to SEM analysis, the cells were fixed with 2.5% glutaraldehyde
for 25 min. The cells were then dehydrated by passing through a 30%, 50%, 70%, and 100% graded
ethanol series for 15 min each. Before imaging, samples were gold sputtered using a NeoCoater
MP-19020NCTR (JEOL, Tokyo, Japan). SEM images were taken using a field emission SEM (FESEM)
SUPRA 40VP (Carl Zeiss, Jena, Germany) at an accelerating voltage of 3 kV at magnifications of
10,000× for AR and 2000× for HTE samples.

2.4. Immunohistochemistry

The PC12 cells were incubated with the Ti substrate for 1 day. After this time, the samples
were initially fixed with 4% paraformaldehyde for 15 min, permeabilised in 0.1% Triton X for 5 min
then blocked with 1% Bovine Serum Albumin (BSA) for 60 min. Image-IT® FX Signal Enhancer
(Invitrogen, Carlsbad, CA, USA) was also used during the fixation stage to enhance the subsequent
fluorescent signals. Samples were then treated with a primary anti-vinculin antibody (Sigma, St. Louis,
MO, USA) overnight, followed by goat anti-mouse secondary antibody conjugated with Alexa Fluor
594 (Invitrogen). Actin filaments were visualised by staining the cells with Alexa Fluor 488 conjugated
phalloidin (Invitrogen). Cell nuclei were labelled using TO-PRO3 (Invitrogen). To study the extent
of cell differentiation after 5 and 7 days of incubation, the anti-nestin antibody (Sigma) was applied
as the primary antibody. Samples were then imaged using a Fluoview FV10i microscope (Olympus,
Tokyo, Japan) at 60× magnification.

2.5. Cell Proliferation

Cell proliferation was determined using the CellTiter 96® Aqueous One Solution Cell Proliferation
Assay (Promega, Madison, WI, USA). Tetrazolium was added to the PC12 cell culture at a 10% ratio of
the final volume and incubated for 90 min at 37 ◦C and 5% CO2. This allowed for the reduction of
MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) to
formazan, resulting in the formation of a coloured precipitate (purple). The absorbance was recorded
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at a wavelength of 490 nm using a FLUOstar Omega microplate reader (BMG LABTECH, Thermo
Fisher Scientific, Waltham, MA, USA).

2.6. Protein Concentration of PC12

Total protein concentrations were determined using the bicinchoninic acid protein (BCA) assay
(Sigma-Aldrich, St. Louis, MO, USA). The PC12 cells were lysed with 150 µL of protein lysis reagent
(Sigma-Aldrich, NSW, Australia) and incubated for 15 min at 25 ◦C. After incubation, the cells were
spun down at 1300 rpm for 5 min at 25 ◦C, then 25 µL aliquots of the supernatant were placed on a
96-well plate (Sarstedt, Germany) together with 200 µL of BCA reagent (bicinchoninic acid solution
and copper (II) sulphate pentahydrate 4%). The sample was then incubated for 30 min at 37 ◦C and the
absorbance was recorded at 562 nm using the FLUOstar Omega micro plate reader (BMG LABTECH).

2.7. Cell Viability

Cellular viability of PC12 was achieved by labelling them with the LIVE/DEAD
Viability/Cytotoxicity Kit (Invitrogen), which is composed of calcein AM and ethidium homodimer-1
for live cell and dead cell staining, respectively. Viable cells were quantified based on the confocal
imaging data, expressed as the percentage of non-viable cells over the total population.

2.8. X-ray Photoelectron Spectroscopy (XPS)

An X-ray photoelectron spectroscopic (XPS) analysis was performed using a Thermo Scientific
K-alpha X-ray photoelectron spectrometer (Thermo Fisher Scientific, Waltham, MA, USA), equipped
with a monochromatic X-ray source (Al Kα, hν = 1486.6 eV) operating at 150 W. The spectrometer
energy scale was calibrated using the Au 4f7/2 photoelectron peak at a binding energy (BE) of
83.98 eV. During analysis, the samples were flooded with low-energy electrons to counteract any
surface charging that may occur. The hydrocarbon component of the C 1s peak (BE = 284.8 eV) was
used as a reference for charge correction. Photoelectrons emitted at an angle of 90◦ to the surface
from an area of 700 × 300 µm2 were analysed with 160 eV for survey spectra and then with 20 eV
for region spectra. Survey spectra were recorded at intervals of 1.0 eV/step, while the region spectra
were taken at intervals of 0.1 eV/step. The Shirley algorithm was used to measure the background
core level spectra, and chemically distinct species in the high-resolution regions of the spectra were
resolved using synthetic Gaussian–Lorentzian components after the background was removed using
the Thermo Scientific Avantage Data System software (Thermo Fischer Scientific, Waltham, MA, USA).
High-resolution scans were performed across each of the C 1s, O 1s, Ti 2p, K 2p peaks.

2.9. X-ray Diffractometry (XRD)

XRD (Bruker D8 Advance) was performed under ambient conditions to determine the degree of
crystallinity of the Ti samples. The samples were scanned over a 2θ range of 30–85◦ at a scanning rate
of 1 degree per minute using Cu- Kα radiation (λ = 0.15406 nm).

2.10. Scanning Electron Microscopy

High-resolution electron micrographs of Ti discs were recorded using a field emission SEM
(FESEM; ZEISS SUPRA 40 VP, Oberkochen, BW, Germany) at 3 kV and 75,000× magnification. To assess
the cell morphology of bacteria, titanium discs with adherent bacteria were sputter-coated with gold
using a Dynavac CS300 prior to imaging. Characterisation of the surface nanostructure (e.g., edge
density, aspect ratio, and tip diameter) was performed using Image J. The colour threshold for binary
SEM images was adjusted and the particles were then analysed. The particle analysis allowed an area
distribution to be obtained, allowing the determination of the average edge density of the tips per
square micron.
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2.11. Atomic Force Microscopy (AFM)

AFM was used to study the topographical features of the surface at the nanoscale level using
an Innova scanning probe microscope (Veeco, Bruker, Billerica, MA, USA) followed by a roughness
analysis. The measurements were performed in tapping mode in air to minimise any damage to the tip
from the interaction between tip and sample surface. The silicon cantilever used in the tapping mode
(Cont20A, Veeco Probes) had a spring constant of 0.9 N m−1 and resonance frequency ranging between
18 kHz and 24 KHz. All samples were scanned over a 1 × 1 µm2 area to perform a roughness analysis
of the surface. To study the surface topography, various surface roughness parameters—average
roughness (Sa), root-mean-square roughness (Sq), maximum peak height (Smax), skewness (Ssk),
and kurtosis (Sku)—were calculated using Gwyddion data processing software, and are presented in
Table 1 [21]. The results obtained were expressed in terms of their mean values and the corresponding
standard deviations following the commonly used protocol [22,23].

Table 1. Surface chemical, topological, and physico-chemical characteristics of as-received and
nanostructured titanium surfaces obtained by X-ray photoelectron spectroscopy (XPS), atomic force
microscopy (AFM), and water contact angle measurements. AR: as-received; HTE: hydrothermal treatment.

Samples
Chemical composition (%) Wettability AFM (1 × 1 µm2)

C O Ti K Water Contact
Angle (◦) Sa (nm) Sq (nm) Ssk Sku

HTE 13.5 ± 0.6 56.7 ± 0.5 22.7 ± 0.2 7.3 ± 0.1 23.1 ± 4.3 26.5 ± 3.8 33.9 ± 5.6 −0.2 ± 0.1 0.2 ± 0.1
AR 25 ± 0.3 48 ± 0.5 27 ± 0.3 27 ± 0.3 58.9 ± 4.8 6.2 ± 2.5 8.8 ± 3.9 0.1 ± 0.9 2.5 ± 1.1

2.12. Wettability

Surface wettability measurements were conducted using the sessile drop method to measure
the static contact angles of MilliQ water on titanium discs. An FTA1000 (First Ten Ångstroms Inc.,
Portsmouth, VA, USA) instrument was used to measure each water contact angle. An average of
at least five measurements was determined for each Ti disc. Each measurement was recorded in
50 images in 2 s using a Prosilica GT camera (Allied Vision, Exton, PA, USA) and the contact angle was
then determined using the FTA Windows Mode 4 software.

2.13. Statistical Analysis

Statistical data processing was conducted using the Statistical Package for the Social Sciences,
SPSS 21.0 (SPSS, Chicago, IL, USA). Results are presented as the mean ± standard deviation.

3. Results and Discussion

3.1. Surface Characterisation

The nanostructured Ti surfaces were fabricated using the established technique [2].
Alkaline hydrothermal reactions are commonly used to form nanostructures on titanium because of
the reliable nature of the process in fabricating a wide array of titanium dioxide structures, including
nanotubes, nanowires, and nanobelts [24]. Hydrothermally etched titanium surfaces were characterised
using standard microscopy techniques. SEM micrographs highlight the differences between the AR-Ti
and HTE-Ti surfaces on the nanoscale (Figure 1A). HTE-Ti surfaces possessed a network of dense
nanoscale features. The change in the surface characteristics resulting from the hydrothermal treatment
was quantitatively analysed using AFM. A small (1 × 1 µm2) scan area was required to visualise the
nanoscale changes to the unmodified Ti as a result of the hydrothermal etching. The comparative
surface roughness parameters, including average roughness (Sa), root mean square roughness (Sk),
skew (Ssk), and kurtosis (Sku), are presented in Table 1. These conventional surface roughness
parameters indicate that a four-fold increase in surface roughness resulted from the hydrothermal
etching process (AR-Ti Sa = 6.2 ± 2.5 and HTE-Ti Sa = 26.5 ± 3.8 nm). This finding is confirmed by the
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3D reconstruction of the AFM scans and the associated line profiles (Figure 1B, C). The height of the
nanoscale structures can be seen to vary considerably.

Figure 1. Surface topographic characterisation of as-received and nanostructured titanium. (A) SEM
images of the surfaces of AR (right) and HTE Ti (left) (scale bar = 400 nm). Insets are images taken
at 5000× (scale bar = 2 µm). (B) Typical 3D AFM images and (C) corresponding surface profiles of
AR and HTE Ti surfaces over 1 × 1 µm2 scanning areas, showing a significant change in surface
nanoarchitecture resulting from the hydrothermal treatment.

The surface chemical analysis of the AR and HTE Ti surfaces confirmed the formation of titanium
dioxide (TiO2) nanofeatures. XPS was used to define the chemical composition of both surfaces.
High-resolution scans of the Ti 2p region revealed that the surface nanotopography (post-processing)
was predominantly TiO2, while the X-ray diffractograms provide confirmation of a surface with
enhanced crystallinity, evidenced by an increase in the anatase (A) phase (Figure 2). No significant
differences were observed in the surface chemistry of the AR and HTE-Ti samples. The hydrothermal
etching of the Ti substrata resulted in an increase in the surface wettability, decreasing the water contact
angle from 58.9◦ to 23.1◦. This increased degree of surface wettability is most likely a result of the
formation of nanostructures on the Ti surface [25].

The physical and chemical characteristics of a surface are particularly important in ensuring
the successful biointegration of an implant material, as these two factors directly influence the
initial interactions between human tissue and foreign material being implanted into the body [26].
Surface chemistry, in particular, determines the adsorption of protein from bodily fluids. Of the
hydrothermally-modified Ti surfaces used in the present study, cells were primarily exposed to
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titanium dioxide, and the crystalline structure—as identified by XRD—was mostly anatase (Figure 2).
Surface chemical characteristics between the non-structured control and hydrothermally-treated
surfaces did not vary significantly enough to comment on the influence of surface chemistry on the
proliferation and differentiation of PC12 neuron-like cells.

Figure 2. Surface chemistry and crystallinity characteristics of titanium surfaces. (A) XPS spectra of
Ti 2p, and O 1s for the as-received (right) and HTE (left) titanium substrata. (B) X-ray diffractograms
demonstrating the crystalline phases present on as-received (right) and HTE (left) substrata.

3.2. The Proliferation of PC12 Cells on Titanium Surfaces

The impact of nanostructures on the attachment and proliferation of mammalian cells on surfaces
has been well-documented [18–20]; however, very little understanding has been obtained regarding
the nature of the interaction taking place between neuron-like cells and the modified titanium surfaces
possessing bactericidal nanostructures. As previously stated, PC12 cells adhere poorly to the smooth
surfaces of culture flasks, preferentially growing as cellular aggregates in suspension [17]. To encourage
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cellular attachment onto the surface of tissue culture flasks, they are often functionalised with protein,
such as collagen. Only once attached to a substrate are the PC12 cells able to proliferate over the
surface in a differentiated form [27].

To determine the mechanisms by which the PC12 cells underwent proliferation and differentiation
on the HTE-Ti surfaces, the PC12 cells were seeded onto both the nanostructured and non-structured
substrata and visualised after 1, 5, and 7 days of incubation. The nanostructured Ti surfaces were not
coated with protein in order to effectively determine their suitability as substrata for initial anchorage.
After day 1, analysis of the SEM and corresponding confocal laser scanning microscopy (CLSM)
images showed that the PC12 cells were successfully attached onto the surface (Figure 3). At day 5,
the PC12 cells exhibited a change in morphology, with the beginnings of neurite outgrowths being
evident, which is an indication of successful differentiation. At day 7, the PC12 cells exhibited a
large neurite growth, extending over the nanostructures. In contrast, the PC12 cells seeded onto the
non-structured AR surfaces attached and proliferated over the surface, but failed to differentiate and
produce neurite outgrowths, even in the presence of nerve growth factors (NGFs), retaining their
rounded morphology. The expression of nestin—the type VI intermediate filament protein that is
produced in nerve cells [28,29]—can be seen in the CLSM images (stained red) at day 5 and 7 only
for the differentiated cells on the HTE-Ti surfaces. It is evident that the nanostructures present on
the HTE-Ti substrates provided focal adhesion points for the neuron-like cells to attach and provide
further directional cues for growth and differentiation. The results presented here provide strong
evidence as to the biocompatibility of the nanostructured Ti surfaces, with the surface nanostructures
clearly affording the surface characteristics that are beneficial for the growth and proliferation of nerve
cells. Such surfaces are suitable for use in implant applications without the need for additional surface
coatings to encourage the attachment and differentiation of neurons.

Figure 3. PC 12 cell morphology on HTE and AR Ti surfaces. The PC 12 cells were only able
to differentiate on the surfaces of the nanostructured substrata in the presence of nerve growth
factors (NGFs). No differentiation was observed on the non-structured AR surfaces. Expression of
nestin was observed on the differentiated PC12 cells grown on the HTE-Ti substrates over a 7-day
period. Immunohistochemical staining (nestin, red) of the PC12 cells showed that the cells could be
differentiated on the surface of the nanostructured substrates. The cells exhibited an enhanced neurite
elongation and expression of nestin, as seen on days 5 and 7. The PC12 cells grown on the AR surfaces
were not observed to differentiate (scale bar = 3 µm). Actin (green) and vinculin (red) were labelled on
day 1 to enable the determination of cell attachment patterns.
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The viability of PC12 cells attached onto nanostructured substrata was estimated by applying a
range of qualitative and quantitative bioassays. Live/dead staining yields two-colour discrimination
of the population of live and dead cells. Green-fluorescent calcein-AM indicates the presence
of intracellular esterase activity, whereas red-fluorescent ethidium homodimer-1 indicates loss of
membrane integrity. Fluorescent micrographs in Figure 4A show the proportion of live (green) and
dead (red) cells on the HTE and AR substrata. The HTE-Ti surfaces supported the attachment and
growth of neuron-like cells, following one day of incubation. In similarity with the smooth control,
the numbers of dead cells were negligible (7.4% and 2.0%, respectively). MTS cell proliferation and
viability assays (Figure 4B) give a quantitative measure of metabolically-active cells, and showed
that the cells attached to all substrata remained viable for the maximum 1-week incubation period.
Absorbance readings of the reduced MTS compound highlighted that the surface modification
process provided a substratum that actually encouraged cellular proliferation, with increased levels
of formazan being present in the culture wells containing the PC12 cells on HTE-Ti; however, no
significant difference was detected in the total protein concentration for cells coming into contact
with the nanostructured and non-structured substrata. Finally, in Figure 4C, neurite growth also
serves to demonstrate the health of attaching nerve cells, with measurements of neurite outgrowths
at 7 days showing that ~30% of the cells exhibited growths of 40–60 µm in length, whereas those on
non-structured surfaces did not produce growth extensions at all and failed to differentiate, which is
typical for these cells on surfaces not coated with protein.

Previously, it was demonstrated that osteoblast-like cells responded to HTE-modified Ti surfaces
through an enhanced cellular attachment and proliferation compared to non-structured titanium
substrata [25]. On similar surfaces, primary human fibroblasts were shown to successfully attach
and proliferate, with the surface providing sufficient anchorage points and cues for enhanced growth
and elongation of filopodia [2]. Furthermore, the behaviour of mesenchymal stem cells (MSCs) on Ti
surfaces fabricated by the same method as used in this study was also observed [30]. Significantly,
compared with non-structured Ti substrata, MSCs cultured on HTE-Ti substrata displayed significantly
higher proliferation and differentiation levels of alkaline phosphatase and osteocalcin after 7- and
14-day cultures, respectively. Often, the biocompatibility of titanium implants is studied using
oral-derived cell lines due to the heavy use of titanium to treat dental caries [31–33]. Upon its
placement in the jaw, a dental implant must encounter osteoblasts from the bone, epithelial cells and
underlying fibroblasts. Therefore, in a recent systematic study of human gingival fibroblasts, epithelial
cells, and osteoblasts grown on alkali-hydrothermally etched Ti, it was shown that the osteogenic
activity of osteoblasts was enhanced, and the adhesion activity of human epithelial cells and fibroblasts
was promoted as compared to smooth surfaces [31]. These results, and results obtained in the current
study, suggest that the nanostructured titanium substrata have great potential for inducing growth
and differentiation in multiple cell lines, including osteoblasts and neurons, and that the approach
presented here may be exploited to fabricate titanium-based implants.

Enhanced osseointegration has frequently been observed in cases where modified Ti substratum
have been implanted into an animal model, and under conditions where the Ti implants are exposed
to normal bodily fluids and proteins [34–36]. A study investigating the implantation and response
of a modified Ti surface possessing titanium dioxide nanorods in rabbit femurs achieved better
osseointegration and higher rates of bone tissue apposition of the nanostructured Ti, compared
to classically treated (acid etched, grit blasted) micro-rough Ti surfaces [34]. Other studies have
demonstrated the significantly increased primary and secondary stability of nano-modified titania
implants and increased new bone formation [37,38]. More interestingly, although it has been confirmed
in vitro, in vivo models have also established the influence of the shape of the nanostructures in
enhancing osseointegration [39,40]. Over a range of specific nanomorphologies investigated in vivo in
rats, nanoleaves—being a network of vertically aligned, non-periodic “leaf-like” structures—promoted
increased osteoblast cell proliferation, alkaline phosphatase activity, and collagen synthesis with
reduced inflammatory responses over other shapes investigated. An inflammatory cytokine analysis
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of both chronic and acute cytokines revealed no significant increase due to the presence of nanoscale
features as compared to smooth controls [40]. The similar Ti nanomorphologies presented in the
literature—which have been studied in vivo—implies that the Ti surface modifications achieved in
this study will also promote both antibacterial activity and osseointegration as an implant, although
here we have tested neuronal response to the surface, which is the first study of its kind according to
our knowledge.

Figure 4. PC12 cell viability and differentiation on HTE and AR Ti surfaces. (A) Confocal laser
scanning micrographs showing viable (green) and nonviable (red) bacterial cells on the HTE- Ti and
AR-Ti surfaces. The majority of PC12 cells still survived on both surfaces after one day of incubation,
and the mechanobactericidal surface of HTE-Ti did not have any killing effect towards PC12 cells
(scale bar 50 µm). (B) Day 1, PC12 cell attachment and proliferation on HTE-Ti and AR surfaces. MTS
(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) results
suggest that the HTE-Ti facilitated cell attachment. No differences were detected in the total protein
content (BCA, bicinchoninic acid protein assay) of the two samples tested. (C) PC12 cell differentiation
on HTE-Ti. PC12 cells present on HTE-Ti surface exhibited enhanced neurite growth for 7 days.
The cells grown on the AR surfaces were not able to undergo differentiation.

The biocompatibility of materials is a prerequisite for the manufacture of orthopaedic implants
and for use in medical devices. Although Ti surfaces are chemically inert, surface suitability
and functionality can be greatly altered through changes to surface chemistry or topography.
Current approaches to the surface modification of implants do not make the distinction between
mammalian and bacterial cells, and may easily discourage or encourage the attachment and growth of
both. Micro-nanoscale modification of surfaces can also have a differential impact on the formation
of focal adhesion points for mammalian cells, even though the surface is “antibiofouling” in nature.
With this in mind, the design and fabrication of a bactericidal medical implant material that can support
the proliferation and differentiation of neuron cells is particularly significant. Moreover, because the
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surfaces in this study capitalise on the mechanical interactions between cells and surfaces and because
they can be easily fabricated using a simple, scalable process, the translation of this research on
hydrothermally treated titanium surfaces into a commercial product should readily be achieved.

4. Conclusions

Commercial-grade Ti was successfully modified to create surfaces with an array of bactericidal
nanofeatures. The effect of the nanostructures on PC12 cells was studied using cell viability assays
and cellular morphology to assess cell–substrata interactions. It was shown that the neuron-like cells
preferred to attach to the HTE-Ti substrata compared to the non-structured surfaces, even without
a pre-coating of poly-L-lysine. Once attached onto the nanostructured titanium surfaces, PC12 cells
demonstrated enhanced proliferation and differentiation. This study therefore confirmed the potential
of nanostructured titanium surfaces to induce PC12 cells differentiation into neurons, without the need
of surface pre-treatments.
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