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Introduction

The importance of leukemia inhibitory factor (LIF) stimulated 
signaling in mouse embryonic stem cell (ESC) culture in vitro 
has long been recognized. By activating Janus kinase (JAK) and 
signal transducer and activator of transcription 3 (STAT3), LIF 
plays essential roles in the generation and maintenance of mouse 
pluripotent embryonic stem cells which are capable of infinite 
self-renewal and differentiation to any cell type of the three-germ 
layers of an embryo.1,2 Over the past two decades, much infor-
mation has been obtained regarding the LIF signaling pathway 
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reprogramming somatic cells to pluripotency, especially 
by the induced pluripotent stem cell (iPSC) technology, has 
become widely used today to generate various types of stem 
cells for research and for regenerative medicine. However the 
mechanism(s) of reprogramming still need detailed elucidation, 
including the roles played by the leukemia inhibitory factor 
(LiF) signaling pathway. LiF is central in maintaining the ground 
state pluripotency of mouse embryonic stem cells (eSCs) 
and iPSCs by activating the Janus kinase-signal transducer 
and activator of transcription 3 (JAK-STAT3) pathway. 
Characterizing and understanding this pathway holds the key 
to generate naïve pluripotent human iPSCs which will facilitate 
the development of patient-specific stem cell therapy. Here 
we review the historical and recent developments on how LiF 
signaling pathway regulates eSC pluripotency maintenance 
and somatic cell reprogramming, with a focus on JAK-STAT3.
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through studying mouse ESCs. However, the exact mechanism 
by which activated STAT3 controls pluripotency still remains to 
be elucidated.

The induced pluripotent stem cell (iPSC) technology3-5 pro-
vides a powerful tool to reprogram somatic cells such as skin 
fibroblasts to a pluripotent state, and brings us much closer to the 
establishment of personalized, cell-based therapy for the treat-
ment of currently incurable diseases such as diabetes and neural 
degenerative diseases.6-8 In many aspects, somatic cell reprogram-
ming represents a reversed cell differentiation process, by epige-
netically resetting the cell nuclei back to a pluripotent state. A the 
same time reprogrammed cells turn on a cellular signal network 
capable of both robust cell division and fending off intra- and 
extra-cellular differentiation stimuli. Recently, the LIF-JAK-
STAT3 axis was demonstrated by a number of studies to be 
essential for the naïve state pluripotency establishment during 
somatic cell reprogramming.9-11 In addition, these studies pro-
vided important insight for further understanding of the mecha-
nism behind LIF regulated ESC pluripotency. In this review, we 
will summarize the current knowledge on the role of LIF and 
especially JAK-STAT3 signaling pathway in ESC pluripotency 
maintenance and in somatic cell reprogramming.

Historical Understanding of LIF

Leukemia inhibitory factor (LIF) is a member of the interleukin 
(IL)-6-type cytokine family, which includes IL-6, IL-11, IL-27, 
LIF, ciliary neurotrophic factor (CNTF), cardiotropin-1 (CT-1), 
oncostatin M (OSM), and cardiotrophin-like cytokine-1/novel 
neurotrophin-1/B-cell stimulating factor-3 (CLC-1/NNT-1/
BSF-3).12,13 LIF was initially discovered to be pleiotropic in differ-
ent mouse leukemia cell lines, by exerting either an inhibitory or 
promotional role on cell proliferation.14,15 The same cytokine was 
also isolated from culture medium conditioned with Buffalo rat 
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induces mouse ESC differentiation,24 JAK2-deficient ESCs are 
responsive to LIF stimulation.25 It was also found that in mouse 
ESCs, the activity of STAT3, but not STAT1, is responsible for 
pluripotency maintenance,2,26 and artificially activated STAT3 
can sustain ESC self-renewal in the absence of LIF.27 These 
lines of evidence suggest that the prevailing “stemness” signal-
ing is mediated by JAK1 activated STAT3 dimerization in mouse 
ESCs.

All IL-6-type cytokines share the common signal transducer 
gp130. Likewise, LIFR can serve as the receptor to mediate signals 
of several ligands including LIF, CNTF, CT-1, OSM, and CLC-1 
(Table 1).28-30 IL-6-type cytokines induced gp130 homo- or het-
erodimerization with LIFR also activates the phosphatidylinosi-
tol 3-kinase (PI3K)/protein kinase B (Akt), and the SH2-domain 
containing tyrosine phosphatase (SHP2)/extracellular-signal-
regulated kinases 1/2 (Erk1/2) pathways.31-35 Activated gp130 
recruits SHP2 through its tyrosine residue (Tyr759 in humans, 

liver cells,16 which can promote the self-renewal and sustain the 
pluripotency of mouse ESCs in the absence of fibroblast feeder 
cells.16,17 LIF binds to the low-affinity cell surface LIF receptor 
(LIFR),18 which stimulates the hetero-dimerization of LIFR with 
the signal transducer glycoprotein 130 (gp130) (Fig. 1).19,20 This 
triggers the activation of gp130-associated JAK kinases, and the 
subsequent phosphorylation of tyrosine residues in the gp130 
cytoplasmic domain. These phosphor-tyrosines then serve as 
the docking sites to recruit the Src-homology-2 (SH2) domain 
containing STAT proteins (STAT1 and 3), which are phos-
phorylated by activated JAK kinase. Once phosphorylated, the 
STAT proteins dimerize and enter the cell nucleus to regulate 
the expression of their target genes.21 Although the JAK kinases 
including JAK1, JAK2, and Tyk2 can all be phosphorylated fol-
lowing stimulation by LIF as well as other IL-6-type cytokines, 
JAK1-mediated IL-6/IL-11 signaling cannot be substituted by 
JAK2 and Tyk2.22,23 Additionally, while RNA inhibition of JAK1 

Figure 1. Schematic diagram of LiF signaling pathways. LiF binds to LiFr, which leads to the heterodimerization of LiFr and gp130. This is followed by 
the activation of JAK-STAT3, Pi3K/Akt, and erk1/2 signaling pathways. The activated STAT3 leads to increased expression of SOCS3, which serves as a 
negative feedback signal to LiF stimulated activation of STAT3 and erk1/2.
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of either mesoderm (Ccm4l, Cyr61, Dact1, etc.), endoderm 
(Krüppel-like factor 4 [Klf4], Gbx2, Pim1, Pim3, Sall4, Smad7, 
etc.), or both (Klf5).58 Interestingly, 14 of these genes, including 
Klf4, Klf5, Pim1, Dact1, and Smad7, are co-regulated by Nanog, 
indicating a partially functional redundancy between STAT3 
and Nanog in pluripotency maintenance.58 This is also in line 
with the finding that overexpression of either Nanog or STAT3 
maintains ESC self-renewal in the presence of reduced signaling 
from one another.58,59

In mouse ESCs, the global DNA binding sites of 13 pluri-
potency-, cell cycle-, DNA binding-, or reprogramming-related 
transcription factors were evaluated using chromatin immu-
noprecipitation coupled with high-throughput sequencing 
(CHIP-seq). STAT3 occupies an impressive 2546 genomic 
loci.12,48 Also, a total of 718 genomic loci were identified to be 
co-bound by STAT3 and at least another 3 of the 13 factors, and 
STAT3 clusters with Nanog, Oct4 (also known as Pou5f1), or 
sex determining region Y-box 2 (Sox2) among 56.8% of these 
loci, clearly demonstrating that STAT3 shares many common 
targets with the core pluripotent Oct4-Sox2-Nanog circuitry.48,60 
Interestingly, STAT3 were found to co-bind with Oct4, Sox2, 
Nanog, and Smad1 to the regulatory region of key pluripotent 
genes which were also found to be reprogramming factors such 
as Nanog, Oct4, Sox2, estrogen-related receptor β (Esrrb), Klf4, 
c-Myc, T-box transcription factor 3 (Tbx3), Sall4, etc.48

c-Myc had been previously identified as a STAT3 target and 
overexpression of constitutively active c-Myc mutant maintains 
mouse ESC pluripotency in the absence of LIF.61 It was postu-
lated that the LIF/STAT3 signaling promotes ESC self-renewal 
by stimulating c-Myc mRNA expression, and by stabilizing 
c-Myc protein levels through inhibiting glycogen synthase kinase 
3β (GSK3β) mediated threonine 58 (Thr58) phosphorylation.61 
However, mouse ESCs with c-Myc disruption were reportedly nor-
mal in self-renewal,62 presumably due to the redundant function 
from N-Myc.63,64 Using CHIP and microarray analysis (CHIP-
chip), 948 genes and 1459 genes were found bound by STAT3 
and c-Myc in mouse ESCs, respectively, of which STAT3 and 
c-Myc co-occupy the promoters of 218 genes, including N-Myc, 
Rest, STAT3, Mbd3, and Jmjd3.49 Interestingly, it was shown 
that while STAT3 binds to genes that are either transcriptionally 

equivalent to Tyr757 in mice), where SHP2 is phosphorylated by 
JAK kinases and interacts with the growth-factor receptor bound 
protein 2 (Grb2) and son of sevenless (SOS) complex to activate 
Erk1/2.31-35 The activation of STAT3 also triggers the expres-
sion of the suppressors of cytokine signaling 3 (SOCS3), which 
competes with SHP2 for the cytoplasmic domain of gp130 phos-
phorylated at tyrosine residue Tyr759 (human) or Tyr757 (mouse), 
and inhibits the JAK-STAT3 and Erk1/2 activation (Fig. 1).24,36 
The negative regulation of JAK kinases by SOCS3 involves both 
direct inhibition of the JAK catalytic domain and the promotion 
of proteasomal degradation of JAK.13,37-39 While constitutively 
activated Akt was reported to sustain mouse ESC pluripotency 
independent of STAT3,40 signaling from activated Erk1/2 pro-
motes the neural commitment of ESCs.41,42 As the JAK-STAT3, 
PI3K/Akt and Erk1/2 pathways are simultaneously activated 
by LIF, it obviously contributes to the pleiotropic roles that LIF 
plays in different cell types, and complicates the understanding 
of LIF signaling regulated pluripotency.

JAK-STAT3 Signaling and ESC Maintenance

It is well-known that JAK-STAT3 signaling is important 
in maintaining mouse ESC pluripotency and propagation. 
Unfortunately, thorough elucidation has not achieved despite 
the numerous attempts made to uncover the mechanism behind 
JAK-STAT3 mediated ESC self-renewal. STAT3 is a transcrip-
tion factor whose amino acid sequence is highly conserved 
across species among humans, cattle, pigs, rats, and mice.43-47 
Its DNA binding domain recognizes the consensus sequence of 
TTCC(C/G)GGAA which is present in the regulatory regions 
of many genes.48,49 The phosphorylation of Tyr705 of STAT3 is 
important for STAT3 homo-dimerization and nuclear transloca-
tion following gp130 activation.45,50-52 By mutating the STAT3 
binding tyrosine residues in the cytoplasmic domain of gp130, 
it was shown that STAT3 activity was necessary for gp130 sig-
naling mediated mouse ESC self-renewal.2 Expressing a mutant 
form of STAT3 (STAT3F, tyr705 to phenylalanine) leads to ESC 
differentiation even in the presence of LIF,2,53 while dimeriza-
tion of STAT3 fused with estrogen receptor (STAT3ER) upon 
4-hydroxytamoxifen (4-HT) treatment promoted mouse ESC 
self-renewal in the absence of LIF.27 Thus it became clear that 
STAT3 is the key downstream mediator of LIF stimulated plu-
ripotent signal.

STAT3-deficient mouse embryos (Stat3−/−) die on E7.0 upon 
gastrulation in vivo. These embryos can form embryonic ecto-
derm and visceral endoderm but not the mesoderm.54 In cul-
ture of wild-type ESCs, LIF prevents their differentiation into 
mesoderm and endoderm but needs either serum supplement or 
bone morphogenetic proteins (Bmps) to suppress the neuronal 
differentiation.55 Bmp signaling induces the expression of inhi-
bition of differentiation (Id) proteins, and mouse ESCs trans-
fected with Ids remain undifferentiated in the presence of LIF 
without serum.55 A number of functional genomic studies have 
identified many STAT3 target genes.48,49,56-58 Microarray analysis 
using STAT3ER transfected ESCs identified 58 STAT3 targets, 
among which 22 are responsible for inhibiting the differentiation 

Table 1. Summary of iL-6-type cytokines and their receptor complexes

Cytokine

Receptor complex subunits

α-receptor β-receptor
No. of gp130 involved 

in an induced receptor/
ligand complex

iL-6 iL-6r - 2

iL-11 iL-11r - 2

iL-27 iL-27r - 2

LiF - LiFr 1

CNTF CNTFr LiFr 1

CT-1 ? LiFr 1

OSM - LiFr or OSMr 1

CLC-1 CNTFr LiFr 1
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This model of parallel axes by LIF/JAK-STAT3/Sox2 and 
LIF/PI3K/Nanog to maintain pluripotency are supported by 
multiple lines of evidences. First, selective activation of Klf4 
by STAT3 was reported to synergize with Klf2, activated by 
Oct4, to ward off the differentiation stimuli to ESCs.66 STAT3 
was also reported to directly upregulate Sox2 during neural 
progenitor cell differentiation from ESCs.67 Second, upregula-
tion of Nanog through PI3K activation or GSK3β inhibition 
has been reported to contribute to ESC maintenance.68-70 Using 
PI3K inhibitor LY294002, 646 downstream targets of PI3K 
pathway were identified in mouse ESCs by microarray analy-
sis.71 These include some key pluripotent genes such as Nanog, 
Esrrb, Tbx3, and Tcl-1, as well as Zscan4c, one of the Zscan4 
family of zinc finger proteins. Interestingly, it was found that 
inhibition of Zscan4c reduces the proportion of ESCs express-
ing high levels of Nanog,71 and Zscan4c was found to regulate 
telomerase elongation and chromosome stability in ESCs.72 In 
addition, although it is unclear why the constitutively activated 
Akt confers mouse ESC self-renewal,40 Akt stabilizes Myc by 
inhibiting GSK3β-mediated phosphorylation and degrada-
tion,61,73 and Akt also phosphorylates Sox2, thus enhancing its 
stability and transcriptional activity in ESCs.74 However, in 
addition to the PI3K/Nanog axes in ESCs, STAT3 also binds 
to Nanog promoter with Brachyury which co-activates Nanog 

activated or repressed, c-Myc mainly occupies actively transcribed 
genes in ESCs.49 These, together with other studies described 
above, indicate that while STAT3 functions synergistically with 
the Oct4-Sox2-Nanog pluripotent circuitry and Myc by co-reg-
ulating their common target gene expression, unique function by 
STAT3 through regulating its specific targets not bound by these 
factors may exist for the pluripotency maintenance.

Current Understanding of LIF/STAT3 Regulated ESC 
Pluripotency

Similar to Nanog, overexpression of Klf4 or Tbx3 gene confers 
LIF-independent mouse ESC self-renewal.33,59,65 It was elegantly 
demonstrated that upon LIF stimulation, Klf4 expression in 
mouse ESCs is preferentially stimulated by JAK-STAT3 activation, 
whereas Tbx3 expression is stimulated by PI3K/Akt pathway upon 
the inhibition of Erk activities.33 Based on their finding, Niwa et 
al.33 proposed a model where LIF regulates pluripotency mainte-
nance by simultaneous stimulation of JAK-STAT3 and PI3K/Akt 
pathways in ESCs. This leads to the activation of Klf4 and Tbx3 
expression, and the subsequent expression of Sox2 and Nanog, 
respectively. Sox2/Nanog cooperate to maintain Oct4 expression, 
while Nanog also reinforce the established Oct4-Sox2-Nanog plu-
ripotency network in the absence of Klf4 and Tbx3 (Fig. 2).33

Figure 2. Schematic representation of LiF regulated pluripotency circuit in eSCs. Upon LiF activation, JAK-STAT3 promotes the expression of the core 
pluripotency circuit (green box) together with Pi3K/Akt for pluripotency maintenance. Activated STAT3 also directly suppresses differentiation by 
inhibiting the expression of lineage commitment genes.
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of several lineage commitment genes, therefore suppresses their 
expression.87 The pluripotent cell-specific ATP-dependent SWI/
SNF chromatin remodeling helicase complex (esBAF) is essential 
for ESC pluripotency and self-renewal, with Brg1 (also known 
as Smarca4) as a key esBAF component.88 In mouse ESCs, Brg1 
was shown to be required to prepare the chromatin access for 
STAT3 to activate many of its target genes, whose promoters 
are otherwise occupied by PRC2 complex.89 Other studies also 
demonstrated that Brg1 binding to STAT3 is necessary to allow 
STAT3 to access the promoter region of INF regulatory factor 1 
to control its expression, as well as the promoter of the p21waf1 
gene followed by STAT3-cdk9 interaction promoted transcrip-
tional elongation.90,91

JAK-STAT3 in Somatic Cell Reprogramming

iPSCs are ESC-like cells reprogrammed from somatic cells by 
overexpression a set of reprogramming factors including Oct4, 
Klf4, Sox2, and c-Myc (OKSM) in the mice and humans, or 
Oct4, Sox2, Nanog, and Lin28 in humans.3,5,92 This technology 
represents a powerful way for regenerative medicine in terms of 
massively producing patient-specific pluripotent cells within a 
short time. However, many technical issues still remain unsolved, 
including the efficiency of reprogramming, the development of 
integration-free reprogramming method, the quality and safety 
of induced iPSCs for clinical application, and lastly but probably 
most importantly, the understanding of the molecular mecha-
nisms of reprogramming. Such information is required to ensure 
a proper translation of the iPSC technology to human medicine.

Many major differences exist between the mouse ESCs/iPSCs 
and human ESCs/iPSCs. For example, human ESCs/iPSCs are 
flat in colony morphology; depend on FGF/Activin signaling for 
their pluripotency maintenance; and have completed X chromo-
some inactivation. They divide slowly (36 h doubling time), and 
survive poorly after single cell dissociation—a property essential 
for gene targeting.93-96 On the contrary, mouse ESCs/iPSCs are 
dome-shaped, depend on LIF signaling for pluripotency, divide 
rapidly (16 h doubling time), and are amenable for single-cell col-
onization and gene targeting.2,16 The human ESCs/iPSCs are in 
fact similar to mouse epiblast stem cells (mEpiSCs) derived from 
pre- or post-implantation mouse embryos which have limited in 
vivo differentiation capacity,97-99 and these cells are collectively 
referred to as being in the “primed” pluripotent state, while the 
mouse ESCs/iPSCs from pre-implantation embryos are referred 
as in the “naïve” state.100

So far numerous studies have focused on the role of JAK-
STAT3 in the maintenance of the steady-state pluripotency of 
ESCs; however, until recently little had been known whether 
LIF signaling is essential for iPSC induction, despite that LIF 
was preferably included in the induction medium. Interestingly, 
withdrawing LIF and supplementing the culture medium with 
FGF/Activin A results in the transition of naïve mouse ESCs to 
primed EpiSC state.101 At the same time, EpiSCs can be repro-
grammed into naïve mouse iPSCs by overexpression of Klf4, 
Klf2, or Nanog.66,101-103 Using this EpiSC-ESC reprogramming 
system, Yang et al. in Smith’s group9 studied the effect of LIF 

expression in early mesoderm progenitor cells derived from 
ESCs.74

The activation of canonical Wnt pathway leads to phosphory-
lation and inhibition of GSK3β and the subsequent nuclear 
accumulation of β-catenin to regulate cell fate and many other 
biological events. Constitutive activation of the Wnt pathway 
results in differentiation defects of mouse ESCs.75 It was reported 
that inhibition of GSK3β using 6-bromoindirubin-3'-oxime pro-
motes mouse ESC self-renewal in the absence of LIF,76 and that 
activated β-catenin upregulates Nanog expression by interact-
ing with Oct4.77 However, it was also reported that Wnt signal-
ing alone is not sufficient for the maintenance of mouse ESC 
self-renewal but can cooperate with LIF for this action.78 Part 
of this synergistic effect of Wnt could be through increasing 
STAT3 mRNA level in ESCs.79 A more recent study indicates 
that Wnt regulated expression of orphan nuclear receptor Nr5a2 
(also known as LRH-1) is significant in augmenting PI3K/Akt 
pluripotent signaling through regulating Tbx3, Nanog, and 
Oct4 expression independent of JAK-STAT3.80 However, unlike 
Nanog and Tbx3, overexpression of Nr5a2 cannot sustain ESC 
pluripotency in the absence of LIF.81

The culture of mouse ESCs under the dual inhibition of Erk 
and GSK3β (2i) ensures ESC self-renewal and pluripotency 
maintenance without LIF.82 STAT3 null ESCs can be derived 
under the 2i or triple inhibition of FGF receptor, Erk1/2, and 
GSK3β culture condition.66,82 The main effect of GSK3β 
inhibition is the nuclear accumulation of β-catenin. Although 
β-catenin was found dispensable for ESC self-renewal,83,84 its 
overexpression enhances pluripotent gene expression and delays 
the mouse ESC differentiation.85 The pluripotency maintenance 
effect of GSK3β inhibition was recently found to be through 
inhibiting transcription factor 3 (Tcf3) protein by activated 
β-catenin,84 which relieves the suppressive effect of Tcf3, leading 
to the expression of pluripotent gene Esrrb.86 Smith’s group there-
fore proposed a model of ESC signal network in which pluripo-
tency is supported by the inhibition of GSK3β and the activation 
of STAT3 which in turn activate the expression of Tcf3 and Klf4, 
respectively, and ESC is maintained by an expanded core plu-
ripotent circuitry including Oct4/Sox2, Nanog, Klf4, Tbx2, and 
Tcf3 (Fig. 2).86 However, Esrrb is also dispensable for ESC main-
tenance in the presence of LIF,86 which highlights the parallel 
compensatory capacity by the core pluripotent circuitry for ESC 
self-renewal. A complementary model was proposed by Savatier’s 
group which describes the synergistic effect of STAT3 with 
Nanog in preventing mesoderm and endoderm differentiation, as 
well as STAT3’s direct effect in preventing endoderm differentia-
tion through regulating its specific target genes in mouse ESCs.58 
Together, these studies contribute a comprehensive depiction to 
our understanding of LIF signal network (Fig. 2).

A few studies also investigated the STAT3 regulated ESC plu-
ripotency and gene expression at the epigenetic level. One study 
discovered that in mouse ESCs, STAT3, and Oct4 co-bind to 
the promoter region of embryonic ectoderm development (Eed) 
gene and promote its expression.87 As Eed is a core component of 
Polycomb repressive complex 2 (PRC2), this stabilizes the histone 
3 lysine 27 tri-methylation (H3K27me3) at the promoter regions 
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colonies but do not express endogenous Oct4, and can be com-
pletely reprogrammed by the expression of Sox2 or the addition 
of RepSox, an inhibitor of transforming growth factor β receptor 
(Tgfbr).106 Again our results show that STAT3 activation is nec-
essary for Sox2 or Tgfβ-signaling pathway inhibitor promoted 
reprogramming of pre-iPSCs.11

Examining the promoter DNA methylation status revealed 
that JAK-STAT3 inhibition prevents the demethylation of 
endogenous Oct4 and Nanog during reprogramming. This is 
associated with increased expression of DNA methyltransferase 
1 (Dnmt1), class I histone deacetylases (HDACs), and other 
chromatin-repressive genes.11 Inhibition of Dnmt1 and HDACs 
has been shown to significantly improve somatic cell reprogram-
ming.107-110 In order to test whether the STAT3 induced inhibi-
tion of Dnmt1 and HDAC expression is important for complete 
reprogramming, we applied inhibitors for Dnmt1 and HDACs107-

110 together with the inhibition of STAT3 during reprogram-
ming. Indeed we found that inhibiting either Dnmt1 or HDACs 
but not the overexpression of Nanog can overcome the halted 
reprogramming by STAT3 inactivation.11

During this study, we also observed that STAT3 inhibition 
resulted in continued expression of the retroviral transgenes 
which are otherwise gradually silenced at late-stage reprogram-
ming. This lack of external gene silencing is tightly associated 
with the diminished expression of de novo DNA methyltransfer-
ase Dnmt3l.11 It has previously been demonstrated that expres-
sion of Dnmt3l in mouse ESCs is crucial to the activation of 
de novo DNA methylation which silences the viral transgenes.111 
Our finding therefore reveals a new role of STAT3 in regulating 
de novo DNA methylation for epigenetic gene silencing during 
reprogramming. Taken together, our work demonstrated that 
(1) JAK-STAT3 activation is essential for the reprogramming of 
murine somatic cells, (2) STAT3 activity is crucial for the plu-
ripotent gene promoter demethylation, and (3) STAT3 is impor-
tant for retroviral transgene silencing during the reprogramming.

The discovery that STAT3 activity is essential for the repro-
gramming from mouse EpiSCs and somatic cells to naïve iPSCs, 
as demonstrated by others and us, respectively,9-11 is significant 
for the understanding of reprogramming and pluripotency. 
The continued high-level expression of ectopic transgenes in 
pre-iPSCs and in reprogrammed cells caused by STAT3 inhi-
bition9,11 strongly indicates the existence of a reprogramming 
barrier which cannot be simply overcome by a greater dosage of 
reprogramming factors in the absence of STAT3 activity, even 
with the overexpression of Klf4 and Nanog which can sustain 
ESC self-renewal in the absence of LIF.33,59,65 A passive model 
of genomic DNA demethylation as a result of inhibited meth-
ylation maintenance has been proposed to explain the somatic 
cell reprogramming.112,113 It was also found that transient STAT3 
activation poises the EpiSCs for complete reprogramming by 
Klf4 or Nanog.9 These are in accordance with our finding that 
JAK-STAT3 functions epigenetically to inhibit the expression 
of Dnmt1 and other heterochromatin-promoting genes, which 
in turn promotes the demethylation of pluripotent loci during 
reprogramming. Together, our results strongly suggest a cen-
tral role of STAT3 during reprogramming, by orchestrating the 

signaling in the conversion of primed to naïve state pluripotency. 
They first found that LIF is necessary for EpiSC-ESCs transition 
induced by Klf4 or Nanog overexpression under the 2i condi-
tion.9 Previously a chimeric receptor was described (GY118F),2 
in which the ligand binding domain of the granulocyte colony 
stimulating factor (GCSF) receptor was fused to the trans-mem-
brane and cytoplasmic domains of gp130 modified at residue 
Tyr118 (corresponding to the tyr757 of the wild-type mouse gp130) 
to phenylalanine. This ensures constitutive activation of STAT3 
upon GCSF stimulation.2 By expressing the GY118F receptor 
in EpiSCs with GCSF stimulation, Yang et al. discovered that 
activation of STAT3 can convert EpiSCs directly to naïve iPSCs 
in 2i medium. This was also confirmed with overexpression of 
STAT3ER activated by 4-HT.9 They further demonstrated that 
STAT3 activation in EpiSCs does not stimulate Klf4 or Nanog 
expression. Rather, STAT3 acts synergistically with either of 
them to dramatically improve the reprogramming efficiency. 
Finally, they demonstrated that activated STAT3 also improves 
the reprogramming of mouse neural stem cells and partially 
reprogrammed cells (pre-iPSCs) to naïve state iPSCs induced by 
Oct4, Klf4, c-Myc (OKM), or OKSM, respectively.9

The study by Smith’s group for the first time demonstrated 
that STAT3 activation is necessary for the reprogramming 
between mouse EpiSCs to iPSCs. A later study also demonstrated 
that enhanced STAT3 activation can reprogram mouse EpiSCs 
to naïve pluripotent cells even in the presence of FGF/Activin 
differentiation signals.10 Thus the STAT3 activity becomes essen-
tial for converting the primed state to naïve state pluripotency 
in the mouse. However, it remained unclear whether the LIF 
signaling is necessary for reprogramming of terminally differen-
tiated mouse somatic cells, which bypasses the EpiSC stage dur-
ing reprogramming with LIF containing medium. Furthermore, 
the molecular mechanism of STAT3 induced reprogramming 
remains elusive, albeit much information has been obtained by 
studying the steady-state pluripotency maintenance.

We addressed these questions by studying the role of STAT3 
during the reprogramming of terminally differentiated mouse 
embryonic fibroblasts (MEFs). Using STAT3C, a constitutively 
activated STAT3 mutant with two residues in its SH2 domain 
mutated to cysteine (A662C and N664C),104 we discovered that 
enhanced STAT3 activation significantly promotes the repro-
gramming from MEF cells to iPSCs by Oct4, Klf4, Sox2 (OKS), 
or OKSM overexpression.11 This result was doubly confirmed by 
expressing a mutant gp130 with Tyr757 converted to phenylala-
nine, as well as by deprivation of LIF during reprogramming.11 
We further found that the complete MEF reprogramming, as 
indicated by expression of GFP transgene driven by the Oct4 
distal enhancer,105 was completely blocked in the presence of 
JAK inhibitor 1 (JAKi) but not the PI3K inhibitor, LY294002. 
However, the total number of induced colonies was not affected 
by the JAKi treatment. These observations demonstrated that 
STAT3 activation plays a vital role in the late-stage somatic cell 
reprogramming, i.e., the activation of the endogenous Oct4 
gene.11

We also studied the role of STAT3 activation in the complete 
reprogramming of pre-iPSCs induced by OKM. These cells form 
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pluripotency and during the dynamic changes of somatic cell 
reprogramming. Special emphasis may be placed on the STAT3 
induced formation of euchromatin for the pluripotent gene 
activation, and formation of heterochromatin for lineage com-
mitment gene silencing. Interestingly, recently several groups 
reported the generation of naïve state human iPSCs, which also 
rely on LIF signaling for their self-renewal.114-116 Together, these 
series of studies have brought JAK-STAT3 to the central stage of 
iPSCs research.
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establishment of open-chromatin to completely activate the plu-
ripotent genes, and by promoting the de novo DNA methylation 
activity to silence the expression of viral transgenes and possibly 
the lineage commitment genes, in addition to the STAT3 pro-
moted suppression through PRC2 (Fig. 3).87

Perspective

The JAK-STAT3 pathway has been identified as the core signal-
ing pathway for pluripotency maintenance, and was also demon-
strated recently to be essential for the complete reprogramming of 
mouse somatic cells. Although a number of STAT3 downstream 
target genes had been identified, a thorough understanding of the 
STAT3-mediated reprogramming still remains unachieved. An 
emerging area of study on STAT3 mechanism is to investigate 
the epigenetic roles of STAT3 in the maintenance of steady-state 

Figure 3. Schematic representation of STAT3 regulated somatic cell reprogramming via epigenetic mechanisms. During late-stage reprogramming, 
STAT3 orchestrates the epigenetic changes leading to complete pluripotency, by ensuring full activation of core pluripotency genes through promot-
ing DNA demethylation and open chromatin formation, while suppressing the viral transgenes and lineage commitment genes by promoting de novo 
DNA methylation and probably PrC2 mediated histone modifications.
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