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Abstract

INTRODUCTION: The development and progression of Alzheimer’s disease (AD) is

a complex process, during which genetic influences on phenotypes may also change.

Incorporating longitudinal phenotypes in genome-wide association studies (GWAS)

could unmask these genetic loci.

METHODS: We conducted a longitudinal GWAS using a varying coefficient test to

identify age-dependent single nucleotide polymorphisms (SNPs) in AD. Data from

1877Alzheimer’sNeuroimagingData Initiative participants, including impairment sta-

tus and amyloid positron emission tomography (PET) scan standardized uptake value

ratio (SUVR) scores, were analyzed using a retrospective varying coefficient mixed

model association test (RVMMAT).

RESULTS: RVMMAT identified 244 SNPs with significant time-varying effects on

AD impairment status, with 12 SNPs on chromosome 19 validated using National

Alzheimer’s Coordinating Center data. Age-stratified analyses showed these SNPs’

effects peaked between 70 and 80 years. Additionally, 73 SNPs were linked to lon-

gitudinal amyloid accumulation changes. Pathway analyses implicated immune and

neuroinflammation-related disruptions.

DISCUSSION:Our findings demonstrate that longitudinal GWAS models can uncover

time-varying genetic signals in AD.
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Highlights

∙ Identify time-varying genetic effects using a longitudinal GWASmodel in AD.

∙ Illustrate age-dependent genetic effects on both diagnoses and amyloid accumula-

tion.

∙ Replicate time-varying effect of APOE in a second dataset.

1 INTRODUCTION

The biological constructs and hallmark pathologies in Alzheimer’s

disease (AD) are characterizedbyextracellularβ-amyloidproteindepo-

sition, intraneuronal pathological tau protein accumulation, accom-

panied by neurodegeneration and neuroinflammation.1,2 As a highly

heritable disorder, genetic factors contribute significantly to the devel-

opment of AD. The heritability of AD is estimated to be approximately

60% to80%, initially derived fromgenetic twin studies,3 and supported

by large-scale genome-wide association studies (GWAS).4,5 Delineat-

ing the strong genetic component in AD has become a major objective

in AD research, as it provides an opportunity to (1) understand the dis-

ease etiology and risks, (2) characterize pathophysiological pathways,

and (3) identify potential diagnostic and prognostic biomarkers.

To date, large-scale AD-GWAS have reported more than 80 puta-

tive associated loci and genes,4–8 among which, the apolipoprotein E

(APOE)E4 allele on chromosome19has been shown to have the largest

genetic risk for AD. Several recent studies have focused on changes

in longitudinal measures as phenotypes and identified genetic contri-

butions toward cognitive decline or disease progression in AD.9,10 In

these studies, the reliance on single time-point measurements or the

computation of a single measurement of changes can limit statistical

power and hinder the identification of potential time-varying genetic

contributions to dynamic phenotypes.

The genetic architecture of gene expression regulation has been

shown to be unstable over time and linked with aging.11 Genetic con-

tributions toward complex traits such as body mass index (BMI)12 and

hypertension13 also exhibit time- or age-dependent variability. Perti-

nent to AD, Studies on APOE have additionally shown that E4 allele

counts demonstrate an inconstant hazard in developing AD, which

declines with increasing age.14 Therefore, as an aging and complex

disorder, AD may have critical timelines for the onset and progres-

sion, duringwhichgenetic influencesonphenotypesmayalso fluctuate.

Thus, our main objective of this study was to identify time-varying

genetic contributions to phenotypes in AD, with the expectation that

the identified single nucleotide polymorphisms (SNPs) could further

assist in delineating genetic mechanisms relevant to AD.

Current AD-GWAS hasmostly been conducted using clinically diag-

nosed case-control subjects. Association studies with other amyloid,

tau, or neurodegeneration (ATN) biomarkers, or within biologically

defined AD participants, may be restricted by the limited sample size

and thus suffer from reduced statistical power. Longitudinal models

in this case could take advantage of repeated phenotypic measures

from the same subject to potentially boost the statistical power in asso-

ciation analyses, which could in turn allow GWAS to be performed

on ATN-specific biomarkers, or within biologically defined AD partic-

ipants. Therefore, in the current study, we focused on both clinical and

biological phenotypes using longitudinal GWASmodels.

More recently, several large-scale data initiatives in AD have col-

lected and measured longitudinal diagnoses and ATN biomarkers over

time.15–17 Among these databases, the Alzheimer’s neuroimaging data

initiative (ADNI, https://ida.loni.usc.edu/) is a multicenter, multiphase

study dedicated to assessing clinical, imaging, and genetic biomark-

ers in AD. The availability of such comprehensive data empowers the

research community to explore time-varying genetic effects on various

clinical and biological phenotypes throughout the course of the disease

in AD.

Several statistical models have been applied in longitudinal GWAS.

Among which, linear mixed effects models and generalized estimat-

ing equations are commonly used to account for dependent struc-

ture in longitudinal observations.18,19 Using these methods, studies

have reported novel variants and genes associated with disease pro-

gression or cognitive resilience/decline in AD.20–23 Varying coeffi-

cient models, as an extension of generalized mixed effects models,

have been designed to specifically capture the time-varying genetic

effects on dynamic traits in longitudinal GWAS.13 These varying-

coefficient models in longitudinal GWAS have led to the identification

of time-dependent genetic effects in cocaine users,24 subjects with

hypertension,13 and hippocampal volumes in AD subjects.25

In this study, we applied a varying coefficient model to perform lon-

gitudinal GWAS on both a binary phenotype of clinical impairment

status and a continuous phenotype of brain amyloid accumulation in

AD.Wehypothesized that, with increased statistical power andmodel-

ing of varying coefficients, longitudinal GWAS models can support the

detection of time-varying genetic effects in repeatedly measured phe-

notypes. We anticipate that our results will improve the identification

of genetic variants associated with fluctuating pathological or clinical

phenotypes in AD.

https://ida.loni.usc.edu/
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2 METHODS

We performed longitudinal GWAS using a retrospective varying coef-

ficient mixed model association test (RVMMAT), and Figure 1 depicts

our overall pipeline.

Data from ADNI and the National Alzheimer’s Coordinating Center

(NACC)wereutilizedas themain and replicationdatasets, respectively.

BothADNI (https://ida.loni.usc.edu/) andNACC (https://naccdata.org/)

are publicly available databases that can be accessed upon reasonable

requests. No approval or participant consentwas obtained locally from

these participants.

2.1 Primary dataset: ADNI participants

Descriptions of ADNI participants are detailed in Supplementary

Method 1. Briefly, we included 1877 older participants with genome-

wide genotyping data available from the ADNI database (Table 1). We

downloadedparticipants’ (1) genotypingdata inPLINK format, (2) clini-

cal diagnoses at eachvisit; and (3) composite standardizeduptakevalue

ratios (SUVRs) computed from florbetapir amyloid PET scan at each

visit.

Genotyping data were preprocessed and imputed at the Michigan

imputation server,26 with the 1000 Genomes phase3 data (European)

as a reference panel. SNPs meeting the following quality-control con-

ditions were retained: (1) call rate > 99%, (2) Hardy-Weinberg 𝜒2

statistic p-value > 10−6, and (3) minor allele frequencies > 1%. A total

of 9,573,130 SNPs were examined in the following longitudinal GWAS

analyses.

Clinical diagnoses from 10,825 clinical visits (as of Nov. 2022)

of 1877 participants were considered as the binary phenotype

(5.76±2.50 visits/participant, detail in SupplementaryMethod1), with

4010 clinical visits with a cognitively nonimpaired (i.e., normal) diag-

nosis and 6815 visits with a cognitively impaired diagnosis (including

RESEARCH INCONTEXT

1. Systematic review: While longitudinal genome-wide

association studies (GWAS) signals with time-varying

effect in Alzhemer’s disease (AD) have not been reported,

traditional GWAS have been conducted at scale in AD.

Longitudinal GWAS methods with time-varying coeffi-

cients have been applied to several other disease condi-

tions. The relevant citations are appropriately cited.

2. Interpretation:Wehave identified singlenucleotidepoly-

morphisms (SNPs) with time-varying genetic effects in

AD. This finding not only corroborates previous research

on the age-dependent genetic impact of the apolipoprotein

E (APOE) E4 allele, but also introduces new SNPs thatmay

exert similar age-related effects.

3. Future directions: This manuscript establishes a frame-

work for investigating time-varying and age-dependent

genetic signals in AD using longitudinal GWAS methods.

Our approach focuses on both clinical (binary) and bio-

logical (continuous) phenotypes. Looking ahead, with an

expanded sample size, we aim to develop age-specific

polygenic risk scores to more precisely assess an indi-

vidual’s genetic predisposition to AD. Additionally, future

GWAS will target amyloid, tau, or neurodegeneration

(ATN)-specific and dynamic phenotypes, enhancing our

understanding of the disease’s progression and variabil-

ity.

diagnoses of mild cognitive impairment [MCI] and dementia, Table 1).

SUVRs of 2598 longitudinal PET scans from a subset of 1096 partici-

pants (2.34 ± 1.38 visits/participant, Table 1) were considered as the

continuous phenotype in the following analyses.

F IGURE 1 Analyses pipeline. RVMMATwas first performed to identify significant SNPs for both binary and continuous phenotypes using
ADNI participants (center gray boxes). Posthoc analyses on significant SNPs were then performed, including identifying (1) enriched functional
pathways and (2) time-varying genetic effect on phenotypes. Replication analyses were next performed on significant SNPs using NACC
participants. AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; NACC, National Alzheimer’s Coordinating Center;
RVMMAT, retrospective varying coefficient mixedmodel association test; SNP, single nucleotide polymorphism.

https://ida.loni.usc.edu/
https://naccdata.org/
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TABLE 1 Demographics of ADNI (main dataset) and NACC
(replication dataset) participants.

Parameter

Main: ADNI

(N= 1877)

Replication:

NACC

(N= 785)

Sex

Men 1020 310

Women 857 475

Race

American Indian orNative Alaskan 4 2

Native Hawaiian 2

Asian 29 5

African American 74 185

White 1745 593

More than one or unknown 23 0

Amyloid status (latest amyloid PET)

No. of subjects positive 620 N/A

Negative 476

Unknown 781

Diagnostic visits

Impaired 6815 1786

Nonimpaired 4010 4708

Age at diagnoses (yr)

Impaired 75.75± 7.82 79.28± 10.06

Nonimpaired 75.78± 6.68 77.19± 7.43

Abbreviations: ADNI, Alzheimer’s disease neuroimaging initiative; NACC,

National Alzheimer’s Coordinating Center.

2.2 Longitudinal GWAS model

Weperformed longitudinal GWAS using RVMMAT for both binary and

continuous AD phenotypes. Details about RVMMAT could be found in

SupplementaryMethod 2 and Xu et al., 2024.13

Briefly, RVMMAT can be viewed as an extension of the generalized

linear mixed model (GLMM)18 and retrospective GLMM-based associ-

ation test (RGMMAT)24 to a varying coefficient mixed effects model.28

It models dynamic genetic effects using cubic smoothing splines. By

embracing more flexible assumptions on the genetic effect function,

unlike methods that assume constant genetic effects, RVMMAT can

detect time-varying genetic variants linked with dynamic phenotypes,

resulting in increased statistical power.13

2.3 Post hoc analyses on significant SNPs

2.3.1 Pathway analyses

Significant SNPs (with multiple-comparison-corrected p-values < 0.05

for the binary phenotype and raw p-values < 1E-04 for the continuous

phenotype)were annotated to the genes thatwere locatedwithin, or to

their nearest genes based on genome positions. Annotated geneswere

then included inPathwayanalyses usingMetaCore (ClarivateAnalytics

PLC, https://portal.genego.com/).

2.3.2 Analysis of time-varying genetic effects

We next examined genetic effects at each time point (i.e., within each

age interval) for significant SNPs identified by RVMMAT. All longitudi-

nal visits were grouped into various age ranges with a 5-year interval.

For each age interval, phenotype and covariates at each longitudinal

visit, and corresponding participants’ genotype were obtained. Note

that only one visit was kept from the same subject with the same

phenotype in each age interval.

We analyzed the time-varying genetic effects on phenotypes using

both chi-square (𝜒2) statistics and regression models. For the binary

phenotype, within each age interval, we first performed a 𝜒2 test to

examine the genotypic differencesbetweenphenotypegroups for each

significant SNP. A larger𝜒2 value indicates a greater genetic difference

betweenphenotypegroups for theSNPwithin this age interval, as com-

pared to other age intervals. For both binary and continuous pheno-

types, within each age interval, we further performed a logistic regres-

sion and a linear regression with genotype as predictor and phenotype

as outcome, respectively. The same set of covariates as in RVMMAT

were included in the regression analyses. A larger regression coeffi-

cient (in amplitude) of genotype for a given age interval indicates a

greater genetic effect for that SNP, as compared to other age intervals.

2.4 Replication analyses

NACC participants were utilized as a replication dataset. The NACC

has been established in collaboration with more than 42 previous and

current Alzheimer’s Disease Research Centers (ADRCs) throughout

theUnited States overmore than 20 years.29 Details aboutNACCdata

and replication analysis is included in SupplementaryMethod 3.

Briefly, for 785 NACC participants, we downloaded (1) whole-

genome sequencing data in genome variant calling format (VCF)

from the NIAGAD-data sharing service; and (2) clinical diagnoses at

each visit from the NACC Uniform Data Set30 (Table 1). We divided

the total 6494 clinical visits into a nonimpaired (cognitively normal,

Nvisit = 4708) and an impaired (self-reported impairment, MCI, and

AD, Nvisit = 1786) group. We next performed RVMMAT on significant

SNPs identified from ADNI data to examine whether the observed

time-varying genetic effect on AD could be replicated using the NACC

dataset.

3 RESULTS

3.1 Longitudinal GWAS with the binary
phenotype

3.1.1 Significant SNPs

In ADNI participants, applying RVMMAT with clinical impairment

status as a phenotype showed no evidence of inflation in the

https://portal.genego.com/
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F IGURE 2 RVMMAT results on binary phenotype of clinical impairment status in AD using ADNI participants. (A) Quantile-quantile plot
scatters the observed p-values (y-axis) and the expected p-values (x-axis), indicating no evidence of inflation. (B)Manhattan plot shows that 244
SNPs reached genome-wide significance with praw < 5E-08 (solid black line), and 1841 SNPs reached genome-wide significance with pFDR < 0.05
(dashed black line). For better display purposes, SNPs with a praw < 1E-11 (solid gray line) were not shown individually andwere clustered and
represented by one triangle at praw = 1E-11 (solid gray line). (C) Significantly disrupted functional pathways on 1841 genome-wide significant SNPs
with pFDR < 0.05 (and their annotated genes) usingMetaCore. AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative;
RVMMAT, retrospective varying coefficient mixedmodel association test; SNP, single nucleotide polymorphism.

quantile-quantile plot. Specifically, 99.93% SNPs were close to

the diagonal line, indicating an absence of significant inflation (genome

inflation factor= 0.97, Figure 2A). RVMMAT significance levels (raw p-

values [praw]) for all SNPs were shown in aManhattan plot (Figure 2B).

Although we performed genome-wide tests across 9,573,130 imputed

SNPs, many SNPs were highly correlated; and therefore, we con-

sidered a widely used threshold praw < 5E-08 as our genome-wide

significance level (solid black line in Figure 2B). We further performed

a false discovery rate (FDR) correction on praw across all SNPs at a

lower genome-wide significance level (pFDR< 0.05, dashed black line in

Figure 2B) using the method developed by Benjamini and Hochberg in

1995.31

At praw < 5E-08, 244 SNPs reached genome-wide significance

(Figure 2B). Among the 244 SNPs, the most significant signals were

derived from 36 SNPs on chromosome 19, and were clustered at the

APOE, TOMM40, APOC1, and NECTIN2 (also known as PVRL2) genes.

Among which, the most significant SNP was rs429358 at position

45411941 on chromosome 19 (praw = 1.66E-28), which was the APOE

E4 determinant SNP. Besides chromosome 19, we identified signifi-

cant SNPs on chromosomes 4, 5, 6, 8, 10, 11, and 16. Detailed genome

positions, RVMMAT statistics (praw and pFDR), minor allele frequencies

(MAFs), annotated genes, and distances to annotated genes (in base-

pairs) are listed in Table S1 and described in Supplementary Result 1.

We next examined functional pathways associated with the 1841

genome-wide significant SNPs at pFDR < 0.05 (Figure 2C and Tables S2

and S3).We identified eight significantly enriched functional pathways

(FDR-p < 0.05 in Fisher’s exact test) associated with immune response

(four pathways), G-protein signaling (two pathways), lipid-associated

gene expression (one pathway) and dendritic cell maturation (one

pathway).

3.1.2 Time-varying genetic effect

The genotypic differences and the estimated genetic effect over

time are shown in Figure 3 for 244 genome-wide significant SNPs

at praw < 5E-08. The 𝜒2 statistics (Figure 3A) and estimated logistic

regression coefficients (Figure 3B) at each time point (i.e., age inter-

val)were obtained by using the observed phenotypic valueswithin that

age range. A straight line was used to connect the estimated values at

two adjacent age intervals, and a zero-line was added to indicate no

genotypic effect in Figure 3B.

As shown in Figure 3A, for SNPs on chromosome 19, we observed

anoverall greater genotypic differencebetween clinically impaired and

nonimpaired participants in a wider age interval of 65–80 years old

(maximum𝜒2 = 77.86, bottom plot in Figure 3A), as compared to other
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F IGURE 3 Estimated genotypic difference and genetic effect of 244 genome-wide significant SNPs at pRAW < 5E-08 on binary clinical
impairment status in AD at each time point and age interval. SNPs on chromosomes 10 and 19 are plotted separately in themiddle (chromosome
10 SNPs) and bottom panels (chromosome 19 SNPs) due to the relatively larger number of significant SNPs. SNPs on other chromosomes are
plotted in the top panel. (A) Estimated genotypic differences (𝜒2 statistics) between phenotype groups within each age interval. The number of
subjects in each age group are listed at the bottom. (B) Estimated genotypic effect in predicting impairment status (regression coefficient) in
logistic regressionmodel for subjects within each age interval. Deviations from the zero-line (i.e., no genotypic effect (solid black line)) indicate
greater genotypic effects on this phenotype. (C) Comparisons of significance levels (-log10(praw)) between longitudinal GWASmodels with
time-varying coefficients (RVMMAT, x-axis) and assuming time-constant genetic effect (RGMMAT, y-axis). AD, Alzheimer’s disease; GWAS,
genome-wide association studies; RVMMAT, retrospective varying coefficient mixedmodel association test; SNP, single nucleotide polymorphism.

SNPs (top and middle plots in Figure 3A). An overall greater genotypic

effect on this phenotype was also observed in the same age interval

for these SNPs, as reflected by larger (in amplitude) logistic regression

coefficients that deviate from the zero-line (Figure 3B, bottom plot).

Since in the logistic regressionmodel, we coded clinically impaired sta-

tus as zero and clinically nonimpaired status as one, a negative regres-

sion coefficient here indicated the possession of alleles contributing

negatively toward clinically normal status, (i.e., increased effect toward

clinical impairment status). Furthermore, for these chromosome 19

SNPs, both longitudinal GWAS models with and without time vary-

ing coefficient (RVMMATandRGMMAT) demonstrated high statistical

power, asmost SNPs reached significant p-values (praw <1E-10) in both

models (Figure 3C, bottom plots).

We additionally observed a larger genotypic difference on AD

clinical impairment status in a smaller age interval of 70–75 years old

for SNPs on chromosomes 6, 8, 10, and 11 (top and middle plots in

Figure 3A). These genotypic differences were not observed before 60

years old, and diminished after 80 years old, as shown by the reduced

𝜒2 values. Deviations of regression coefficients from the zero-line

in Figure 3B also indicated that the genetic effect of these SNPs on

AD clinical impairment status decreased during aging (top and middle

plots in Figure 3B). For most of these SNPs, longitudinal GWASmodels

that assume a time-constant genetic effect (RGMMAT) generated

less significant p-values compared to our model, which incorporates a

time-varying coefficient (RVMMAT, Figure 3C upper andmiddle plots).

3.1.3 Replication

We repeated the RVMMAT method on 244 genome-wide significant

SNPs (praw < 5E-08) using the NACC dataset. In this replication, 29

SNPs reached praw < 0.05 (Table S1). Twenty-four SNPs clustered
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F IGURE 4 RVMMAT results on continuous phenotype of brain amyloid accumulation (PET-SUVR) in AD using ADNI participants. (A)
Quantile-quantile plot indicates no evidence of inflation with a genome inflation factor 𝜆 = 0.95. (B)Manhattan plot shows that 73 SNPs reached
genome-wide significance with praw < 5E-08 (solid black line), and 85 SNPs reached genome-wide significance with pFDR < 0.05 (dashed black line).
For better display purposes, SNPs with a praw < 1E-11 (solid gray line) were not shown individually andwere clustered and represented by one
triangle at praw = 1E-11 (solid gray line). (C) Estimated genotypic effect (regression coefficient) in predicting PET-SUVRs in linear regressionmodel
for subjects within each age interval. Deviations from the zero-line (solid black line) indicate greater genotypic effects on this phenotype. ADNI,
Alzheimer’s disease neuroimaging initiative; PET-SUVR, positrom emission tomography-standardized uptake value ratio; RVMMAT, retrospective
varying coefficient mixedmodel association test; SNP, single nucleotide polymorphism.

on chromosome 19, with 12 SNPs survived this FDR-correction

(described in Supplementary Result 2 and Figure S1). Five SNPs

clustered at KSR1P1 pseudogene on chromosome 10. Two additional

SNPs clustered to HLA-DQB1 gene on chromosome 6 reached a trend

level significance (praw < 0.10).

3.2 Longitudinal GWAS with a continuous
phenotype

Figure 4 shows RVMAMT results on a continuous phenotype of brain

amyloid accumulation using 2598 longitudinal PET-SUVR measures

from ADNI participant. Using this phenotype, RVMMAT produced a

genomic inflation factor of 0.95 (Figure 4A). At praw < 5E-08, 73 SNPs

reached genome-wide significance (Figure 4B). Most of these SNPs

were again clustered on chromosome 19 and annotated to APOE,

APOC1, TOMM40, and NECTIN2 genes. In addition to chromosome 19,

one SNP on chromosome 1 reached genome-wide significance and

was located at the FMN2 gene. In addition, as shown in Figure 4C,

an increasing genotypic effect on PET-SUVR was observed when

participants’ age increased, as indicated by the larger (in amplitude)

regression coefficient that deviates from the zero-line. We next per-

formed a functional pathway analysis using top SNPswith praw < 1E-04

(NSNP = 1039, Table S4) and identified 17 significantly disrupted

biological processes that were involved in immune response, signal

transduction, development, and neurophysiological process (Table S5).

4 DISCUSSION

The development and progression of AD is a complex process that

could change over time, during which the impact of genetic variation

on phenotypes may also fluctuate. Incorporating longitudinal pheno-

typeswith time-varying coefficients inGWASprovides theopportunity

to identify this changing genetic effect on phenotypic variations over

time along the disease continuum and, therefore, may shed new light

on understanding AD patho-mechanisms. In this study, we utilized a

varying coefficient model, RVMMAT, to perform longitudinal GWAS

on repeated measurements of clinical and biological phenotypes in

AD. Benefiting from the improved statistical power with longitudinal

measures in RVMMAT, a relatively limited number of subjects from

the publicly available ADNI database were used. Our study led to the
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identification of genome-wide significant SNPs that could convey time-

varying and age-dependent genetic effects on phenotypes for both

binary clinical impairment status and continuous amyloid accumulation

in AD.

Modeling varying AD genetic risk over time has been shown to

result in a 5%–10% statistical power gain in GWAS and has assisted

in discovering novel AD-associated variants.20,25,32 The method we

adopted here, RVMMAT, (1) utilized time-varying coefficients tomodel

fluctuating genetic effects on dynamic phenotypes, and (2) applied

retrospective tests that provide robustness against model misspecifi-

cation. With the adaptability and robustness, Xu et al., 202413 have

shownRVMMATcan lead to improved statistical power inGWASwhen

tested on simulated data with known ground truth. In our results, the

RVMMATmethodalsoproducedmore significant results for SNPswith

moderate effects than models assuming a constant genetic effect over

time (i.e., RGMMAT, Figure 3C, upper and middle plots). Note that for

SNPs that convey relatively large genetic effects, bothmodelswith and

without time-varying genetic effect tend to produce significant results

(Figure 3C bottom plots).

With increased statistical power using RVMMAT, we identified 244

genome-wide significant SNPs relevant to clinical impairment status

in AD (Figure 2). The most predominant signals were clustered on

chromosome 19, with the most significant SNP to be the APOE E4

determinant SNP (Table S1). Our post hoc age-stratified analyses fur-

ther demonstrated that the maximum genotypic effect of these SNPs

on AD impairment status existed at the age interval of 70–75 years

old, and then declined with age (Figure 3). These observations were

consistent with several previous reports. For instance, APOE E4 allele

has been shown to convey an age-dependent hazard in developing AD

that declines with increasing age.14 Logistic regression analyses (simi-

lar towhatweperformed in this study) have further demonstrated that

theAPOE genotype shared a greater regression coefficient and a larger

area under theROCcurve in predicting clinical ADcases in participants

younger than 80 years old, as compared to more senior participants.33

In our study, these observed time-varying genetic effects on chromo-

some 19 SNPs, especially the APOE E4 determinant SNP, were also

replicated using the NACC dataset (Table S1). Our replication study

combinedwith previous reports have strengthened the potential time-

varying effect of these chromosome 19 SNPs on AD clinical status.

Different from clinical impairment status, our study identified 72

SNPs on chromosome 19 that may convey an increasing genotypic

effect on brain amyloid accumulation with increased age (Figure 4).

More specifically, our results showed that, before the age of 85,

the genotypic effect of these SNPs on brain amyloid accumulation

remained constant, with a significant increase in more senior partici-

pants. These results indicated that distinct time-varying genetic effects

mightoccur for these chromosome19SNPs towardADclinical andbio-

logical phenotypes, respectively. These resultswill benefit from further

validation, as our study contained a relatively small number of senior

participants for the amyloid phenotype.

In addition to chromosome 19, our longitudinal GWASmodels iden-

tified significant SNPs on other chromosomes. Among them, SNPs on

chromosome 6 were clustered toHLA-DQB1 gene and reached a trend

level significance in our replication analysis using the NACC cohort

(Figure 2 and Table S1). HLA-DQB1 has been reported to convey a sig-

nificant age-of-onset risk in developing AD,34 which might explain our

observation of the decreased genotypic effect of these SNPs on AD

clinical impairment status along aging. Our study further identified sig-

nificant SNPs clustered to lincRNA or pseudogenes on chromosome

10, with a time-varying genetic effect on AD clinical impairment sta-

tus. More recently, there has been an increasing number of studies

focused on the role of long noncoding RNAs in regulating expres-

sion and modulating protein levels in AD.35,36 Therefore, these SNPs

could be potential novel signals in AD genetic mechanisms, but require

further replication and validation studies.

Our pathway analyses of top SNPs highlighted the involvement

of immune responses, lipid metabolism, G-protein signaling and

neurophysiological processes in clinical impairment status and brain

amyloid accumulations related to AD (Figure 2 and Table S3). Given

the established role for these pathways in neurodegeneration,7 our

findings suggest that the longitudinal GWAS model can provide

enhanced statistical power in detecting biologically relevant genetic

loci that are associated with phenotypic dynamics, and highlight the

role of neuroinflammation in AD.

Following the ATN framework1 and AD clinical impairment status,

we have further limited our longitudinal GWAS analyses to partic-

ipants that were classified as amyloid positive on their latest PET

scans in ADNI (detailed in Supplementary Result 3). In this analysis,

chromosome 19 SNPs clustered to APOE, APOC1, or TOMM40 did not

reach genome-wide significance (Figure S2). Given the reduced sample

size (Nsub = 620), we may lack the statistical power of the model to

detect relevant signals. The lack of significance of these chromosome

19 SNPs might also provide additional evidence of previous findings

that SNPs clustered to APOE loci were associated with amyloid

accumulation in AD.37 Furthermore, pathway analyses on these top

SNPs have highlighted oxidative stress, particularly reactive oxygen

species-induced cellular signaling, to be the most disrupted functional

pathway (Figure S2C).

Interestingly, we were only able to replicate time-varying genetic

signals on chromosome 19 using the NACC dataset for the pheno-

type of AD clinical impairment status. This limited replication might

be explained partially by the different racial and phenotypic group

distributions between ADNI and NACC participants (Table 1). Future

analyses using additional cohorts fromdiverse backgrounds could then

take full advantage of the RVMMAT method in longitudinal GWAS to

produce novel and stable results. With the larger sample-size, it would

also be interesting to restrict longitudinal GWAS, or even traditional

GWAS, to biologically definedADcases, that is, to amyloid-positive and

tau-positive participants (Supplementary Discussion). Another possi-

ble futuredirection thatmightnot relyonadditional participantswould

be to compute an age-specific polygenic risk score (PRS) for each age-

group with the genetic risk estimated particularly for that age interval

(Supplementary Discussion). Age-specific PRS might be a less biased

and more accurate measure to estimate participants’ genetic risk, as it

accounts for the potential time-varying genotypic effects on dynamic

phenotypes.
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