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Abstract

Preeclampsia is a pregnancy-specific disease that can have serious effects on the health of both mothers and their offspring. Predicting
which women will develop preeclampsia in early pregnancy with high accuracy will allow for improved management. The clinical
symptoms of preeclampsia are well recognized, however, the precise molecular mechanisms leading to the disorder are poorly
understood. This is compounded by the heterogeneous nature of preeclampsia onset, timing and severity. Indeed a multitude of poorly
defined causes including genetic components implicates etiologic factors, such as immune maladaptation, placental ischemia and
increased oxidative stress. Large datasets generated by microarray and next-generation sequencing have enabled the comprehensive
study of preeclampsia at the molecular level. However, computational approaches to simultaneously analyze the preeclampsia
transcriptomic and network data and identify clinically relevant information are currently limited. In this paper, we proposed a control
theory method to identify potential preeclampsia-associated genes based on both transcriptomic and network data. First, we built a
preeclampsia gene regulatory network and analyzed its controllability. We then defined two types of critical preeclampsia-associated
genes that play important roles in the constructed preeclampsia-specific network. Benchmarking against differential expression,
betweenness centrality and hub analysis we demonstrated that the proposed method may offer novel insights compared with other
standard approaches. Next, we investigated subtype specific genes for early and late onset preeclampsia. This control theory approach
could contribute to a further understanding of the molecular mechanisms contributing to preeclampsia.
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Introduction
Preeclampsia (PE) is a hypertensive disorder of pregnancy
and a leading cause of maternal and neonatal mortality
and morbidity globally. Clinically it is associated with
high blood pressure after 20 weeks of gestation, and
proteinuria or end organ damage [1]. PE affects 5–8%
of pregnancies, resulting in complications for both the
mother and her offspring, including fetal growth restric-
tion (FGR), organ damage (liver/kidney/brain) and even
fetal and/or maternal death [2].

Currently, the only definitive treatment for PE is deliv-
ery of the placenta (and the baby) and while originally
thought to resolve soon after birth, the disease is now
known to have long-term ramifications for mothers and

their offspring, including an increased risk of cardio-
vascular disease and diabetes later in life [2]. However,
early detection of pathological changes or identification
of ‘high-risk’ pregnancies could enable early intervention
and management. For example, low dose aspirin given to
women at high risk before 16 weeks of gestation reduces
the risk of PE development [3]. Many other treatments
have been investigated although these often treat the
symptoms of the condition rather than the cause and are
aimed at prolonging pregnancy [4]. One reason for this is
that while the clinical symptoms of PE are well defined,
its precise molecular pathogenesis and origins are not
well understood [5]. This is compounded by the fact that
the heterogeneous clinical presentation of PE generally
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manifests later in gestation, while the molecular triggers
occur much earlier in pregnancy.

PE is a multifactorial condition that varies widely
in severity and is the result of complex interactions
between maternal and fetal genotypes, as well as
environmental factors [6]. This, ultimately, results in
structural placental damage and ischemia, the release
of anti-angiogenic and pro-inflammatory cytokines
into the maternal circulation resulting in endothelial
dysfunction which leads to the clinical manifestations.

To account for the multifactorial origin of PE, math-
ematical and computational models have been used to
evaluate the pathophysiology as well as to identify or
test biomarkers predicting or diagnosing the syndrome.
The combination of maternal characteristics, medical
history, ultrasound and first trimester maternal serum
biomarkers (PlGF and PAPPA) can predict 90% of pregnan-
cies at high risk for early onset PE (EOPE) development
(10% false discovery rate) [7]. As such this approach of
combining clinical and biochemical markers has been
recommended by the International Federation of Obstet-
rics and Gynecologists [8]. This advance in combining
biomarkers with clinical parameters is clinically highly
relevant, as the risk of EOPE can be mitigated if aspirin
is commenced early in these pregnancies [9]. However,
these biomarkers perform poorly for late onset PE (LOPE),
identifying only 40% and therefore there is a great need
to improve prediction of risk in these pregnancies.

In the second and third trimester biomarkers hold
great promise to improve prediction of PE and identify
those potentially at highest risk of adverse maternal or
fetal outcomes [10]. The ratio of sFlt-1 and PIGF can be
used to predict PE development within 4 weeks in women
with the suspected syndrome (24–36 weeks of gestation)
[11] and is validated clinically to rule out the condition
in symptomatic pregnancies [12]. However, this current
approach has limited clinical utility as although they are
able to obtain a high negative predictive value (ability
to identify women who will not develop PE), they often
suffer from poor positive predictive values and cannot
be used to ‘rule-in’ disease. Ultimately, the identification
and implementation of biomarkers or disease signatures
with a high positive predictive value would be hugely
significant. Improved understanding of the molecular
mechanisms which lead to PE including the identifica-
tion of critical biomarkers would improve clinical out-
comes for the mother and offspring, through improved
diagnosis, treatment and management.

Due to the great clinical need, a wide array of research
approaches utilizing various types of genomic data
and/or transcriptomic data have been used to identify
PE-associated biomarkers and understand disease
mechanisms [13]. Most prior research has adopted
differential expression (DE) analysis to identify PE-
associated biomarkers. For example, DE analysis has
been applied to PE gene expression data [14, 15], miRNA
expression data [16], lncRNA expression data [17] and
DNA methylation data [18] to identify the genetic

susceptibility of PE. In DE analysis, genes, miRNAs,
lncRNAs or DNA methylations are tested individually for
expression differences between PE and control groups.
The differentially expressed genes (DEGs) are important
for understanding the link between genotypic and
phenotypic variation [19].

To elucidate PE molecular mechanisms, some research
has established and analyzed interaction networks.
Network analysis involves building a biological network
based on a curated gene set from DEGs [20], the literature
[13, 21] or other biological information [22]. Then,
network-based methods are adopted to identify critical
PE-associated genes from the gene list [21]. For example,
based on the protein–protein interaction (PPI) network
for a set of 347 genes, Tejera et al. demonstrated that
the five genes with the highest hub scores were well-
known protein markers of PE [21]. This hub analysis
has also been used in several works for identifying PE
biomarkers [23, 24]. A more recent example used Google
PageRank algorithm to determine important placental
genes from the protein interaction network identifying
genes which may have relevance in placenta-related
disease but which are not necessarily placental specific
[25].

Both DE analysis and some network analysis ap-
proaches have their limitations such as the ability to only
use one type of data (such as transcriptomic or network).
For example, DE analysis only tests the relationship
of PE and genes based on the hypothesis that genes
are independent [26], however, genes can significantly
interact. Network analyses can leverage gene regulatory
relationships in identifying PE-associated genes, but
most current works map the gene sets to a general PPI
network [21, 25] which is not specific to PE. Thus, the
PPI network might include some interactions that do not
exist in PE.

In order to address the limitations of current methods,
we propose a method (termed cPE) that utilizes both
transcriptomic and network data. In this method, we
firstly construct a network for a condition (e.g. PE) from
the gene expression data. We then orientate this network
with the directed PPI network and filter out the links that
do not exist in the PPI. Thus, we eliminate interactions
that do not exist in PE and the resulting network is more
reliable than that solely derived from gene expression
data. Then, we apply controllability analysis to iden-
tify critical PE-associated genes from the developed PE-
specific network.

Controllability analysis [27] provides an understanding
of the PE-specific network and the different roles that
nodes play in the network. In control theory, a system
is controllable if it can be driven from any state to any
expected state within a finite time by suitable inputs.
Based on this theory, Liu et al. developed an analytical
toolbox to study the controllability of a directed network
[27]. This toolbox has been successfully applied to
identify cancer genes [28] and breast cancer drivers
[29]. It is well known that there are many parallels
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between cancer and pregnancy in growth, invasion
and immune mechanisms [30] and this controllability
method developed for cancer will likely have utility in
pregnancy and in particular PE. Herein, controllability
analysis was used to capture two types of critical nodes
from the developed PE specific network. Both types of
critical nodes play important roles in the controllability
of the gene regulatory network and we considered the
critical nodes as important in PE disease mechanisms.
Finally, the critical PE-associated genes were prioritized
using the log fold-change (LogFC) data from the DE
analysis. We demonstrated that the proposed method
yields a higher proportion of validated PE-associated
genes than current methods, DE analysis, betweenness
centrality and hub analysis for the specified dataset.
The predicted critical PE-associated genes are also
supported by a PE-related SNPs database, a literature-
based database and known protein markers for PE.
Besides the recovery of known PE-associated genes, cPE
identified genes with little known PE-associations, which
are enriched in the same GO terms and KEGG pathways
as validated PE-associated genes, suggesting their
important roles in PE development and the effectiveness
of our approach.

Materials and methods
Dataset
We applied cPE to a microarray dataset that contained
both PE and control samples to identify PE-associated
genes. The gene expression data and clinical data
were downloaded from the Gene Expression Omnibus
database1 under the accession number GSE75010. The
clinical data included information regarding patients’
phenotype and gestational age. The transcription factor
(TF) list was obtained from the FANTOM5 transcriptome
catalog database [31]. The directed PPI network was
downloaded from the DirectedPPI database2 [32]. The
directed PPI network contains the general human
directed PPI network, which helped to build the PE
gene regulatory network. The PE-related SNP data were
downloaded from the PESNPdb database3 (version 1.1).

GSE75010 was chosen as it is one of the largest
publicly available collated datasets of human placental
microarray data, containing 157 samples from PE
placentas and 173 control samples. GSE75010 was
generated by integrating eight placental gene expression
datasets after removing eventual biases [33]. Of note, DEG
discoveries often lack reproducibility among different
microarray studies due to their small sample size and
the presence of systematic variation across studies.
Conducting a DE analysis based on an integrative
dataset yields more robust DEG results than the DE
analysis on individual datasets [34]. For identifying PE-
associated genes, we divided GSE75010 into two subsets

1 https://www.ncbi.nlm.nih.gov/geo/
2 https://www.flyrnai.org/DirectedPPI/Download.jsp
3 http://bejerano.stanford.edu/pesnpdb

Figure 1. Data preprocessing. The control dataset only contains term
samples whose Gestational Age (GA) is more or equal to 34 weeks.
Transcription Factor (TF) coding messenger RNAs (mRNAs) and other
mRNAs are classified using the TF list from a TF database (DB). n:
number of samples. g: number of genes. Note: 41 samples with
gestational ages less than 34 weeks (i.e. preterm control samples) were
removed from GSE75010, therefore, only term control samples were
used in the analysis. When stratifying preeclampsia samples into the
EOPE and LOPE subtypes, 30 preeclampsia samples were removed from
the dataset as associated gestational ages were unknown.

(Figure 1 and S1 File): PE and control expression sub-
datasets. During the process, 41 preterm control samples
in GSE75010 were removed with only term controls
used.

In order to detect critical genes for PE subtypes,
GSE75010 was further divided into either EOPE or LOPE
datasets (Figure 1) based on gestational age with a cutoff
of 34 weeks. For this analysis 30 PE samples without
gestational age information were removed. As a result,
the EOPE dataset contained 69 samples and the LOPE
dataset consisted of 58 samples.

For the expression data of each condition (PE, EOPE or
LOPE), we prepared matched Transcription Factor coding
messenger RNA (TF for short) and other mRNA (mRNA
for short) data to construct the gene regulatory network.
TFs and mRNAs were classified using the TF list from the
FANTOM web resource. To integrate the transcriptomic
and network data, only genes with gene expression pro-
files in GSE75010 and link(s) in the DirectedPPI database
were selected. In total, 789 TFs and 4700 mRNAs were
obtained.

Methodology
The proposed cPE method has three key steps to iden-
tify PE-associated genes (Figure 2): (1) Development of a
directed PE gene regulatory network, (2) Identification of

https://www.ncbi.nlm.nih.gov/geo/
https://www.flyrnai.org/DirectedPPI/Download.jsp
http://bejerano.stanford.edu/pesnpdb
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critical nodes via controllability analysis and (3) Prioriti-
zation of critical genes using DE analysis.

Constructing the directed PE biological network

The directed condition biological network was con-
structed using the matched TF and mRNA expression
data for a disease condition (PE) and the directed PPI
network from DirectedPPI [32]. This network contains
two types of regulatory interactions, including those
between TF→TF/mRNA and mRNA→mRNA. Although
TFs are the major regulators in the gene regulatory
network, knowledge about regulating TFs is incomplete,
meaning some mRNAs are potentially playing the role
of TFs [35]. Therefore, links between mRNA–mRNA have
been included if they are strongly correlated and exist in
the directed PPI network. The network was constructed
as follows:

• Identify the link between nodes. Pearson correlation
coefficient (PCC) was used to test for associations
between all paired nodes. The significance of PCCs
was evaluated by the P-value of the PCC test. To
reduce the false discovery rate of identified gene
links, only statistically significant links whose Ben-
jamini–Hochberg adjusted P-values are less than 0.05
were retained [36].

• Orientate the obtained links. We orientated the
obtained links in the network as follows. First, we
oriented the links based on the following assumption:
TFs can regulate TFs and mRNAs, and mRNAs can
regulate mRNAs [29]. Second, we refined the network
by removing the links which are not in the directed
PPI network. We built a reliable directed condition-
specific gene regulatory network using the prior
network information.

In the directed biological condition network, the num-
ber of links toward a node is the in-degree and the
number of links away from the node is the out-degree.
The sum of in-degree and out-degree of a node is its
degree.

Identifying critical nodes via controllability analysis

Given a linear dynamic system (network) with N nodes
x1, x2, . . . , xN, an adjacency matrix AN×N holds the
interaction strength between nodes. The system can be
defined by a set of linear ordinary differential equations:

dx(t)
dt

= Ax(t) + Bu(t),

x = (x1(t), x2(t), . . . , xN(t))T, (1)

where xi(t) indicates the node state at time t, and BN×M,
(N ≥ M) is the input matrix that describes M nodes con-
trolled by an external controller. Only the diagonal ele-
ments in BN×M are nonzero and they capture the interac-
tion strengths between the controller and its target node.

The M corresponding nodes are called driver nodes as
first described in [27]. The linear dynamic system is con-
trolled by the input signal u(t) = (u1(t), u2(t), . . . , uM(t))
that is manipulated by the controller. Based on Kalman’s
controllability rank condition [37], the linear dynamic
system can be controllable if and only if the controllabil-
ity matrix CN×NM = (B, AB, A2B, . . . , AN−1B) has a full rank:

rank(C) = N. (2)

Furthermore, if it is possible to select binary matrices
A and B that satisfy Equation 2, a complex network is
deemed to be a locally structural controllable [28].

We hypothesized that the obtained biological network
is a linear dynamic system and can be controlled by
an external controller. Therefore, controllability analysis
can be applied to the biological network even without
interaction strength information. A graph-based method
developed by Liu et al. was used to identify all the sets
of driver nodes that satisfy Kalman’s controllability rank
condition [27]. Then node categories were implemented
based on the identified sets of driver nodes. We defined
six types of nodes, including two critical, two ordinary
and two redundant from two types (termed type-1 and
type-2) of node category methods.

In type-1 node categories, a critical node must be in all
sets of driver nodes of the network, an ordinary node is
present in at least one of the sets of driver nodes and
a redundant node does not appear in any of the sets
of driver nodes (Figure 3). Thus, in order to control the
network, all type-1 critical nodes should be controlled.
In the type-1 node category method, we searched for
a maximum set of links defined as the group of links
that satisfy the following two conditions: (i) there are
no two links in the group sharing the same start node
or the same end node, (ii) the number of elements in
the set is the maximum. The links in the maximum set
are known as matching links. Using the matching links,
the nodes were classified in the networks as matched
or unmatched nodes. A node was considered a matched
node if any of its links belong to the set of matching
links and it was unmatched otherwise. Since the network
can be fully controlled only if the unmatched nodes are
controlled [27], we define the set of unmatched nodes as
the set of drivers.

It is important to note that the set of matching links
is not necessarily unique. To clarify this, we assume an
input network shown in Figure 3A. In this example, two
sets of links are identified as a set of matching links, i.e.
set {1 → 3, 3 → 4} and set {1 → 3, 3 → 2} (Figure 3B).
Thus, the set of drivers is also not unique. Following this
example, we have two sets of drivers, i.e. set {1, 2} and set
{1, 4}. By definition, critical nodes must be in all sets of
driver nodes. In our example, only node 1 is considered a
critical node (Figure 3C).

There are several sets of driver nodes that can satisfy
Equation 2, but the minimum size of the driver node sets
(MDNS) is unique. In type-2 node categories, a node is
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Figure 2. A schematic framework of the control theory approach to identify preeclampsia-related genes. (1) From the matched transcription factor
(TF)/messenger RNA (mRNA) expression data from preeclampsia samples, Pearson correlation was used to construct an undirected gene–gene
network. This network was then orientated based on the DirectedPPI database. The nodes of the directed preeclampsia gene regulatory network are
TFs or mRNAs, and the links start from regulators to their target genes. (2) Controllability of the directed preeclampsia gene regulatory network and
categorized nodes were analyzed. Two types of critical nodes were identified. (3) The expression data of preeclampsia and control samples were used
for differential expression (DE) analysis. Lastly, the critical nodes were ranked by their log fold change values.

Figure 3. Type-1 node categories. (A). Input network. (B). Search for driver node sets. The network can be fully controlled if and only if one of the driver
node sets {1, 2} or {1, 4} is driven by controllers. (C). Type-1 node categories. Based on the definition of type-1 node categories, node 1 is a critical node,
2 and 4 are ordinary nodes and 3 is a redundant node.

critical if its absence causes a rise in the size of the MDNS.
The type-2 redundant nodes are those whose absence
does not affect the driver node sets. The nodes that are
neither critical nor redundant are called type-2 ordinary
nodes. Figure 4 illustrates the effect of a node removal
on MDNS size and its type-2 node category. Based on the

definition of type-2 node categories, node 3 is a critical
node, 1 and 2 are redundant nodes and 4 is an ordinary
node.

From the definition of type-1 and type-2 nodes cate-
gories, we can see that the network could be controllable
with type-1 critical nodes driven at all times and in the
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Figure 4. Type-2 node categories. (A). Input network. Size of minimum driver node set |MDNS| = 2. (B). Removing node 1. |MDNS| = 1. (C). Removing
node 2. |MDNS| = 1. (D). Removing node 3. |MDNS| = 3. (E). Removing node 4. |MDNS| = 2. (F). Type-2 node categories.

absence of type-2 critical nodes with more interactions
on driver nodes. Therefore, type-1 and type-2 critical
nodes are both considered critical PE-associated genes.
These critical nodes may work together to control the
whole network and respond to the external controllers
to transform the biological state from a normal to a
preeclamptic phenotype.

Prioritizing critical genes

Identified critical PE-associated genes that were likely to
be involved in PE were ranked using DE analysis. Two
typical outcomes of DE analysis are the level of differ-
ential expression (log fold change of expression, LogFC)
and the significance of the difference (indicated by P-
value) between disease and control conditions. LogFC
and P-value have been widely used in ranking and select-
ing candidate genes for diseases, including PE [14, 15],
preterm birth [38], cancer [39] and more as discussed
by Rodriguez-Esteban et al. [40]. The bigger LogFC of a
gene, the more likely the gene is involved in PE develop-
ment. Additionally, if the P-value (adjusted by Benjamini–
Hochberg method, adj.P.val) of a gene is greater than 0.05,
it is not considered significantly differentially expressed
between disease and control conditions, and it is not used
for LogFC value ranking.

DE analysis was performed between a disease condi-
tion and its control groups based on their gene expression
data. We then ranked the critical PE-associated genes
by the decrease of their LogFC values (if P-values ≤
0.05). Based on different conditions, PE-associated genes,
EOPE-associated genes and LOPE-associated genes were
identified and ranked.

Enrichment analysis
We subsequently used GO and KEGG pathway enrich-
ment analysis to investigate the identified novel PE-
associated genes and to understand underlying mech-
anisms by which PE affects placental physiology, since
dysregulation of genes and biological pathways could
contribute to abnormal behavior in PE. Specifically,
we used the 17,913 human genes annotated in the
org.Hs.eg.db [41] package (version 3.8.2) as the back-
ground. Then, the clusterProfiler [42] package (version
4.0) was used to implement the enrichment analysis on
genes of interest against the background. We use the
REVIGO tool [43] to remove the redundant GO terms
of the enriched GO terms. Therefore, no two GO terms
are more similar than 0.7 in the nonredundant GO term

set. The semantic similarity between two GO terms is
measured by a graph-based method proposed by Wang et
al. [44]. The similarity of two GO term lists are computed
by the mgoSim function in the GOSemSim package [45].

Differential expression analysis
The differential gene expression analysis between dis-
ease (e.g. PE) and control groups was performed by the
Limma package [46]. We used the Benjamini–Hochberg
method to control the False Discovery Rate (FDR) for
multiple hypothesis testing in the Limma package. In DE
analysis, the genes significantly differentially expressed
in two groups (FDR < 0.05) were selected and ranked
based on the LogFC values. In this study, the DE analysis
was used for ranking PE-associated genes identified by
cPE and as a comparison method for cPE.

Network analysis
Network analysis was conducted to investigate network
properties, including scale-free structures and hub
nodes. A network is claimed to be scale-free when the
fraction of nodes with degree k follows a power law as

Pr(k) ∼ k−λ, (3)

where λ is a scaling exponent. The gene regulatory net-
work is a directed network, hence in- and out-degree
distribution data were fitted into two power-law models
satisfying Equation 3, respectively. The values of λ for
in- and out-degree distribution were estimated by the R
package poweRlaw [47]. We evaluated the goodness-of-fit
of the fitted model using a bootstrap approach [48] that
estimated a P-value. If the P-value is more than 0.1, we
considered the network to be scale free as is the practice
described in [49]. The most notable characteristic in a
scale-free network is the presence of large hubs, i.e.
highly connected gene nodes.

The gene regulatory network had a number of hubs
that were more likely to be crucial than other nodes
[50]. In this study, Kleinberg’s hub centrality scores (hub
scores for short) were used to identify hub genes in a gene
regulatory network. In addition, based on the gene reg-
ulatory network, betweenness centrality (BC) has been
widely applied to explore candidate disease genes [51].
Genes with high betweenness centrality scores play an
important role in disease since they control the informa-
tion flow of the gene regulatory network [51]. The func-
tions hub_score() and betweenness() in the igraph package
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Figure 5. Characteristics of the PE-specific network. The PE-specific
network had power-law in-degree distribution (A) but did not have
power-law out-degree distribution (B). The red lines indicate the fitted
power-law models.

Table 1. Number of nodes in type-1 and type-2 categories

Node type Type-1 Type-2

Critical nodes 1040 (23.53%) 682 (15.43%)
Ordinary nodes 1745 (39.48%) 1974 (44.66%)
Redundant nodes 1635 (36.99%) 1764 (39.91%)

[52] were used to calculate hub and BC scores, respec-
tively. In the hub/BC analysis, genes with positive hub/BC
scores were retained and ranked based on their hub/BC
scores.

Results
Characterizing the controllability of the
PE-specific network
The constructed PE-specific network consists of 5489
nodes (including 789 TFs and 4700 mRNAs) and 11,126
directed links (including 982 TF-TF links, 705 TF-mRNA
links and 9439 mRNA–mRNA links). DirectedPPI contains
28,870 links among these 5489 nodes, suggesting about
38.5% of links from the general directed PPI occur in PE.
For the in-degree distribution, the PE-specific network
was scale free (Figure 5A). However, the PE-specific net-
work was not a scale-free network for the out-degree
distribution (Figure 5B). Taken together, the PE-specific
network was not scale free. Not surprising as it has been
reported that strong scale-free networks are rare in the
real world [49]. In the network, the average degree is
approximately 5, and there are a total of 2026 driver
nodes, accounting for 45.84% of the nodes in the con-
structed PE-specific network.

We applied controllability analysis on the network and
then classified the nodes as type-1 critical, ordinary and
redundant based on whether they belong to all, any or
none of the driver node sets, respectively. In the network,
23.53% of nodes are critical, 39.48% are ordinary and
the remaining 36.99% are redundant (Table 1). Interest-
ingly, type-1 critical nodes had lower in- and out-degrees
compared with ordinary and redundant nodes (Figure 6).
Most network analysis is aimed at finding hub nodes or
central nodes which tend to have high degrees, and do
not identify the type-1 critical nodes in the network.

The nodes were further classified in the network as
type-2 critical, ordinary and redundant based on the
effect of node removal on MDNS size. 15.43% of nodes are
critical, 44.66% are ordinary and the remaining 39.91%
are redundant (Table 1). The three types of nodes have
heterogeneous degree distributions. The critical nodes
have higher in- and out-degrees compared with ordinary
and redundant nodes (Figure 6). These critical nodes may
be more important than other nodes, since their absence
isolates other nodes and is likely to disrupt the function
of biological pathways.

cPE is effective in identifying PE-associated genes
To confirm PE gene associations identified with cPE, a
literature-based relational database (dbPEC) [53] was
used as a comparison and to confirm overlap with
previously validated PE-associated genes. The dbPEC
database was created to collect genes and gene variants
associated with PE by mining published literature for
potential genetic associations with PE-related pheno-
types (last updated 23 October 2015). This database was
used and contains both maternal (intervillous space,
basal plate, myometrium, peripheral maternal blood
or chorio-decidual blood) and fetal (placenta, amnion,
umbilical arteries/veins, umbilical vein endothelial cells)
derived genes. dbPEC contained 2781 unique genes
from 1082 articles (provided by Dr Alper Uzun from
Brown University via personal communication). Among
these genes, 601 genes were statistically significantly
associated with PE based on 899 original research
articles (downloaded from https://dbpec.brown.edu/).
Although dbPEC is incomplete (missing associations
published after last database update and associations
still to be established), it is, however, currently the most
comprehensive database for validation.

We found that both type-1 and type-2 critical nodes
have overlap with dbPEC (Figure 7A), which indicates
that cPE does identify validated PE-associated genes. We
defined type-1 and type-2 critical nodes as PE-associated
genes. In order to further rank for relevance, we utilized
LogFC values. The bigger the LogFC of a gene, the higher
it is in the ranking list. The overlap between top crit-
ical nodes (top 50, and 200) of type-1 and type-2 and
dbPEC was investigated (Figure 7A). Overall, 89 type-1
and 87 type-2 critical nodes were reported to be signifi-
cantly associated with PE, demonstrating that both type-
1 and type-2 critical nodes have yielded distinct vali-
dated genes, which means both type-1 and type-2 critical
nodes contribute in identifying PE-associated genes. It
is important to note that type-1 critical nodes cannot
be type-2 critical nodes and vice versa. When combin-
ing the two types of critical nodes, we obtained 1722
PE-associated genes including 429 genes validated in
dbPEC.

We then compared the performance of cPE with three
existing methods DE, BC and Hub analysis (Figure 7B).
The DEGs of DE analysis recovered 20.2% (831/4096)
of PE-associated genes and 4.2% (172/4096) significant

https://dbpec.brown.edu/
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Figure 6. Characterizing the degrees of type-1 and type-2 nodes. Average in-degree (A) and out-degree (B) for type-1 nodes. Average in-degree (C) and
out-degree (D) for type-2 nodes.

Figure 7. Validation using dbPEC. (A). The two types of critical nodes which also appear in dbPEC. Each bar in the chart indicates the number of
validated genes in one case (top 50, 200 or all critical nodes) for each type. (B). The percentage of known PE-associated genes (as listed in dbPEC)
recovered by cPE and three existing methods. The X-axis lists four methods differential expression (DE) analysis, betweenness centrality (BC) analysis,
hub (Hub) analysis and the proposed method cPE. All the methods were applied to the same gene expression dataset or preeclampsia-specific
network. The Y axis is the percentage of validated genes using dbPEC.

PE-associated genes validated in dbPEC. The BC analysis
recovered 23.9% (554/2317) of PE-associated genes and
9.1% (210/2317) significant PE-associated genes validated
in dbPEC. The Hub analysis recovered 22.8% (996/4370)
of PE-associated genes and 7.8% (342/4370) significant
PE-associated genes validated in dbPEC. The critical
PE-associated genes in cPE recovered the highest ratio
(24.9%, 429/1722) of PE-associated genes and (10.2%,
176/1722) of significant PE-associated genes within

dbPEC. Compared with the other three methods, cPE
identified a smaller number of genes but a higher
percentage of PE-associated genes and significant PE-
associated genes which are also listed in the dbPEC
database. A significant number of PE-associated genes
identified by cPE are confirmed by dbPEC (the hyperge-
ometric P-value = 1.96e-07). Therefore, it is statistically
unlikely that the whole gene list is randomly selected
and hence must be associated with PE. Importantly this
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Figure 8. The overlap among differential expression (DE), betweenness
centrality (BC), hub analysis (Hub) and the proposed method cPE. (A).
The overlap among four methods in their top 50 predicted PE-associated
genes. (B). Top 200 predicted PE-associated genes.

can help researchers reduce the number of irrelevant
candidates for wet lab validation.

To determine if the four methods detect similar PE-
associated genes, their identified genes in the top 50
and 200 predicted PE-associated genes were compared.
Interestingly we found that the four methods have little
overlap with each other (Figure 8). In the case of the
top 50 PE-associated genes identified, cPE has nine, one
and one genes which are also listed as DEGs, BC and
hub genes, respectively. cPE has more overlapping genes
with DE than BC and Hub, which is also seen in the
cases of the top 200 identified PE-associated genes. This
is expected as both DE and cPE rely on LogFC to rank
the candidate PE-associated genes. We observed that the
similarity between methods increased along with the
ranked list of cPE (S1 Figure). Interestingly, cPE has more
genes overlapped with BC and Hub than with DE after
the top 441 and 524 genes, respectively. In general, cPE
identified a greater number of genes which were not in
the lists provided by other methods. Specifically, 85.2%,
64.1% and 52.6% cPE genes were not in the top 1722 DE,
BC and Hub genes, respectively.

Some PE-associated genes have a known relationship
with a gene mutation. For example, functional gene vari-
ations can affect the thrombogenic and angiogenic prop-
erties which can lead to abnormalities of the placenta
and PE [54, 55]. Mutations in the genome can be single-
nucleotide variants, insertions and deletions, copy num-
ber aberrations or structural variants. We used the PES-
NPdb database (last updated 26 September 2012) [56] of
known SNPs with a link to PE (which provides different
yet complementary information from dbPEC) to investi-
gate how many SNPs were related to the genes identified
by cPE. These PE-related SNPs may offer insight into the
mechanisms of PE development. A total of 26 type-1
critical nodes and 12 type-2 critical nodes were in the
list of PESNPdb (Table 2), which indicates these critical
nodes might contribute to the genetic susceptibility of
PE. In summary, 38 out of 1722 (2.2%) genes displayed PE-
related SNPs in cPE, compared with 1.3% (52/4096) in DE,
1.9% (45/2317) in BC and 1.9% (83/4370) in Hub.

Given the significant need for PE biomarkers with a
high positive predictive value, the identified genes from
control theory could also hold promise in biomarker

Table 2. Overlap between critical nodes and known PE-related
SNPs as per the PESNPdb database

Node type Genes

Type-1 AGTR1, APOB, CNR1, COMT, CX3CR1, DRD4, ENG,
ESR2, ESRRG, GP1BA, HHEX, IFNG, IGF2R, IL12RB1,
IL13, IL3, INHBB, LEP, LEPR, LNPEP, MMP9, NR1H2,
PTGER2, SERPINE1, SHMT1, THBD

Type-2 ACVR1, ACVR2A, CCR5, COL1A1, CXCR4, F2, HBEGF,
ICAM1, IGF1, IL4R, LPL, MMP3

research. Type-1 critical nodes included genes such as
Leptin (LEP) [57], Endoglin (ENG) [58], Selectin P (SELP)
[59], Pentraxin 3 (PTX3) [59], Angiotensin II Receptor
Type 1 (AGTR1) [60], Podocalyxin Like (PODXL) [61] and
Insulin Like Growth Factor Binding Protein 1 (IGFBP1) [62]
which have well-known associations with PE and utility
as biomarkers. Type-2 critical nodes included genes such
as Caspase 3 (CASP3) [63], Heparan Sulfate Proteoglycan
2 (HSPG2) [64], Intercellular Adhesion Molecule 1 (ICAM1)
[65], interleukin 8 (IL8) [66], Prostaglandin D2 Synthase
(PTGDS) [67] and Vascular Cell Adhesion Molecule 1
(VCAM1) [68] that have associations with PE.

Understanding functions of the predicted novel
PE-associated genes
Besides the validated PE-related genes in dbPEC, cPE
also predicted novel PE-associated genes, which require
further investigation. cPE can be used to shortlist genes
of potential clinical relevance for PE to help direct wet-
lab experiments. For example, 16 out of the top 20
cPE genes are present within dbPEC. There are four
not listed, which are Olfactomedin Like 3 (OLFML3),
Phosphatidylinositol-4, 5-Bisphosphate 3-Kinase Cat-
alytic Subunit Beta (PIK3CB), Opioid Receptor Kappa 1
(OPRK1) and Proteoglycan 2 (PRG2). Previous studies have
demonstrated these genes are differentially expressed in
the preeclamptic placenta [69, 70]. OLFML3 is involved in
embryonic development including the central nervous
system, muscle development [71] and proangiogenic
functions [72]. PIK3CB has been identified in several
network studies, including for EOPE [73] and could help
discriminate five distinct subtypes in PE [33] likely due to
PIK3CB’s involvement in trophoblast differentiation [74].
OPRK1 also has been found to be differentially expressed
in EOPE placentas [75]. The global RNA profiling of
trophoblast subpopulations in severe PE placentas found
that PRG2 was the most highly upregulated mRNA in
syncytiotrophoblasts of severe PE placentas [70]. There
is speculation that PRG2 may have clinical utility as
a biomarker of severe PE [70]. Unfortunately, current
research on the relationship between these four genes
and PE is still limited.
cPE identifies many potential biologically meaningful
genes in the top 50 predicted PE-associated gene list
(S2 File). Within this list, 34 genes are present within
dbPEC (2781 gene list), four genes translate four protein
markers (LEP, ENG, IL8 and VCAM1) for PE and four genes
(LEP, ENG, IGF1 and SERPINE1) contain known PE-related
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SNPs. Of the 16 genes not present in dbPEC most do
have a known association with at least one form of PE,
some of these proteins of interest include Solute Car-
rier Family 1 Member 6 (SLC1A6), Stanniocalcin-2 (STC2)
and Gamma-aminobutyric acid receptor subunit beta-1
(GABRB1). Amino acid transporters such as SLC1A6 are
vital for fetal growth with their expression likely being
controlled by methylation which is altered in conditions
such as gestational diabetes or PE [76]. STC2 involved
in calcium and phosphate homeostasis, an inhibitor of
PAPP-A known to affect IGF signaling [77] and has impli-
cations for pregnancy complications such as PE [78].
GABRB1 has previously been linked with preterm birth,
its role in PE requires further investigation [79].

There were 1261 proposed PE-associated genes identi-
fied by cPE (from 1293 genes not listed in dbPEC) and 2397
PE-associated genes listed in dbPEC (from 2781 gene list)
overlapping with the background genes (org.Hs.eg.db).
These genes were used for enrichment analysis. The
identified genes not listed in dbPEC (defined as proposed
PE-associated genes) are significantly enriched (adjusted
P-value less than 0.01) in 384 nonredundant GO terms
of biological process subontology. Indeed, 172 out of
the 384 GO terms identified for the proposed novel PE-
associated genes are also in the 547 GO terms of PE-
associated genes listed in dbPEC. This indicates that
some proposed PE-associated genes are involved in the
same biological processes or have similar functions to
the confirmed PE-associated genes. There are 144 GO
terms of proposed PE-associated genes which showed
low similarity (less than 0.7) with the GO terms of
the confirmed PE-associated genes. When ranking GO
terms generated from the cPE list (decreasing adjusted
P-value), the top two terms are positive regulation of
kinase activity (GO:0033674) and positive regulation of
MAPK cascade (GO:0043410). These terms are also in
the top three when considering cPE genes which do
not occur in dbPEC. Kinases and MAPK specifically play
a role in cell survival, proliferation, metabolism and
are associated with PE via regulation of trophoblast
function/placentation [80]. Terms identified in cPE but
not in dbPEC include sterol import (GO:0035376) and
cholesterol import (GO:0070508) which are known to be
critical in pregnancy maintenance [81] and SMAD protein
complex assembly (GO:0007183) known to be associated
with trophoblast invasiveness [82]. The full lists of GO
terms can be found in S3 File.

The genes in dbPEC and proposed PE-associated genes
not listed in dbPEC are significantly enriched (adjusted
P-value less than 0.01) in 125 and 104 KEGG pathways,
respectively (S4 File). There are 70 KEGG pathways which
are overlapping between these two lists. Therefore, the
proposed PE-associated genes likely participate in many
of the same pathways implicated in the development
of PE. Some KEGG pathways which are enriched in cPE
but not found in dbPEC include Notch signaling path-
way (hsa04330; mediates hypoxia-induced trophoblast
migration), p53 signaling pathway (hsa04115; mediates

apoptosis, altered in PE) and VEGF signaling pathway
(hsa04370; altered in PE), all of which are known to be
important in PE [83].

Identification of critical genes for two major
subtypes of PE
PE is broadly separated into two subtypes: EOPE, which
is defined as PE occurring before the 34th week of preg-
nancy and LOPE, defined as PE occurring after the 34th
week of pregnancy. Significantly, although these sub-
types are similar in their downstream clinical presen-
tation (separated by time of symptom onset) they are
thought to arise from different triggers at distinct ges-
tational timings, in both cases leading to placental and
vascular dysfunction. Specifically, EOPE is characterized
by poor placentation (impaired extravillous trophoblast
invasion) and spiral artery remodeling [6]. On the other
hand, LOPE, the most common type of PE, arises after
normal placentation through maternal factors including
inflammation [6].

In this section, we investigated the critical genes for
these PE subtypes. As discussed previously, PE is a het-
erogeneous disease with two major subtypes: EOPE and
LOPE. As EOPE and LOPE have different clinical fea-
tures, hemodynamic states and risk factors, the subtypes
likely have different causes and genetic susceptibility.
Although not considered in this work it is also impor-
tant to note that within these subtypes disease sever-
ity can vary widely. For example, PE may or may not
be associated with FGR and its presence or absence is
an important consideration for data interpretation as
it indicates the placenta’s inability to properly support
fetal development. Indeed 36.2% of all PE cases are also
associated with FGR (most of which occur in EOPE) [84].
As with the original study which collated these datasets
[33], we assumed that biases (ethnicity, gestation, fetal
gender) did not have a significant impact.

In the experiment, PE samples were divided into EOPE
and LOPE samples based on gestation, irrespective of
other clinical factors such as the presence of IUGR or
other conditions. We applied cPE to the EOPE and LOPE
gene expression data to identify critical genes for each
subtype of PE and the genes which are critical in both
subtypes. The DE analysis was then performed on the
gene expression data of EOPE (or LOPE) and control condi-
tions. LogFC and adjusted P-value were used to rank and
select the candidate genes.

We identified 1057 type-1 and 716 type-2 critical nodes
for EOPE, and 1032 type-1 and 683 type-2 critical nodes
for LOPE. There are 494 type-1 and 298 type-2 critical
genes that are specific to EOPE, and 469 type-1 and 265
type-2 critical genes for LOPE. 563 type-1 and 418 type-2
genes are critical for both subtypes of PE. The predicted
subtype-specific genes and the genes which are critical
for both EOPE and LOPE are listed in S5 File.

The identified genes which are not listed in dbPEC
and have little known associations are of considerable
interest potentially providing novel insights. For example,
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Proteoglycan 2 (PRG2), Ephrin A1 (EFNA1) and Kruppel
Like Factor 6 (KLF6) identified as EOPE, LOPE and
combined (LOPE/EOPE), respectively. PRG2 is toxic to
mammalian cells and it is upregulated at the mRNA
level in severe PE samples [70]. There is evidence that
EFNA1 expressed exclusively in the invasive extravillous
trophoblast cell lineage, suggesting that EFNA1 may par-
ticipate in the targeting of the trophoblast to the uterine
tissue and spiral arteries [85]. Its association with LOPE is
interesting, considering LOPE is generally considered
maternal in origin. KLF6 may mediate some of the effects
of hypoxia in placenta development and so has relevance
in the development of PE requiring further investigation
[86]. Experimental validation is required for these genes
identified with cPE to understand their potential roles in
PE development.

It is important to note that only term samples were
used as the control for EOPE, LOPE and PE samples.
In general, experimental design considerations for
preterm controls require thoughtful consideration
due to difficulty in obtaining appropriate tissue. The
‘preterm controls’ within this dataset were mostly
derived from placentas (<30 weeks) with signs of
infection (predominantly chorioamnionitis) as discussed
by Leavey et al. [33]. For this reason, these preterm
controls were excluded from the subtype analysis with
only term controls being used. When preterm controls
were included in the analysis (data not shown, available
at https://github.com/XiaomeiLi1/cPE) only the gene
ranking was affected, with the critical genes identified
remaining unchanged.

Discussion
The molecular mechanisms leading to PE development
are still poorly understood. Identifying critical PE-
associated genes will likely help elucidate their regu-
latory mechanisms and improve PE diagnosis and treat-
ment. Increasing amounts of data generated from next-
generation sequencing are providing great opportunities
to uncover new insights into the molecular mechanisms
of PE development. Computational methods have
been developed for such a task, including differential
expression, betweenness centrality and hub analysis.
However, more effective approaches for detecting novel
PE-associated genes are required.

We proposed a novel and effective control theory-
based method to uncover critical PE-associated genes
based on a directed PE-specific gene regulatory network.
The PE-specific gene regulatory network was constructed
based on placenta gene expression data and prior knowl-
edge, such as TF genes and PPI interactions. Critical PE-
associated genes were selected as they play important
roles in the gene regulatory network of PE.

We have applied the proposed cPE method to one of
the largest human placenta gene expression datasets
for PE currently available. The cPE approach identified
1722 genes that are likely PE related, 24.9% of which are
known to be associated with PE in the dbPEC database.

Compared with standard methods, cPE recovered a
higher proportion of validated PE-associated genes listed
in dbPEC. More importantly, cPE has little overlap with
genes identified with standard methods in the top
50 and 200 predicted PE-associated genes. There were
619 cPE genes that cannot be identified by any of the
three methods, i.e. DE, BC and Hub. Therefore, cPE
could provide a novel insight for PE-associated gene
identification and could complement other existing
methods. The results from all four methods could offer
complimentary insights.
cPE can also be used to explore critical PE-associated
genes for PE diagnosis or other related pregnancy com-
plications. We demonstrated that cPE identified known
PE-associated genes, genes that translate known protein
markers for PE and genes that contain known PE-related
SNPs. Moreover, cPE has identified genes that previously
had little known association with PE; further work will be
required to confirm these associations.

These results are dependent on the reliability of the
microarray data and the DirectedPPI network. In the
PE-specific network construction, the assumption has
been implicit that the gene regulatory relationships are
linear. Our network construction method, or any such
method, cannot prove a non-association between genes.
Therefore, we cannot conclude that the links not sup-
ported by the PCC test and the DirectedPPI network
are not active gene relationships in PE. However, there
is no statistical evidence for these links activating in
the PE-specific network for the given microarray data
and the DirectedPPI network. It is important to note,
as with any network analysis, there might be missing
or spurious links presenting in the network because of
the quality of microarray data or directed PPI. However,
the control theory method is robust to identify critical
nodes in a PPI network. For example, it has been reported
that 90% of critical nodes could be recovered by the
control theory method when adding or removing links in
the original network [28]. Therefore, the control-theory-
based method likely identifies the most critical genes in
the current PE-specific network.

There are multiple suggestions for future work.
Firstly, while cPE does not require a control popula-
tion to identify critical genes, a control population
is, however, required for gene prioritization, as per
differential expression analysis. In this instance, there
are questions surrounding the prioritized critical genes
identified for PE and the use of controls. Larger datasets
(including single-cell sequencing) and more appropriate
controls will undoubtedly demonstrate the true utility
of the proposed approach. For example, Gong et al.
recently published high depth sequencing for more
than 300 placentas (including control, PE and FGR) from
well-characterized placental phenotypes [87], which
will undoubtedly be a valuable resource. In addition,
we suggest incorporating additional clinical subtypes
and sample types, particularly maternal blood samples
throughout gestation (potentially animal and cellular

https://github.com/XiaomeiLi1/cPE
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models) into the cPE method. Based on these data, the
discovery of critical PE-associated genes could hold great
promise for identifying early diagnostic markers with
high positive predictive value.

Secondly, within this study for simplicity PE samples
were divided into EOPE and LOPE based on gestation.
However, Leavey et al. who originally utilized the
GSE75010 dataset used unsupervised clustering to
further divide the data into five categories [33]. The
utilization of cPE with further subtype delineation could
provide even greater directed insights. Finally, experi-
mental validation and systematic review of the identified
PE-associated genes is warranted, especially for genes
that have previously had little known association.

Conclusion
This work describes a computational approach that has
identified PE-associated genes including ones that have
previously had little known association with PE. Ulti-
mately, this approach could eventually aid in a further
understanding of PE molecular mechanisms, uncover
biomarkers and contribute to improved PE diagnosis and
treatment.

Key Points

• Preeclampsia is a pregnancy complication which can
cause serious short- and long-term complications for
both the mothers and their offspring.

• The precise molecular mechanisms which lead to
the heterogeneous condition are poorly understood
which has hampered development of new treatments,
biomarker discovery and early diagnosis.

• We describe for the first time a control theory method to
identify genes potentially associated with preeclampsia.

• Further expanding the proposed control theory approach
with additional datasets and condition subtypes could
improve the understanding of preeclampsia molecular
mechanisms, aid in biomarker identification and ulti-
mately contribute to improved preeclampsia diagnosis
and treatment.
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