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Abstract: Introduction: Lung cancer is the leading cause of cancer deaths in the world and is usually
divided into non-small cell lung cancer (NSCLC) and small cell lung cancer. NSCLC is dominant
and accounts for 85% of the total cases. Currently, the therapeutic method of NSCLC is not so
satisfactory, and thus identification of new biomarkers is critical for new clinical therapy for this
disease. Methods: Datasets of miRNA and gene expression were obtained from the NCBI database.
The differentially expressed genes (DEGs) and miRNAs (DEMs) were analyzed by GEO2R tools. The
DEG-DEM interaction was built via miRNA-targeted genes by miRWalk. Several hub genes were
selected via network topological analysis in Cytoscape. Results: A set of 276 genes were found to be
significantly differentially expressed in the three datasets. Functional enrichment by the DAVID tool
showed that these 276 DEGs were significantly enriched in the term “cancer”, with a statistic p-value
of 1.9 × 10−5. The subdivision analysis of the specific cancer types indicated that “lung cancer”
occupies the largest category with a p-value of 2 × 10−3. Furthermore, 75 miRNAs were shown to be
differentially expressed in three representative datasets. A group of 13 DEGs was selected by analysis
of the miRNA–gene interaction of these DEGs and DEMs. The investigation of these 13 genes by
GEPIA tools showed that eight of them had consistent results with NSCLC samples in the TCGA
database. In addition, we applied the KMplot to conduct the survival analysis of these eight genes
and found that seven of them have a significant effect on the prognosis survival of patients. We
believe that this study could provide effective research clues for the prevention and treatment of
non-small cell lung cancer.

Keywords: non-small cell lung cancer; biomarker; microRNA–gene interaction network

1. Introduction

Lung cancer is one of the most common diseases with the fastest increasing mortality
rate and the greatest threat to human health. Lung cancer can be divided into small cell
lung cancer (SCLC) and non-small cell lung cancer (NSCLC). In this study, we focus on
NSCLC because this type is dominant in patients [1]. At present, lung adenocarcinoma and
lung squamous cell carcinoma are the two major histopathological subtypes of NSCLC.
Over 50% of NSCLC patients are diagnosed with stage IV lung cancer when the cancer is
first detected [2]. The median overall survival of these patients ranges from 7–12 months
depending on histology type [3]. It is necessary to understand the molecular mechanism of
NSCLC progression, in order to predict and control this disease as early as possible.

Recently, much attention has been paid to miRNAs, which are small non-coding
RNAs that play key roles in post-transcriptional regulation [4]. They are highly conserved
between different species and are related to a series of basic cell processes. MiRNAs usually
bind to 3′-UTR of the targeted mRNAs to inhibit the translation of targeted mRNAs. In
fact, one miRNA can target a range of different genes with similar functions [5]. Many
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studies have reported the role of miRNAs in the regulation of NSCLC development, such
as miR-224, miR-486 and miR-34a. It is demonstrated that miR-224 is up-regulated and
promotes tumor progression and metastasis in NSCLC [6]. The miR-486 directly targets
components related to insulin growth factor signaling and functions as a tumor suppressor
in NSCLC [7]. The miR-34a is a direct transcriptional target of tumor-suppressor gene
p53 and miR-34a expression is commonly regarded as contributing to tumorigenesis by
attenuating p53-dependent apoptosis in NSCLC patients [8]. The results indicate that
miRNA could be a suitable biomarker for diagnosis of this disease. However, most of
these previous studies do not take the miRNA–gene interaction network into consideration.
Systematic investigation of miRNA–gene interactions in NSCLC is still missing.

In this study, we identified differentially expressed genes and miRNAs in NSCLC
samples. We establish a miRNA–gene interaction network, analyze their connection, and
identify key biomarkers in this disease. We also perform survival analysis on the obtained
biomarkers to verify our results. Based on these results, we can greatly promote the early
prevention and treatment of non-small cell lung cancer.

2. Materials and Methods
2.1. Data Acquirement

The gene expression datasets were downloaded from the National Center for Biotech-
nology Information (NCBI) database. The keyword “non-small cell lung cancer” was
searched in this database and the corresponding GEO datasets were recorded. To make the
results more robust, we filtered the GEO datasets by the following criteria: (1) The dataset
must include enough normal and tumor samples, i.e., total sample number ≥ 10; (2) The
dataset must include enough gene/miRNA expression information. Based on these criteria,
three GEO datasets (GSE18842, GSE101929, GSE29249) were retained for gene expression
analysis, and another three datasets (GSE102286, GSE63805, GSE56036) were obtained for
miRNA analysis.

2.2. Identification of DEG

In order to analyze the differences between normal samples and cancer samples, we
used GEO2R tool [9] to analyze the three datasets (GSE18842, GSE101929, GSE29249) and
obtained the differentially expressed genes (DEGs). The criteria for DEG were shown as
follows: fold change ≥2 and p-value ≤ 0.05. We used the Perl program to summarize and
analyze the differentially expressed genes of the three groups. Venn diagrams were drawn
to better show our results.

2.3. Gene Ontology and Pathway Enrichment Analysis

Gene Ontology (GO) is a unique database which describes the characteristics and
cell location of each gene [10]. KEGG is a database containing a large number of known
metabolic pathways of genes [11]. DAVID is an online biological data tool, which can inte-
grate the information of GO and pathways to analyze gene enrichment [12]. By DAVID en-
richment analysis, we obtained the function group and keyword classification of our DEGs.

2.4. Genomic Specificity Analysis

ShinyGO is a graphical gene-set enrichment tool for model organisms [13]. We used
ShinyGO to analyze the genomic information of these genes, including the number of
exons, the length of UTR of the gene, the length of gene, etc. The significant differences in
the genomic location were taken out for further analysis.

2.5. Regulatory Network Analysis

The STRING database is a commonly used protein–protein interaction database, which
contains information on most species [14]. We used the STRING database to obtain the
interaction information of DEGs. The interaction datasets are maintained for subsequent
miRNA–gene interaction analysis.
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2.6. Identification of Differentially Expressed miRNA

We obtained the datasets of miRNA expression in the NCBI database. Based on similar
criteria in Section 2.1, three datasets (GSE102286, GSE63805 and GSE56036) were obtained
in this study. Among them, GSE102286 contains 179 available samples, GSE63805 contains
66 available samples, and GSE56036 contains 12 available samples. We used the GEO2R tool
to analyze the differentially expressed miRNA (DEMs) using these criteria: fold change ≥2
and p-value ≤ 0.05. We further used Venn diagrams to show the intersection of the three
datasets.

2.7. Target Gene Analysis of miRNA

The miRWalk [15] is a commonly used software for miRNA target prediction and
the tool was used to predict the interaction between miRNA and genes, using default
parameters. We also used miRTarbase [16] to predict the target genes of miRNA. In
addition, we applied miRPathDB [17] to analyze the metabolic pathway of target genes.

2.8. miRNA Gene Regulatory Network Analysis

The gene–gene interaction network obtained in Section 2.5 and the miRNA–gene
interaction network obtained in Section 2.7 were integrated to construct a full miRNA–gene
network. The software Cytoscape [18] was applied to visualize and analyze the network.
Using the plugin Centiscape provided by Cytoscape, the node attributes in this network
were obtained. Nodes with high network centrality were selected for subsequent analysis.

2.9. Verification Analysis by Independent Dataset

The nodes with high network centrality were selected for further verification. The
TCGA datasets were used as third-party independent datasets to verify our results, which
contain the next-generation sequencing data of all types of cancers. GEPIA server [19],
which integrated the TCGA dataset analysis, was applied to analyze the gene expression
information of our selected genes. In addition, the KMplot [20] was utilized to conduct the
survival analysis of these genes, i.e., to check if these genes show a significant impact on
the survival of NSCLC patients.

3. Results
3.1. Differentially Expressed Genes in NSCLC

We searched the GEO dataset of non-small cell lung cancer on the NCBI website and
found three available datasets (GSE18842, GSE101929, GSE29249). The GEO2R tool was
used to analyze these datasets to identify DEGs. We identified 628 DEGs from GSE29249,
3262 DEGs from GSE18842, and 3135 DEGs from GSE101929. Because GSE29249 has
relatively few samples, the number of genes obtained is much smaller than the other two
data sets (Figure 1). Through Venn diagram analysis, a set of 276 genes were found to
overlap in these three datasets (Figure 1A).
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Figure 1. Analysis of differentially expressed genes in non-small cell lung cancer. (A) Venn diagram
of differentially expressed miRNAs in three datasets; (B) Volcano plot of gene expression in GSE29249
dataset; (C) Volcano plot of gene expression in GSE18842 dataset; (D) Volcano plot of gene expression in
GSE101929 dataset. The red dots indicated up-regulated, while the blue dots indicated the down-regulated.

3.2. Functional Enrichment Analysis of DEG

After obtaining DEGs, we performed the GO and KEGG enrichment to investigate
the biological function of these 276 DEGs by using the DAVID database. The term “pos-
itive regulation of transcription from RNA polymerase II promoter” (GO:0045944) was
significantly over-represented in our selected DEGs with a p-value = 6.2 × 10−3 in bio-
logical process, which indicated that these DEGs may function as transcription factors
to regulate the downstream genes (Table S1). Furthermore, the term “Calcium Ion Bind-
ing” (GO:0005509) was significantly enriched in our DEGs with a p-value = 1.5 × 10−5 in
molecular function analysis, which suggested that some of these DEGs could link to the
tumor-suppressing pathway.

By GAD disease enrichment analysis of these DEGs, we found 86 (31.2%) genes could be
significantly enriched in the keyword “Cancer”, with a significant p-value = 1.9× 10−5 (Table 1).
Detailed investigation of specific cancer types showed that the keyword “Lung cancer”
occupied the largest proportion of different cancer types. Furthermore, 22 DEGs were
significantly enriched in the keyword “Lung cancer”, with a p-value = 2.0 × 10−3. These
results indicated that our identified DEGs are very likely related to NSCLC progression.
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Table 1. Functional enrichment analysis of DEGs by DAVID.

Category Term Gene Number Count Percent (%) p-Value

GAD_DISEASE_CLASS CANCER
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3.3. Genomic Specificity Analysis by ShinyGO

We applied ShinyGO to analyze the genomic specificity of these DEGs when compared
with the whole genome. We compared four aspects: number of exons, number of transcript
isoforms per gene, genome span and 3′-UTR (untranslated region) length (Figure 2). Using
the chi-squared test, the number of exons showed a significant p-value (0.0074) when
comparing DEG with other genes in the genome. Besides, the number of transcript isoforms
per gene was significantly different from the expected value with a p-value = 0.00013. These
results indicated that our identified DEGs could have strong transcription characteristics
with other genes, which might be involved in the cell proliferation of NSCLC patients. For
the genome span analysis, we observed an extremely low p-value (9.9 × 10−6), while for
3′-UTR length comparison, we observed a relatively low p-value (0.045). Because 3′-UTR
was the specific binding region of miRNA in the targeting gene, we suggest that the associated
UTRs of these genes may alter the expression in the disease pathogenesis in NSCLC.

3.4. PPI Visualization of DEGs

The PPI network was observed with 276 DEGs using the STRING database. A close
relationship was visualized among these DEGs in this network. Using the Hidden Markov
Model [21], these DEGs could be divided into three different groups (Figure 3A). It was
shown that there was a highly associated relationship among BIRC5, MELK, CDC20,
CCNA2 and EZH2 by node degree analysis. We suggested that there could be a clear
positive correlation among these five gene clusters. To highlight the major regulation nodes
in these DEGs, the genes were selected by STRING database and shown in Figure 3B. In
addition, a strong association was indicated in other gene clusters (ICAM1, IL6, CDH5 and
PECAM1). Two genes (EZH2 and IL6) were considered as intermediary hubs in these DEGs.

3.5. Identification of DEM

Similarly, three NSCLC datasets (GSE102286, GSE63805, GSE56036) with miRNA
expression were downloaded from the NCBI database. Through GEO2R tools, we found
that 134 miRNAs in GSE102286, 734 miRNAs in GSE63805, and 398 miRNAs in GSE56036
were significantly differentially expressed. Using Venn diagrams, 75 differentially expressed
miRNAs (DEMs) were found overlapping in these three datasets (Figure 4). Although these
datasets were sequenced in different times and different labs, most DEMs in GSE102286
can be found in the other two datasets (GSE63805, GSE56036).
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Figure 2. Genomic specificity analysis compared with the whole genome by ShinyGO. (A) Number
of exons by chi-squared test; (B) Number of transcript isoforms per coding gene chi-squared test.
(C) Transcript length compared with the whole genome; (D) 3′-UTR length compared with the whole
genome. The symbol “*” indicated the significance level of the comparison.

A B

Figure 3. STRING network analysis of identified DEGs. (A) Full network of the DEGs. The different
colors indicate the different groups in this figure. (B) Key part of the network. The colored nodes
indicate the query proteins and the first shell of interactors; the white nodes indicate the second shell
of interactors; the red edges indicate the experimentally determined protein–protein interactions; the
green edges indicate the gene neighborhood of interaction; the black edges indicate the co-expression
of interaction; the yellow edges indicate the text mining of interaction; the blue edges indicate the
gene co-occurrence of interaction.
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Figure 4. Analysis of differentially expressed miRNAs in non-small cell lung cancer. (A) Venn
diagram of differentially expressed miRNAs in three datasets; (B) Volcano plot of gene expression
in GSE63805 dataset; (C) Volcano plot of gene expression in GSE102286 dataset; (D) Volcano plot
of gene expression in GSE56036 dataset. The red dots indicated up-regulated, while the blue dots
indicated the down-regulated.

3.6. DEG–DEM Interaction Prediction

miRWalk is known as an excellent tool for miRNA target prediction, thus this soft-
ware was used to predict and analyze the regulatory interaction between 276 DEGs and
75 DEMs. As a result, 17 DEMs (miRNAs) were identified by miRWalk in the inter-
action. Characteristics of these miRNAs, including interacted DEGs (genes), protein
ID and binding energy, are listed in Table 2. The identified 17 miRNAs were catego-
rized into 13 different families based on the miRNA classification. Four miRNA fami-
lies (miR-199, miR-361, miR-423, miR-574) were observed to have more than one mem-
ber (hsa-miR-199a-5p, hsa-miR-199b-5p; hsa-miR-361-3p, hsa-miR-361-5p; hsa-miR-423-3p,
hsa-miR-423-5p; hsa-miR-574-3p, hsa-miR-574-5p). The binding energy value, which sug-
gests the Boltzmann-weighted probability to form a thermodynamically stable structure,
ranged from −25.6 kcal/mol to −33.4 kcal/mol. Note that a low binding energy value is a
critical parameter to discriminate miRNAs binding to targeted genes. Thus, these identified
miRNAs were probably the true miRNA–gene interactions in NSCLC patients.
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Table 2. DEG–DEM interaction prediction. This table only shows one interaction of one DEM, i.e.,
part of the results. The full table is shown in the Supplementary Materials (Table S2).

No. DEM (miRNA) DEG (Gene) Protein ID
Binding Energy

(kcal/mol)

1 hsa-miR-484 KDELR2 NM_006854 −33.4
2 hsa-miR-574-5p STEAP4 NM_001205316 −33
3 hsa-miR-331-3p LMCD1 NM_001278233 −32.6
4 hsa-miR-324-5p CFLAR NM_001308043 −31.8
5 hsa-miR-423-3p LRRC32 NM_001128922 −31.7
6 hsa-miR-423-5p GPI NM_001289789 −31.2
7 hsa-miR-125a-5p COLEC12 NM_130386 −31
8 hsa-miR-296-5p GRK5 NM_005308 −30.6
9 hsa-miR-361-5p ARHGEF3 NM_001289698 −30.5
10 hsa-miR-574-3p GLIPR2 NM_001287014 −29.5
11 hsa-miR-107 CCDC50 NM_174908 −27.7
12 hsa-miR-342-3p SLC11A1 NM_000578 −27.4
13 hsa-miR-361-3p CXCL12 NM_000609 −27.1
14 hsa-miR-199b-5p MAFF NM_012323 −26.4
15 hsa-miR-199a-5p MAFF NM_012323 −26.3
16 hsa-miR-146b-5p TIMELESS NM_001330295 −25.7
17 hsa-miR-532-5p CSRNP1 NM_001320560 −25.6

3.7. DEM Target Enrichment Analysis

The enrichment analysis of targeted genes of each DEM was conducted using the
miRPathDB database. The targets of five miRNAs (hsa-miR-125a-5p, hsa-miR-331-3p,
hsa-miR-199a-5p, hsa-miR-324-5p, hsa-miR-423-5p) were found to be enriched in the path-
way of “Non-small cell lung cancer” (Table 3). A set of nine genes was identified as
hsa-miR-125a-5p targets, with an extremely low p-value = 1.06 × 10−5. In addition, a total
of 41 genes were identified as putative targets of hsa-miR-423-5p and these genes were
significantly enriched in the pathway of “Non-small cell lung cancer” in WikiPathways
Database [22], with a p-value = 0.023. These results suggest that the identified miRNAs are
highly possible biomarkers in the progression of non-small cell lung cancer.

Table 3. Enrichment analysis of DEM-targeted genes by miRPathDB.

miRNA Database Pathway Targeted Gene Hits Expected Hits p-Value

hsa-miR-125a-5p WikiPathways Non-small cell lung cancer 9 0.997 1.06 × 10−5

hsa-miR-331-3p WikiPathways Non-small cell lung cancer 3 0.156 0.002
hsa-miR-199a-5p WikiPathways Non-small cell lung cancer 4 0.705 0.014
hsa-miR-423-5p WikiPathways Non-small cell lung cancer 41 28.09 0.023
hsa-miR-324-5p KEGG Non-small cell lung cancer 23 13.86 0.046

3.8. Network Analysis of the DEG-DEM Interaction

To identify key genes, the miRNA–gene interaction network was visualized by Cy-
toscape (Figure S1). The DEG and DEM in the network were categorized by their in-
teractions. We analyzed the topology structure attribute, such as degree centrality and
betweenness centrality of the interaction network using the plug-in toolkit Centiscape
inside Cytoscape. Some nodes with higher centrality were selected and were used to
re-draw the core network (Figure 5). The results show that genes and miRNA can form a
relatively independent module, and these modules as a whole may play an indelible role
in the occurrence and development of NSCLC. In addition, based on the degree centrality
of the network and miRNA–gene interaction information of miRTarBase database, we
screened out 13 key genes (AKAP13, ANAX11, CAD, ETS1, GGCT, HHIP, KCNK3, KLF2,
OLR1, PPIL1, SBK1, TWIST1, ZBTB20) and nine key miRNAs (hsa-miR-423-5p, hsa-miR-484,
hsa-miR-331-3p, hsa-miR-125a-5p, hsa-miR-574-5p, hsa-miR-361-5p, hsa-miR-361-3p, hsa-miR-
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199a-5p, hsa-miR-324-5p) (Table S1). These genes and miRNAs could be the hub molecules
in the DEG–DEM interaction network of NSCLC, which need further verification in the
next steps.

NFIA

hsa-miR-125a-5p

LMCD1

GGCT

MYADM

hsa-miR-574-5p

RAB8B

HHIP

MAFF

ZBTB20

hsa-miR-199b-5p

hsa-miR-361-3p

CD34

hsa-miR-199a-5p

hsa-miR-296-5p
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CADM1

hsa-miR-324-5p
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hsa-miR-342-3p

CXCL12

hsa-miR-361-5p

ARHGEF3
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CCDC50

hsa-miR-484
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hsa-miR-532-5p
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BCL6B

CAV2

ITGA8

hsa-miR-146b-5p

SULF1 BRCA1

Figure 5. Network analysis of the interaction network between DEGs and DEMs. This figure only
shows the interaction network of some important nodes. The red triangle represents miRNA; the
green circle represents genes; the gray line represents the interaction. The size of circle (gene) reflects
the degree centrality of the gene, i.e., a larger circle reflects more connections in this gene.

3.9. Validation of Hub Genes Using GEPIA

In the above paragraph, we screened out 13 key genes in Cytoscape. GEPIA website
collected a large number of cancer samples from TCGA database, which could be used to
verify the reliability of selected 13 genes. Results indicated that eight genes (AKAP13, ETS1,
GGCT, HHIP, KCNK3, KLF2, OLR1, PPIL1) showed significant differential expression
between normal samples and NSCLC samples in TCGA database with a p-value ≤ 0.05
(Figure 6). Furthermore, we drew a scatter plot of the expression levels of these 13 genes
for all cancer types. Results showed that the expression levels of OLR1 and HHIP genes in
NSCLC were much higher than in other cancer types (Figure S2), indicating that these two
genes could serve as specific biomarkers in NSCLC progression.

AKAP13 GGCT

OLR1

HHIP

KLF2KCNK3

ETS1

PPIL1

Figure 6. The validation of hub genes by the GEPIA. Here, we only show eight genes with a p-value≤ 0.05.
In this figure, NSCLC is divided into two types: lung adenocarcinoma (LUAD) and lung squamous cell
carcinoma (LUSC). The symbol “*” indicated the significance level of the comparison.
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3.10. Survival Analysis of Hub Genes Using KMplot

Survival analysis is a basic medical research method, which can be used to assess
clinical outcomes for treatment efficiency and disease progression. The KMplot is a useful
tool to conduct the survival analysis for the selected 13 DEGs. We found that 11 genes
(AKAP13, ANAX11, CAD, ETS1, HHIP, KCNK3, KLF2, OLR1, PPIL1, SBK1, ZBTB20)
showed a significant impact on the survival of NSCLC patients with a p-value ≤ 0.05
(Figure 7). Among them, seven genes (AKAP13, ETS1, HHIP, KCNK3, KLF2, OLR1, PPIL1)
satisfy the above-mentioned criteria of both GEPIA and KMplot. We believe that these
seven genes are the critical molecules in the development of NSCLC and can be used as
reliable biomarkers in the early prevention of NSCLC patients.
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4. Discussion

Non-small cell lung cancer (NSCLC) is one of the most common types of lung cancer,
which may resist most radiotherapy and chemotherapy treatments. Currently, biomarker-
targeting therapy is still the first-line therapy for advanced NSCLC patients. It is highly
important to explore the possible mechanisms of NSCLC carcinogenesis and discover
reliable biomarkers for early diagnosis. These biomarkers could serve as novel molecular
targets for predicting the prognosis of NSCLC patients.
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Recently, much attention has been paid to miRNAs, which play a critical role in the
development of various types of cancers. It has been reported that abnormally expressed
miRNAs are found in NSCLC proliferation and metastasis, such as let-7c and miR-218. The
miRNA let-7c, a member of the let-7 family, prevents migration and invasion of NSCLC
cells by degrading oncogene ITGB3 and could be used as a tumor suppressor in this type
of cancer [23]. Furthermore, scientists have reported that overexpression of miR-218 in
NSCLC cells inhibits cell invasion and proliferation by targeting the IL-6 receptor [24].
These results indicate that miRNA dysregulation could be used as an early diagnosis signal
for the detection of NSCLC. However, searching for more effective miRNA-targeting genes
might assist in better understanding the pathogenesis of NSCLC.

In this study, we obtained three miRNA-oriented datasets (GSE102286, GSE63805,
GSE56036) and three gene-oriented datasets (GSE18842, GSE101929, GSE29249) from GEO
database. The miRNAs and genes were screened between NSCLC and adjacent normal
tissues in these six datasets by bioinformatics analysis. A set of 75 DEMs and 276 DEGs
were identified in the corresponding datasets, respectively.

To establish the connection between the 75 DEMs and 276 DEGs, we built a DEM–DEG
interaction information by miRWalk. Fortunately, through analysis of miRNA–gene in-
teractions, we found nine miRNAs could build bridges with 13 genes. By miRNA tar-
get enrichment analysis by miRPathDB, five miRNAs (hsa-miR-125a-5p, hsa-miR-331-3p,
hsa-miR-199a-5p, hsa-miR-324-5p, hsa-miR-423-5p) were found to be enriched in the path-
way of “Non-small cell lung cancer”. Through gene expression analysis by GEPIA and
survival analysis by KMplot, seven genes (AKAP13, ETS1, HHIP, KCNK3, KLF2, OLR1,
PPIL1) were further screened and retained. These genes and miRNAs could be highly
probably used as novel biomarkers for early diagnosis in NSCLC patients. The following
are some examples for detailed description.

Hsa-miR-125a-5p has been previously reported to be downregulated in various lung
cancer types and has been validated to prevent cancer cell progression [25]. Scientists have
demonstrated that abnormal expression of hsa-miR-125a-5p is involved in lung cancer
metastasis by targeting PTPRU and this miRNA is a predictor for patients with advanced
NSCLC. A similar phenomenon has also been discovered towards hsa-miR-324-5p. Sci-
entists have found that hsa-miR-324-5p could be used as a unique miRNA signature for
NSCLC. Overexpression of hsa-miR-324-5p could activate FBXO11 signaling and potentiate
resistance to cisplatin in NSCLC cells [26].

The AKAP13 gene, located in human chromosome 15, is reported to be involved in the
pathogenesis of various cancers, including NSCLC. A previous study reported that AKAP13
protein contributes to loss of E-cadherin and the bronchial epithelial barrier in NSCLC
cells [27]. KCNK3, also known as TASK-1, is expressed in NSCLC cell lines at variable
levels. Inhibition of KCNK3 leads to significant depolarization in these cells [28]. KLF2,
a member of the KLF family, also known as lung Krüppel-like factor, was reported to be
highly expressed in normal lung tissue of embryo and to be essential for later development
of embryonic lung [29]. KLF2 can modulate the expression of many downstream genes by
binding to the GC-enriched regions of gene promoters.

Based on the above analysis, we have high confidence that our identified genes and
miRNAs can be used as novel biomarkers for diagnosis and prognosis of NSCLC. Our
study has important significance for better understanding the development and prognosis
of this disease.

5. Conclusions

We applied a series of bioinformatics tools to analyze the gene and miRNA expression
datasets of NSCLC samples. Through a series of analyses of miRNA–gene interactions,
we screened seven genes and five miRNAs which could be used as novel biomarkers for
diagnosis of this disease. These biomarkers provide useful clues for future research on the
development and prognosis of NSCLC.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes13081480/s1, Figure S1: Full view of the interaction network
between DEGs and DEMs; Figure S2: scatter plot of expression levels of OLR1 and HHIP; Table S1:
Gene ontology enrichment by DAVID; Table S2: full table of DEG–DEM interaction predictions.
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