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A B S T R A C T

A number of studies have assessed the effects of psychoactive drugs on stress biology, the neuroadaptations
resulting from chronic drug use on stress biology, and their effects on addiction risk and relapse. This review
mainly covers human research on the acute effects of different drugs of abuse (i.e., nicotine, cannabis, psy-
chostimulants, alcohol, and opioids) on the hypothalamic-pituitary-adrenal (HPA) axis and the autonomic
nervous system (ANS) responses. We review the literature on acute peripheral stress responses in naïve or light
recreational users and binge/heavy or chronic drug users. We also discuss evidence of alterations in tonic levels,
or tolerance, in the latter relative to the former and associated changes in the phasic stress responses. We discuss
the impact of the stress system tolerance in heavy users on their response to drug- and stress-related cue re-
sponses and craving as compared to control subjects. A summary is provided of the effects of glucocorticoid
responses and their adaptations on brain striatal and prefrontal cortices involved in the regulation of drug
seeking and relapse risk. Finally, we summarize important considerations, including individual difference factors
such as gender, co-occurring drug use, early trauma and adversity and drug use history and variation in
methodologies, that may further influence the effects of these drugs on stress biology.

1. Introduction

Substance use disorders (SUDs) incur a significant burden to society
in the United States and worldwide. In the United States alone, SUDs
are estimated to cost $400 billion across a variety of domains, including
crime, poor health outcomes, and lost productivity (US Department of
Health and Human Services, 2016). There have been alarming shifts in
the clinical presentation where young people are increasingly experi-
encing more consequences from use as demonstrated by the increases in
alcohol-related liver disease (Tapper and Parikh, 2018), opioid use
disorder (Martins et al., 2017), and marijuana-related vehicle crashes
(Brady and Li, 2014). These trends collectively point to the importance
of targeting specific mechanisms that may facilitate the transition from
occasional use to chronic, problematic substance abuse.

Early life stress and cumulative adversity, including child mal-
treatment, are key factors that play a critical role throughout the cycle
of addiction, from the development of addictive disorders, to main-
tenance, relapse, and recovery from SUDs (Enoch, 2011; Le Moal and
Koob, 2007; Sinha, 2008, 2001). There has been limited focus on the
potent effects of drug use itself on the acute stress response. Although
several studies have pointed to an altered setpoint in these systems, less
has focused on effects of these adaptations on cue reactivity, drug
motivation, and relapse risk. For this reason, we uniquely focus on the

effects of acute and chronic drug use on the biological stress pathways
and their related effects on stress, reward, craving, and relapse risk.
Previous work has investigated the acute effects of different drugs of
abuse in animal models of acute and chronic use (Armario, 2010) and
translational research on addiction course (Lijffijt et al., 2014). Thus,
we focus primarily on human studies and the peripheral stress response
and include central reward and motivation pathways when discussing
the effects of altered peripheral stress biology on drug motivation and
intake. Furthermore, this review covers the most commonly used drugs
of nicotine, alcohol, cannabis, psychostimulants (i.e., cocaine and am-
phetamines), and opioids.

1.1. Relationship between peripheral and central neuroadaptations to drug
use

The most frequently studied biological stress responses in relation to
SUDs include the two branches of the peripheral autonomic nervous
system (ANS), specifically the physiologic responses of the sympathetic
and parasympathetic arms, and the neuroendocrine responses of the
hypothalamic-pituitary-adrenal (HPA) axis (see Milivojevic and Sinha,
2018 for review of stress biomarkers). For this review, we will focus on
specific measures of ANS (i.e., epinephrine/norepinephrine, heart rate
variability [HRV]) and HPA axis responses (i.e., adrenocorticotropic
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hormone [ACTH], cortisol/corticosterone; see Fig. 1 for an illustration).
The central stress pathways in humans have been described in detail in
previous reviews (Lovallo, 2006; Sinha, 2008) and include interactions
between brain stem (Locus Coeruleus [LC]; Ventral Tegmental Area
[VTA]; Substantia Nigra [SN]; Dorsal Raphe), limbic (hypothalamus,
amygdala, thalamus, and the Bed Nucleus of the Stria Terminali
[BNST]), striatal (ventral and dorsal) and the insular, anterior cingulate
and regions of the prefrontal cortex (PFC), and the sensory and motor
cortices, circuits that are involved in the processing of drug and
stressful stimuli and in regulating these responses (see Fig. 1). These
central stress pathways have been most commonly implicated by neu-
roimaging tools in acute drug effects, drug motivation and as risk
markers for relapse (Goldstein and Volkow, 2002; Longo et al., 2016;
Sinha, 2013, 2008; Sinha and Li, 2007).

2. Acute and chronic psychoactive drug effects on peripheral
stress responses

2.1. Nicotine

2.1.1. Acute effects of nicotine in non- and light smokers
The acute effects of nicotine on the HPA axis in non-smokers or light

smokers (”chippers”) have not been as well-documented, particularly in
human samples, as compared to chronic users. Nevertheless, consistent
with evidence in non-dependent animals, nicotine increases corticos-
terone levels particularly at high levels of nicotine dosing (Acri, 1994;
Chen et al., 2008; Donny et al., 2000; Lutfy et al., 2012; Okada et al.,
2003). Both nicotine-naïve and regular nicotine users show dose-de-
pendent increases in cortisol, ACTH and prolactin have been reported

(see Mello, 2010 for review). Studies of the mechanism in animal
models suggest that the effect of nicotine on the HPA axis is primarily
through the nicotine-induced release of norepinephrine and CRH in the
paraventricular nucleus of the hypothalamus (Fu et al., 1997; Matta
et al., 1990; Okada et al., 2003). These collective findings indicate ni-
cotine activates the HPA axis via its direct effects on the catecholami-
nergic and cholinergic stimulation of the ANS.

Regarding the ANS, naïve or light smokers’ catecholamine response
has been mostly documented in animal models, but several human
studies have studied the cardiovascular effects of nicotine in non-
smokers. Epinephrine has been reliably shown to increase in a dose-
dependent fashion in response to nicotine (Grunberg et al., 1988; Mello,
2010; Morse, 1989; Watts, 1960), particularly under conditions of ni-
cotine self-administration (Donny et al., 2000). Nicotine also increases
cardiovascular output in animals (Watts, 1960), a finding that has been
replicated in non-smoking humans (Foulds et al., 1997; Perkins et al.,
2009). In human models, several studies have demonstrated that ni-
cotine increases cardiovascular activity as measured by increases in low
frequency (LF; an index of sympathetic activity), and decreases in high
frequency (HF; parasympathetic activity) HRV, both in response to ni-
cotine and when co-administered with a stressor (Karakaya et al., 2007;
Sjoberg and Saint, 2011).

2.1.2. Acute effects of nicotine in chronic, heavy smokers
Chronic nicotine administration dysregulates tonic levels of the HPA

axis. Chronic smokers show greater basal cortisol levels relative to non-
smokers (al’Absi, 2006). In chronic users, acute nicotine administration
further increases cortisol and ACTH levels (Chen et al., 2008;
Mendelson et al., 2008; Pomerleau and Pomerleau, 1990; Seyler et al.,
1984; Wilkins et al., 1982) in a dose-dependent manner (Hill and
Wynder, 1974; Mendelson et al., 2005). Animal models show that ni-
cotine elevates corticosterone and ACTH early in use but, although
nicotine still induced a rise, this response to nicotine was attenuated
after successive administration (Chen et al., 2008); a comparison that
has been replicated in a correlation study of humans where chronic
users are compared to chippers (Shiffman et al., 1992). Nicotine with-
drawal is associated with a higher basal HPA axis tone and blunted
response to nicotine at varying lengths of acute abstinence (Cohen
et al., 2004; Frederick et al., 1998). Thus, the HPA axis adapts to the
stimulating effects of chronic smoking (see al’Absi, 2006 for review)
and, during early abstinence, these changes result in an increase of
activity that worsens withdrawal.

Heavy smokers also display disruptions in ANS system functioning.
Like the HPA axis, acute nicotine administration increases heavy smo-
kers’ epinephrine, norepinephrine, blood pressure, and heart rate
(DeVito et al., 2014; Foulds et al., 1997; Hill and Wynder, 1974;
Mendelson et al., 2008; Minami et al., 1999; Sofuoglu et al., 2012,
2001; Tsuji et al., 1996; Wilkins et al., 1982). Acute administration of
nicotine also increases LF HRV, decreases HF HRV, and increases the
ratio of LF/HF HRV (Ashare et al., 2012; Barutcu et al., 2005; Karakaya
et al., 2007; Kobayashi et al., 2005; Minami et al., 1999). Cigarette
chippers have a more robust blood pressure response to nicotine than
was noted in heavy smokers (Shiffman et al., 1992). Sustained ab-
stinence appears to normalize ANS activity as evidenced by decreased
epinephrine and norepinephrine levels and reduction in the LF/HF HRV
(Minami et al., 1999). Nicotine, therefore, activates the peripheral ANS
stress system in both acute response and overall tone that normalizes
over sustained abstinence.

2.2. Cannabis

2.2.1. Acute effects of cannabis in light users
Δ1-tetrahydrocannabinol (THC) is the psychoactive component of

cannabis. Administration of THC activates corticosterone/cortisol and
ACTH in both animal (Kubena et al., 1971; Martı;́n-Calderón et al.,
1998; Puder et al., 1982) and human samples (D'Souza et al., 2004;

Fig. 1. The dynamic interplay between peripheral stress response and central
stress circuitry. Autonomic and HPA axis arousal (1) occurs in response to stress
and drug use. This arousal causes a peripheral feedback (2) into limbic circuits
as well as central activation to initiate adaptive emotional, cognitive and be-
havioral responses to regulate stress, emotion and reward states (3). Sensory
regions provide information to the amygdala, hippocampus, and locus coerulus
(LC), which facilitates adaptation to central emotional, cognitive, behavioral
responses. AMY = Amygdala, HP=Hippocampus, HYP=Hypothalamus,
PFC=Prefrontal Cortex, THAL = Thalamus, VTA=Ventral Tegmental Area.
Templates were used from Servier Medical Art (www.smart.servier.com).
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Hollister et al., 1970; Ranganathan et al., 2009). The action of exo-
genous cannabinoids on the HPA axis is complex, exerting both direct
effects (Puder et al., 1982) on both the paraventricular nucleus of the
hypothalamus and via other brain areas, including the basolateral
amygdala (Armario, 2010). Acute smoked cannabis or oral THC sti-
mulate cardiovascular arousal with increases observed in HR and
plasma epinephrine (Hollister et al., 1970) and increases heart rate
(Lindgren et al., 1981; Strougo et al., 2008; Zuurman et al., 2010).

2.2.2. Acute effects of cannabis in heavy users
Acute administration of smoked cannabis or oral THC in chronic

users has also been shown to stimulate both the ANS and the HPA axis.
With regard to the HPA axis, cortisol increases in response to either
smoking marijuana or receiving intravenous THC has been reported
(Cone et al., 1986; D'Souza et al., 2008; Ranganathan et al., 2009).
However, the THC-induced rise in disordered users was blunted when it
was compared to the cortisol increase in healthy controls (D'Souza
et al., 2008; Ranganathan et al., 2009). Prolonged exposure to THC over
the course of two weeks blunted the cortisol rise expected after ad-
ministration (Benowitz et al., 1976). This previous finding combined
with observed higher basal cortisol levels in heavy cannabis users
(Cuttler et al., 2017; King et al., 2011) and sustained higher levels even
after six months of abstinence (Somaini et al., 2012) suggest that con-
tinued cannabis use is associated with lasting adaptations in the HPA
axis. It should be noted that based on these studies, it is unclear if
chronic cannabis use alters stress function or vice versa. While some
studies have found that THC does not impact epinephrine and nor-
epinephrine concentration (Dumont et al., 2009), THC does induce a
marked increase cardiovascular response in chronic users (Dumont
et al., 2009; Haney et al., 2016; Lindgren et al., 1981; Ramesh et al.,
2013; Vandrey et al., 2013), but this response does not differ between
heavy and light cannabis smokers (Haney et al., 2016). Thus, acute
exposure to the psychoactive components of cannabis increases HPA
axis activity and cardiovascular arousal, but its effects on peripheral
catecholamines are not clear and more research is needed. Abrupt
cessation of smoking also caused blood pressure to increase dramati-
cally (Vandrey et al., 2011); however, the abstinence-related increases
in heart rate are delayed (Haney et al., 2018).

2.3. Stimulants

2.3.1. Acute effects of stimulants in naïve or light users
Cocaine increases corticosterone and cortisol in cocaine-naïve ro-

dents (Borowsky and Kuhn, 1991; Levy et al., 1991; Moldow and
Fischman, 1987; Saphier et al., 1993; Sarnyai et al., 1992) and humans
(Heesch et al., 1995) in a dose-dependent fashion. Similarly, cocaine
also increases ACTH in male rodents (Borowsky and Kuhn, 1991; Kuhn
and Francis, 1997; Levy et al., 1991; Moldow and Fischman, 1987),
although this was not replicated in the one human study (Heesch et al.,
1995). Furthermore, it appears that CRF may play an important role in
the mechanism of action of cocaine. One study found that CRF, when
peripherally administered, blocks the effects of HPA response (Sarnyai
et al., 1992). Gender may be an important moderator as indicated by
one study that found female rats had a larger corticosterone response to
cocaine than male (Kuhn and Francis, 1997). This finding is particularly
important since most cocaine administration studies in naive popula-
tions have focused on male animals and humans. Cocaine also stimu-
lates the ANS as evidenced by increased epinephrine and nor-
epinephrine in an animal sample (Chiueh and Kopin, 1978) and
increased heart rate in a human sample (Vongpatanasin et al., 2004). In
human models, cocaine dramatically increases HR and reduces the
activity of the parasympathetic nervous system as evidenced by re-
duced HF HRV (Vongpatanasin et al., 2004).

Another group of stimulants, amphetamines, has similar impacts on
the HPA axis and adrenergic system. Similar to cocaine, amphetamines
increase cortisol responding in human (de Wit et al., 2007; dos Santos

et al., 2011; Halbreich et al., 1981; Jacobs et al., 1989; Nurnberger
et al., 1984; L. M. Oswald et al., 2005; Sachar et al., 1980; Söderpalm
et al., 2003; Wand et al., 2007; White et al., 2006) and rodent samples
(Knych and Eisenberg, 1979; Swerdlow et al., 1993). Individuals with a
history of using methamphetamine at least six times, but who were not
dependent, had increased in cortisol in response to methamphetamine
administration (Harris et al., 2006, 2003). CRF and other neuro-
transmitters mediate the cannabis-induced increase in cortisol
(Armario, 2010; Swerdlow et al., 1993). In addition to its actions on the
HPA axis, amphetamine also stimulates adrenergic response as evi-
denced by increased norepinephrine, blood pressure (Nurnberger et al.,
1984), blood pressure (Nurnberger et al., 1984), and heart rate (de Wit
et al., 2007). Amphetamine acutely activates the ANS of experienced,
but not dependent, methamphetamine users as indexed by the nor-
epinephrine metabolite, 3-methoxy-4-hydroxyphenylethylene glycol
(MHPG) (Harris et al., 2006).

2.3.2. Acute and chronic effects of stimulants in dependent users
Several studies have demonstrated that cocaine increases corticos-

terone secretion (see Marinelli and Piazza, 2002 for review). In humans,
chronic cocaine users also display higher cortisol and ACTH levels when
administered cocaine (see Manetti et al., 2014 for review) and elevated
basal levels of cortisol (Haney et al., 2001) that either are unchanged by
abstinence (McDougle et al., 1994; Mendelson et al., 1988) or reduced
with sustained abstinence from cocaine (Buydens-Branchey et al.,
2002). Cocaine administration also increased the adrenergic response
including catecholamine levels (Sofuoglu et al., 2001), blood pressure,
and heart rate (Esel, 2001; see Foltin et al., 1995 for review; Kollins and
Rush, 2002; Kosten et al., 1996; Lynch et al., 2008, 2006; Reid et al.,
2006; Walsh et al., 2009) dose-dependently (Collins et al., 2007; Foltin
et al., 2003; Lynch et al., 2006). Some studies have suggested that re-
peated exposure to cocaine sensitizes the heart rate response to cocaine
with most robust responses occurring during laboratory-monitored co-
caine binges (Kollins and Rush, 2002; Walsh et al., 2009, 2000). Other
studies found that, after an initial rise in the subjective cardiovascular
effects, the cardiovascular response flattens suggesting that individuals
become tolerant to binge levels (Bitmead and Bitmead, 1984; Foltin
et al., 2003; Ward et al., 1997). Reed and colleagues’ (1984) dissection
of the HR response by comparing the area-under-the-curve to the
overall increases suggested that the increase in the cardiovascular re-
sponse may be due to the conditioned response of pairing administra-
tion with contextual cues. During acute abstinence, the norepinephrine
metabolite MHPG is increased as was systolic blood pressure in re-
sponse to intranasal cocaine (McDougle et al., 1994). Basal cardiovas-
cular levels are elevated in chronic cocaine users (Sharma et al., 2016).

The effects of amphetamines on cortisol levels in chronic users is
complicated. Regular 3,4-methylenedioxymethamphetamine (MDMA
or “ecstasy”) users had higher hair cortisol levels than light, recent
users or non-using controls (Parrott et al., 2014). One study found that
amphetamine use while on placebo treatment was associated with a
significantly lower cortisol level after administration relative to am-
phetamine-dependent individuals on naltrexone (Jayaram-Lindströ
et al., 2008); however, another study found that methamphetamine-
increased cortisol and ACTH in experienced non-dependent users. The
effect of amphetamines on basal levels of the HPA axis is not clear-cut.
Some studies have found that non-treatment seeking chronic metham-
phetamine users had lower (Carson et al., 2012) or no differences in
basal cortisol levels (Zorick et al., 2011) as compared to controls sub-
jects. The latter correlational study found no differences between in-
dividuals with methamphetamine dependence and control subjects
after four weeks of abstinence. Methamphetamine-dependent in-
dividuals had altered sympathetic tone with increased LF HRV, de-
creased HF HRV, and higher LF/HF ratio, and greater use positively
correlated with the latter (Henry et al., 2012). More research is ne-
cessary to understand the effects that amphetamines have in stimulant-
dependent individuals fully.
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2.4. Alcohol

2.4.1. Acute effects of alcohol in light drinkers/naïve individuals
Alcohol acutely stimulates the HPA axis in non-dependent users. In

rats, alcohol has been shown to consistently increase plasma corticos-
terone and ACTH levels (Allen et al., 2011; Richardson et al., 2008). In
humans, similar increases in cortisol have been noted in response to
acute alcohol administration (Frias et al., 2000; Gianoulakis et al.,
1996; Mendelson and Stein, 1966; Välimäki et al., 1984; W.J. et al.,
1995). It appears the effects of alcohol on the HPA axis occurs primarily
due to alcohol's actions on the paraventricular nucleus of the hy-
pothalamus (Armario, 2010). With respect to ANS activation, animal
models have demonstrated elevated epinephrine and norepinephrine
response to intravenous alcohol administration (Livezey et al., 1987;
Perman, 1960) and, similar to the observations with the HPA axis in
humans, found that alcohol blunted the expected stress response when
the animals were confronted with a stressor. In humans, noradrenaline
responses were also elevated and peaked about 30 min after drinking
0.9 g/kg of alcohol and remained high after 4 h (Howes and Reid,
1985). Acute alcohol administration also appears to impact cardiovas-
cular indices of increased sympathetic arousal. Acute alcohol adminis-
tration in moderate to high doses consistently decreases high-frequency
HRV and also increases the ratio of low frequency to high-frequency
heart rate variability, an index of sympathetic to parasympathetic
function (Romanowicz et al., 2011). Collectively, these results are
consistent with animal studies and suggest that alcohol acutely in-
creases HPA axis and ANS activity in naive alcohol users and may
further blunt the stress response when administered in close temporal
proximity to a stressor.

2.4.2. Acute effects of alcohol in binge and alcohol-dependent samples
Persistent binge drinking alters the HPA axis and ANS system via the

repeated activation by frequent, heavy alcohol use. Basal cortisol levels
are elevated in binge heavy men (Blaine et al., 2018; Thayer et al.,
2006) and women (Wemm et al., 2013). Furthermore, the expected rise
in cortisol in response to alcohol administration was blunted in heavy
relative to light/moderate social drinkers (King et al., 2006). Basal HRV
levels appear to significantly lower in heavy drinking males, indicating
decreased functioning of the ANS (Thayer et al., 2006). Also, in-
dividuals who were heavy drinkers five years prior had a reduced
cortisol response to alcohol relative to those who were light drinkers
(King et al., 2016).

Alcohol stimulates cortisol levels in both dependent animals
(Richardson et al., 2008) and humans (Adinoff et al., 2003; Feller et al.,
2014; Mendelson and Stein, 1966; Stokes, 1973). When an individual
abstains from alcohol, withdrawal is also associated with increased
basal cortisol levels (Mendelson and Stein, 1966) and decreased diurnal
variation (Adinoff et al., 1991; Risher-Flowers et al., 1988). Cortisol
tone also tends to be increased during periods of heavy drinking (Wand
and Dobs, 1991). Although basal cortisol levels decrease during longer
abstinence (Motaghinejad et al., 2015), sustained abstinence is asso-
ciated with increased basal cortisol levels as compared to healthy
controls (Starcke et al., 2013). Activation of the ANS system in alcohol-
dependent individuals is also affected by alcohol. Acute intoxication
was associated with increases in MHPG (Borg et al., 1981) and, as de-
pendent individuals enter acute withdrawal, levels of MHPG decrease
as time since their last drink increase (Hawley et al., 1994). Although
not tested directly in response to acute intoxication, adaptive HRV
functioning is also directly modified by alcohol dependence. A meta-
analysis found that alcohol dependence, regardless of treatment setting,
is associated with a decrease in basal HF HRV levels (Quintana et al.,
2013). Collectively, the results from these studies point to neuroa-
daptations in HPA and ANS response with active binge and chronic use
such that there is a blunted or lack of a phasic response but elevated
tonic levels in binge/disordered users relative to controls.

2.5. Opioids

2.5.1. Acute effects of opioids in non- and light users
Unlike other drugs of abuse, opioids appear to have different effects

on stress biology in rodent as compared to humans. In rats, morphine
increases ACTH and corticosterone (Buckingham and Cooper, 1986;
Eisenberg, 1985; Suemaru et al., 1989) whereas, in humans, morphine
dampens the HPA response (Delitala et al., 1983; George et al., 1974;
Rittmaster et al., 1985; Zis et al., 1984). Naloxone, an opioid antago-
nist, increases ACTH and cortisol levels in humans (Grossman et al.,
1986; Naber et al., 1981) and pigs (Richard et al., 1986; Rushen et al.,
1993). There is evidence that opioids directly impact the HPA axis
(Vuong et al., 2010) to suppress HPA axis responses. The impact of
opioids on the ANS is complex, with decreasing response of HPA axis to
CRF, morphine had limited impact on the epinephrine and nor-
epinephrine response (Rittmaster et al., 1985). Although opioids de-
crease heart rate and blood pressure (Suemaru et al., 1989), high-fre-
quency HRV has been shown to be decreased by opioids (Latson et al.,
1992).

2.5.2. Chronic effects of opioids on stress systems in dependent samples
In human samples, opioids and opioid agonists, including metha-

done and buprenorphine, acutely suppress cortisol levels (Cami et al.,
1992; Mendelson et al., 1975; Nava et al., 2006; Walter et al., 2011,
2008) and basal cortisol levels tend to be higher in opioid-dependent
users as compared to healthy controls (Walter et al., 2011). One early
study found that cortisol was unchanged by heroin administration
(Mendelson et al., 1975); and a more recent study found that diace-
tylmorphine, the pharmaceutical version of heroin prescribed for
maintenance therapy, decreased cortisol levels more so than methadone
(Walter et al., 2011). Withdrawal from opioids corresponds with sig-
nificant tonic increases in ACTH and cortisol levels regardless of whe-
ther it was induced by a naloxone challenge (Gerra et al., 2003) or
occurred naturally over time (Shi et al., 2009). Acute administration of
intravenous opioids is associated with an initial spike in heart rate that
is followed by a delayed reduction in heart rate (Kennedy et al., 2015;
Rook et al., 2006). A similar pattern of results was found for with-
drawal-related effects on the SAM system. Specifically, epinephrine,
norepinephrine, LF HRV, and blood pressure increase in response to
naloxone-induced withdrawal (Hoffman et al., 1998; Kienbaum et al.,
1998; McDonald et al., 1999).

On the basis of the review presented in the previous sections,
Table 1 summarizes the direction of phasic HPA axis and ANS responses

Table 1
Acute drug response in non-disordered/lightly using subjects and actively using
binge/disordered substance users.

Substance Acute Drug Response Binge/Disordered vs.
Naïve/Non-Disordered*

HPA ANS HPA ANS

Nicotine ↑ ↑ ↓ ↓
Cocaine ↑ ↑ ? ?
Amphetamine ↑ ↓ ↑ ? ?
Cannabis ↑ ↑ ↓ ↑
Alcohol ↑ ↑ ↓ ↑
Opioids ↓ ↑ ? ?

Note: In autonomic nervous system activity, LF HRV is indicative of an acti-
vated sympathetic nervous system response, whereas HF HRV is reflective of
parasympathetic response. Here, we focused on activation of the sympathetic
nervous system within the autonomic nervous system.
* Acute phasic effects of drugs on the HPA axis and the ANS in non-disordered/
lightly using (non-weekly use at very low levels) subjects as compared to ac-
tively using binge/disordered users.
↑ indicates activation; ↓ indicates reduction; ↑ ↓ indicates mixed results; = in-
dicates similar responses; ? indicates areas for future research.
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to acute administration of each psychoactive drug of abuse in naïve/
non-disordered and adaptations in these responses with binge/heavy
and dependent users relative to controls.

3. Drug-related adaptations in stress biology, reward, craving and
relapse risk

The previous sections and Table 1 highlights the potent effects of
the most common psychoactive drugs on stress biology with acute ef-
fects of stimulation for nicotine, cannabis, stimulant, and alcohol, and
depressive effects of acute opioids in humans. More importantly, reg-
ular, binge and chronic use of drugs alter these stress responses, sig-
naling significant adaptations in stress biology. As substance use esca-
lates in frequency and intensity, adaptations in HPA axis and ANS
pathways manifest as changes in basal levels, but also in phasic re-
sponses to drug, stress and challenge (see al’Absi, 2006 for review of
nicotine; Ashare et al., 2012; see Blaine and Sinha, 2017 for review of
alcohol; McKee et al., 2011; McRae-Clark et al., 2011). In turn, with-
drawal-related basal increases in cortisol are associated with cognitive
impairments (Errico et al., 2002). In turn, these cognitive impairments
could perpetuate the worsening of addiction (see Bernardin et al., 2014;
Besson and Forget, 2016; Spronk et al., 2013 for discussion).

This cumulative evidence begs the question of whether such adap-
tations in stress biology are the mere consequences of drug use, or if
they also serve as interoceptive drug-related adaptations that may play
a role in motivating compulsive drug use and relapse risk in chronic
users. There have been decades of focus on mesolimbic striatal dopa-
minergic pathways as critical for the reinforcing effects of psychoactive
drugs. While striatal adaptation may drive compulsive drug motivation,
other positron emission tomography (PET) evidence indicates that
psychoactive drug-stimulated increases in cortisol is highly correlated
with dopamine release in the striatum (Booij et al., 2016; Cox et al.,
2009; Wand et al., 2007) and drug-induced cortisol increases are as-
sociated with the subjective intoxication in healthy volunteers (Oswald
et al., 2005). Similarly, psychological stress provocation in healthy
volunteers has also been shown to increase dopamine transmission in
the striatum and the PFC (Nagano-Saito et al., 2013; Pruessner et al.,
2004), and cortisol responses to psychosocial stressors predict reward
after amphetamine administration (Hamidovic et al., 2010). In a
functional magnetic resonance imaging (fMRI), a psychological stress
provocation results in robust striatal activation, specifically in the
ventral striatum but not the dorsal striatum relative to non-stress cues
in healthy volunteers (Sinha et al., 2016). Also, activity in the ven-
tromedial prefrontal cortex and the rostral anterior cingulate cortex was
predictive of resilient coping and low levels of alcohol use. Consistent
with these findings, other fMRI studies have shown blunted stress re-
sponses in at-risk individuals is predictive of blunted central brain ac-
tivity in limbic-striatal and prefrontal regions (Carroll et al., 2017;
Ginty, 2013) that are critical for regulating motivated behavior and
resilient coping. Other PET research has reported a loss of dopamine
transmission and blunted dopamine release in drug-abusing patients is
correlated with severity of addiction as well as with increases in com-
pulsive motivation for drug and treatment failure (Martinez et al., 2011;
Martinez and Narendran, 2010). Whether these blunted dopamine
changes are related to blunted glucocorticoid responses to drug or stress
has not been fully investigated. Nonetheless, these data highlight that
drug-induced activation of stress and dopaminergic pathways are
highly interactive and suggest that both may jointly play a role in
psychoactive drug effects, and on compulsive drug motivation.

Findings from several well-controlled laboratory studies in treat-
ment-seeking or non-treatment seeking and acutely abstinent drug-
abusing patients have shown a blunted stress cortisol and ANS axis
response to stress and drug cue provocations along with higher basal
cortisol and HR along with disrupted HRV responses (Table 2; see
Sinha, 2008 and Milivojevic and Sinha, 2018 for review). Such re-
sponses are predictive of higher relapse risk after treatment and co-

occur with greater drug craving during stress and drug cue provocation
(Ashare et al., 2012; McKee et al., 2011; Milivojevic and Sinha, 2018;
Sinha, 2011; Sinha et al., 2006). Blunted cortisol arousal to stress cues
is also predictive of increased alcohol motivation to drink alcohol in
binge, heavy drinkers (Blaine et al., 2018). Thus, these studies con-
sistently link adaptations and changes in peripheral and central stress
responses to compulsive drug motivation and relapse risk, thereby
suggesting a need to target these pathways as both markers of addiction
risk and severity but also in treatment development (Milivojevic and
Sinha, 2018).

On the basis of the review presented in previous sections, we present
a heuristic model to illustrate the drug-stress motivation cycle in Fig. 2.
The findings presented earlier suggest a feed-forward cascade of effects
of drugs on stress biology. Our stress biology is wired to help us to adapt
to life's struggles but, in the face of increasing drug use and abuse, this
critical biological process is handicapped and blunted. Consequently,
heavy and chronic drug users are more vulnerable to negative affect,
distress and poor stress coping. Furthermore, with blunted or more
“tolerant” stress responses to drug use, greater levels of drug use are
needed to maintain allostasis, thereby driving a cycle of increased drug
use and stress disruption that further drive greater compulsive drug
motivation and relapse risk.

4. Factors affecting drug effects on stress responses

4.1. Effects of drugs on responding to a stressor

We focused specifically on the effect of drugs on the activity of the
HPA axis and the SAM system in the previous sections; however, an-
ecdotal evidence from patients and several theories of substance use
point to the fact that a stressor often precedes use, thus likely modifying
the response to the stressor. In an experimental model of this ob-
servation, studies have shown that the simultaneous administration of a
drug with a stressor disrupts the normal stress response system (Van
Hedger et al., 2017). For example, when alcohol or methamphetamine
is administered following a stressor, the drug impairs the cortisol re-
sponse to psychosocial and pharmacological stressors (Childs et al.,
2010; Söderpalm et al., 2003). Alcohol administered immediately after
a stressor prolonged the negative affect and increased craving in re-
sponse to the stressor (Childs et al., 2011). When low doses of THC was
administered after a stressor, the subjective distress was also blunted;
however, at high doses of THC, negative affect was increased, and blood
pressure was blunted (Childs et al., 2017). In a human laboratory model

Table 2
Basal states and stress- and drug-cue induced responses in substance abusing
compared to healthy control subjects.

Substance Tonic/Basal State Stress Provocation Drug Cues

HPA ANS HPA ANS HPA ANS

Nicotine ↑ ↑ ↓ ↑ = ? ↑
Cannabis ↑ ↑ ↓ ? ↓ ↑
Cocaine ↑ ↑ ↓ ↑ = ↑ = ↑ =
Amphetamine ↑ ↓ = ↑ ↓ = ? ?
Alcohol ↑ ↑ ↓ ↓ = ? ↑
Opioids ↑ ↑ ↑ ↓ ↓ ↑ ? ↑

Note: A comparison of the tonic levels and acute/phasic effects of stress and
drug cues exposure on the HPA axis and the ANS in non-disordered healthy
controls chronic, binge/substance abusing individuals (not in acute abstinence
or withdrawal). In autonomic nervous system activity, LF HRV is indicative of
an activated sympathetic nervous system response, whereas HF HRV is re-
flective of parasympathetic response. Here, we focused on activation of the
sympathetic nervous system within the autonomic nervous system.
↑ indicates activation; ↓ indicates reduction; ↑ ↓ indicates mixed results; = in-
dicates similar responses; ↑ ? = limited evidence, needs more research; ? in-
dicates areas for future research.
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of smoking relapse, exposure to a stressor increased the rewarding ef-
fects of smoking, which was correlated to cortisol (McKee et al., 2011).
However, these effects may depend on the type of drug administered. In
opioids, cortisol administration was found to reduce craving in patients
with low-dose heroin consumption (Walter et al., 2015). This finding is
perhaps not surprising given that opioids have a dampening effect on
the HPA axis system whereas the other substances of abuse have an
activating effect. Further research is necessary to fully understand the
interactive impact of a drug and stress on stress system responsivity.

4.2. Drug-related factors influencing stress responses

A host of methodological factors (e.g., frequency and amount of
recent drug use, rapidity and amount of acute drug intake, the dose of
the drug administered and tested, type of drug within a broad drug
class, route of administration) could potentially impact the strength of
the drug effects on the stress responses. Notably, Allain et al. (2015)
discuss the role of frequency of drug use and rapidity of use during
bouts as significant aspects of compulsive drug seeking and addiction
risk. Self-motivational aspects of how often drug is used and the use
topography may influence both subjective drug effects, drug-related
stress responses, and drug motivation for continued drug use.

In other research, King and colleagues found that high dose alcohol
(0.8 g/kg) increased cortisol levels in light drinkers whereas a low dose
of alcohol (0.4 g/kg) did not and that heavy binge drinkers showed
blunted cortisol responses (King et al., 2006). On the other hand, Blaine
et al. (2018) showed low levels of alcoholic beer consumed under a
behavioral motivation paradigm increased cortisol in both moderate

non-binge and binge-heavy users. The articles reviewed here use a
variety of administration methods, including intravenous, intranasal,
oral, and self-administration. Each route has differences in the rate of
absorption which would have different impacts on the reactivity of the
stress systems (Gourlay and Benowitz, 1997). Another important
methodological consideration is the impact of recent drug use history
on the acute drug responses. For example, Ramchandani et al. (2002)
found that increased drinking in the past month before participating in
the study predicted the acute subjective and psychomotor response
after an intravenous alcohol administration. Most studies that have
investigated the effect of drugs on the stress systems have required that
individuals remain abstinent for a certain period prior to participating
in the study; however, some individuals may choose to begin abstinence
in advance of their participation and, thus, may have differential re-
sponses to drug administration depending on their length of abstinence.
Relatedly, given the impact of withdrawal on the HPA axis, it is also
likely that the stress system response to drug administration may also
vary depending on their stage of withdrawal.

4.3. Factors that influence the response to stress

Family History: Other studies suggest that participant factors, such
as a family history of alcohol use disorder, may also play a role. Non-
dependent participants with a family history of alcohol use disorders
have consistently displayed an alcohol-induced reduction in cortisol
and ACTH relative to individuals without such a family history
(Schuckit et al., 1996; Zimmermann et al., 2004). Collectively, findings
from these studies suggest that individuals who may be genetically

Fig. 2. A heuristic framework for drug-induced stress and reward interactions is presented to illustrate the effects and acute and chronic drug intake on the stress
biology and their effects on drug motivation and compulsive drug use. A refers to the effects of acute drug use or stress on peripheral and central stress response in
light or inexperienced drug users. B describes the central striatal-prefrontal effects in these healthy individuals that encode drug learning, neuroflexibility, and
resilient coping that results in controlled, low levels of drug intake in light drug users with robust stress responses. C indicates the mediating process of increased
binge and heavy use that results in an altered and blunted stress and reward response in vulnerable individuals. D shows the blunted response then results in the feed-
forward cascade of increased craving, neuroendocrine tolerance, and acute abstinence/withdrawal effects that play a role in compulsive drug use and relapse risk. E
highlights potential moderators that make individuals more vulnerable or more resilient in each of the previous processes.
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predisposed already show patterns of reactivity like dependent users.
Co-Occurring Drug Use: Most of the research studies discussed in

this article focused on samples that were dependent on a single drug;
however, most individuals who seek treatment for substance use dis-
orders report abusing several different types of drug or have a history of
dependence on other substances. Individuals with marijuana use ex-
perience greater reinforcing effects of nicotine use (Perkins et al.,
2009). Combined administration of cocaine and marijuana results in an
increased cardiovascular response and poor cognitive performance as
compared to the effect of either drug alone (Foltin et al., 1995, 1993;
1987; Foltin and Fischman, 1990). Other studies have found that
combined use of cannabis with MDMA results in an enhanced acute
subjective and stress system response to the drugs (Dumont et al., 2009;
Kollins et al., 2015). Findings from our laboratory indicate that a his-
tory of marijuana dependence with alcohol or cocaine use dysregulates
HPA axis responding to stress- and drug-related cues (Fox et al., 2013).
Nicotine increases the self-administration alcohol (Barrett et al., 2006)
and, at low doses of nicotine, increases the alcohol-induced dopamine
release in the VTA (Tizabi et al., 2002). Despite this, we know little
about the impact of polysubstance disorders or other past drug history
has on the HPA axis and ANS response to drugs.

Gender: Drug response may also differ by gender. Women, overall,
tend to report greater sensitivity to drug effects as compared to men.
For example, women tend to show greater sensitivity to the negative
effects of intravenous nicotine administration as compared to men
(DeVito et al., 2014; Sofuoglu and Mooney, 2009), and men tend to
show greater initial reward sensitivity intranasal administration of ni-
cotine (Perkins et al., 2009). In response to cocaine, women reported
greater anxiety following administration (Kosten et al., 1996) and re-
duced high (Lynch et al., 2008) as compared to men. Men tend to have
higher amphetamine-induced dopamine release in striatal regions and
report correspondingly more rewarding effects of the drug as compared
to women (Munro et al., 2006). The effects of these drugs in women
may also vary across the menstrual cycle. Alcohol metabolism differs
across the menstrual cycle, such that faster rates of elimination are
noted in the mid-luteal phase as compared to the early follicular and
ovulatory phases (Sutker et al., 1987). Women in the luteal phase of
their cycle showed decreased responses to cocaine (Sofuoglu et al.,
1999), nicotine (DeVito et al., 2014), and amphetamine (Justice and de
Wit, 1999) as compared to those in their follicular cycle. Although one
study found limited effects of sex and menstrual cycle on the response
to intranasal cocaine (Collins et al., 2007). These collective results
suggest that neuroactive steroids, such as estrogen and progesterone,
play an important role in the metabolism and effects of drug adminis-
tration.

Developmental Stage and Early Trauma: There is evidence that
blunted stress reactivity is a predictor of earlier use of substances
(Evans et al., 2012; Huizink et al., 2006), and that individuals with a
blunted cortisol response to stress are at increased risk for substance use
(Lovallo, 2006). However, it is unclear if this blunted responding be-
comes exacerbated by exposure to drugs and at what developmental
periods are at-risk individuals most vulnerable. Exposure to early life
adversity has known impacts on the HPA axis (Lovallo, 2013) and in-
creases the likelihood that these individuals will develop addictive
disorders later in life (Doan et al., 2014; see Enoch, 2011 for review;
Gerra et al., 2014). Early life adversity is positively associated with
dopamine response to amphetamine in the ventral striatum (Oswald
et al., 2014) and lower gray matter volume in limbic regions in in-
dividuals in treatment for substance use disorders and also predicted a
shorter time to relapse, regardless of type of drug (Van Dam et al.,
2014). In cocaine-dependent individuals, early life adversity increased
the cortisol response to stress although there was no healthy control to
determine if this response was blunted (Flanagan et al., 2015). A recent
study found that early life adversity moderated the impact of with-
drawal on stress system response to a stressor (al’Absi et al., 2018).
However, few studies have tested these associations systematically in

response to stress, and even fewer still have assessed the impact of early
life adversity in response to administration of drugs.

5. Conclusions and future directions

Intake of psychoactive drugs has significant acute effects on the
peripheral stress pathways. These effects parallel drug-related effects on
central stress and reward pathways to alter acute drug-related sub-
jective, neuroendocrine, and physiological states. Regular, high levels
of drug use alter stress and reward responses both in tonic and phasic
responding and recent findings suggest that such alterations are sig-
nificantly associated with the tolerance, withdrawal and intoxication
effects of drugs as well as in predicting current drug use and future
relapse. This review suggests that addictive substances, although
varying in neurobiological targets of action, are similar in having a
significant and potent effect on stress pathways, to affect stress re-
sponses, craving, and drug intake.

However, it should be noted that there are limits to what can be
concluded from the current literature and important areas for future
research. Most studies discussed here have focused entirely on either
naïve participants/light users or chronic/dependent users; only a few
have compared across different types of users. For those that have
compared across substances, chronic use is generally associated with a
blunting of the drug-induced activation of the stress systems (Holdstock
et al., 2000; King et al., 2006; Stormark et al., 1998; Thayer et al.,
2006); however, this has not been fully elucidated in many drugs. More
research comparing light users to heavy users is necessary to under-
stand the neuroadaptations that occur to drug administration fully.
Additionally, most studies compare stress reactivity in chronic sub-
stance users to healthy controls are cross-sectional. Thus, it cannot be
determined if the stress dysregulation of heavy users is caused by
chronic exposure to substances or predisposes them to future drug use.
It is probably, and indeed very likely, that the effect is synergistic. In-
dividuals with a disrupted stress response, due to early trauma or family
history, are more likely to abuse drugs, which in turn further dysre-
gulates their stress response. Thus, longitudinal research, such as the
massive undertaking that is the Adolescent Brain Cognitive Develop-
ment (ABCD) study, is vital for determining if drug use results in
adaptations to the stress response system or exacerbates pre-existing
stress dysregulation. Chaplin and colleagues in this special issue address
these temporal associations in an excellent overview of the develop-
mental aspects of the link between substance use and stress response
dysregulation.

Substance-related adaptations to the stress system may occur along
a continuum. By artificially focusing on one end of the spectrum or the
other, we may not be capturing the full spectrum of neuroadaptations in
the stress response to addictive substances. Animal models to some
extent can address this continuum but, such as seen in opiates (Armario,
2010), the stress system response to drug intake may differ between
animals and humans. A future review should synthesize findings across
species. Finally, certain individual differences, some of which have
been noted above, may hasten or slow down the progression along this
continuum.

Despite the gaps in the literature, these findings collectively suggest
that dysregulation of the stress responses may serve as potential mar-
kers for prevention efforts and a target for the development of ther-
apeutic interventions (Greenwald, 2018; Milivojevic and Sinha, 2018).
Prevention efforts that target individuals with certain risk factors
known to impact the stress system (e.g., early life adversity, genetic,
family history) may reduce the likelihood that these individuals will
develop a substance use disorder. Concerning treatment efforts for in-
dividuals with addictive disorders, the extant treatments are modestly
effective at best. There is preliminary evidence that pharmacological
interventions that target the adrenergic system may reduce craving
evoked by both drugs and stress (Fox and Sinha, 2014; Fox et al., 2012;
Lê et al., 2011; Milivojevic and Sinha, 2018). Behavioral treatments
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that address the management of stress-related craving could enhance
the efficacy of existing treatments. Thus, identifying specific bio-
markers related to dysregulated stress responses might allow us to
identify novel treatment approaches targeting normalizing of the stress
response to improve addiction treatment efforts.
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