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Recent evidence suggests that some seizures are preceded by preictal changes that start from minutes to
hours before an ictal event. Nevertheless an adequate statistical evaluation in a large database of continuous
multiday recordings is still missing. Here, we investigated the existence of preictal changes in long-term
intracranial recordings from 53 patients with intractable partial epilepsy (in total 531 days and 558 clinical
seizures). We describe a measure of brain excitability based on the slow modulation of high-frequency
gamma activities (40–140 Hz) in ensembles of intracranial contacts. In prospective tests, we found that this
index identified preictal changes at levels above chance in 13.2% of the patients (7/53), suggesting that
results may be significant for the whole group (p , 0.05). These results provide a demonstration that preictal
states can be detected prospectively from EEG data. They advance understanding of the network dynamics
leading to seizure and may help develop novel seizure prediction algorithms.

I
n spite of available drug and surgical treatment options, a third of individuals with partial epilepsy have
intractable seizures. The unpredictability of seizure occurrence limits their daily life, and underlies an
enhanced risk of sudden unexpected death or morbidity1. Multiple quantitative analyses of the electroenceph-

alogram (EEG) have aimed to define independent features and reproducible patterns that herald seizure onset2–6.
Several studies have suggested that epileptic seizures do not occur randomly, but rather emerge from slow preictal
changes in brain excitability that evolve over long timescales and predispose the brain to seizure6. In particular, a
recent study - using intracranial electrodes connected to a telemetry unit implanted in ambulatory patients -
showed that a prospective seizure prediction is possible with the knowledge of the patient’s pre-seizure EEG
patterns7. In most of the investigated patients, the warning device can successfully identify seizure occurrences in
advance (from minutes to hours) and at a level better than would be expected on the basis of chance alone.
However, despite encouraging results, this study has been limited by the small number of patients and complex
machine learning algorithms making difficult to explore possible underlying physiological mechanisms.

Greater insights into the neuronal mechanisms of population behavior during the preictal period could not
only improve seizure prediction but also help understand pathophysiological process of seizure initiation in the
human brain8,9. Recent wide-bandwidth records of local field potentials made with intracranial electrodes during
presurgical evaluation have identified several new classes of electrographic activity at high-frequencies. These
low-amplitude activities occur at frequencies .40 Hz, are confined to millimeter-scale tissue volumes, and thus
are less visible and often confused with eye movement or muscle artifacts in standard scalp electroencephalo-
graphy (EEG)10,11. High-frequency activities, including gamma oscillations at 60–150 Hz and fast ripples at 250–
500 Hz, have been associated with the initiation of epileptiform potentials and seizures in human temporal lobe
and neocortical epilepsies12–15. Furthermore, while high-frequency oscillations are present intermittently
throughout interictal period16–18, the occurrence of high-frequency activities increases significantly from several
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seconds to minutes before seizure onset19–23. Thus, high-frequency
activities may help identify periods of increased predisposition to
clinical seizures4. Nevertheless, recent investigations suggested that
the relationship between high-frequency activities and seizure activ-
ity several minutes before the onset is variable, and no clear trend was
observed24, especially in light of the many confounding variables
such as fluctuating patient state4. Epileptic and physiological high-
frequency oscillations are difficult to distinguish25,26. Both fluctuate
strongly in amplitude over a time scale of several hours17 and the
energy of high frequency activity changes with behavior with a max-
imal expression during seizure-free slow-wave sleep27–29.

The coupling between slow cortical potentials and high-frequency
activities may provide novel insights into cortical network excitabil-
ity30. Slow oscillations seem to be able to trigger and group local high-
frequency oscillations. These cross-frequency couplings have been
termed phase-amplitude coupling or ‘‘nested’’ oscillations and they
have been suggested to represent a signature of cortical activa-
tion31–35. In this context, human intracranial EEG studies have iden-
tified a spatially distributed modulation of cortical high frequency
oscillations in the gamma band (40–120 Hz) by theta oscillations (4–
8 Hz)36,37 and slow waves (0.5–3 Hz)29. Cross-frequency coupling of
high-frequency sub-bands in the gamma range to low-frequency
electrical stimulation recorded with intracranial electrodes in
patients with temporal lobe epilepsy has provided important clues
on seizure susceptibility38,39. These observations led us to make a
systematic study of preictal changes in cross-frequency coupling in
intracranial EEG records from patients with medication-resistant
partial epilepsy.

We assessed the sensitivity of cross-frequency coupling changes –
defined as the ratio of correctly predicted seizures to the number of
seizures investigated – and also their specificity from long-term
interictal data3. Analyses were made from a large database of 53
patients with continuous multi-day intracranial EEG, collected in
three European epilepsy centers (Freiburg, Germany; Paris, France;
Coimbra, Portugal)40. Our analysis focused on interactions between
the phase of low frequency rhythms (slow waves and theta) and the
amplitude of different sub-bands of gamma rhythms. This analysis of
spatial fluctuations in the coupling phase of ensembles of intracranial
contacts revealed preictal changes, occurring at levels greater than
chance in a small but significant number of patients. To validate our
results, we compared them with predictions based on the power in
individual frequency bands (delta, theta and gamma). We found that
spectral powers did not lead to similar performances, suggesting that
the coupling of different frequency bands is specific to the reported
preictal changes.

Results
Figure 1a shows a representative subdural electrocorticographic sig-
nal recorded 2 minutes before a seizure that occurred during slow-
wave sleep (Id: 13, Table 1). The raw and filtered signals in the low
gamma (LG) range show the recurrence of bursts of high-frequency
activity occurring preferentially at the depth-positive phase of cor-
tical slow waves. The strongest modulation for signals from this
electrode was detected between the slow wave phase and LG ampli-
tude (Fig. 1b), supporting previous findings that slow oscillations
modulate gamma power in cortical recordings28–31. This cross-fre-
quency coupling was quantified by constructing a histogram of LG
amplitude over the phase of slow activity, showing a unimodal dis-
tribution41 (Fig. 1c). The single peak confirmed that gamma oscilla-
tions occurred preferentially at a mean coupling phase (Qc) close to
0 rad with respect to the intracranial slow waves. We tracked tem-
poral changes in the coupling phase over ensembles of intracranial
contacts by extracting Qc for each contact in consecutive non-over-
lapped 1-minute windows. Figure 1d illustrates a map of the tem-
poral evolution of the number of contacts with a specific phase bin
during an interictal state recorded 5 hours before a seizure. It shows

that most contacts had a similar phase of coupling around 0.5 rad,
which remained stable over several hours. However, tens of minutes
before the seizure, large and consistent preictal deviations towards
0 rad were observed at multiple locations. Conventional power spec-
tral analyses were less sensitive to these preictal changes (Fig. 1d).
Visual inspection of the signals confirmed that high-frequency activ-
ities were strongly modulated, during the preictal state, by slow waves
in many channels (Fig. 1e). Projected on post implantation MRI
scans, contacts with these specific preictal phase fluctuations were
distributed over spatially broad regions both within and outside the
focal region (Fig. 1f).

We investigated long-term coupling between fast and slow oscilla-
tions (see Methods for a detailed description of the strategy). First,
the proportion of intracranial contacts at a specific mean phase
interval was estimated over multi-day recordings. Second, an alarm
was raised when this proportion exceeded a critical threshold. The
threshold was adjusted and parameters including preictal durations
and frequency bands were optimized on a first training part of the
data obtained from each patient. For the selected optimal parameters,
the last part of data was used to test prospectively discrimination
between preictal from non-preictal periods. Performance results are
reported for this test period, with parameters optimized from the
training period. We tested the statistical significance of any changes,
by comparing performance with a random predictor, which does not
exploit any information contained in the EEG data42. Figure 2a–b
shows a long-term analysis of data from the same patient as in
Figure 1. Using a preictal duration of 60 minutes, optimal for the
training period, prospective performance was above chance level.
Our analysis gave values of sensitivity (SS) of 73% and false predic-
tion rate (FPR) of 0.29/h, suggesting that most seizures were pre-
ceded by a specific preictal state and the false prediction rate was low.
In this patient, seizures occurred predominantly during the night (10
pm–7 am), suggesting that sleep modulated seizure susceptibility.
Nevertheless, preictal changes were present before daytime seizures
(see sz13 in Fig. 2b) and such changes were not always evident before
night seizures (see for example the testing phase between 18 and
24 hours in Fig. 2a). Moreover, the preictal phase distribution shifted
to another phase configuration (from 0.5 to 0 rad), absent from
seizure-free night periods, suggesting that this phenomenon did
not reflect a simple sleep stage (Fig. 2c). To further confirm that
our results did not mainly reflect power fluctuations related to dif-
ferent states of vigilance, we compared them with predictions based
on the relative power in individual frequency bands (delta: 0.1–4 Hz,
theta: 4–8 Hz, gamma: 30–140 Hz). Fig. 2a (Bottom) shows the
alarms triggered by applying a threshold to the spectral powers aver-
aged over all channels and following the same strategy as that using
cross-frequency coupling. For this patient, power-based predictions
were less sensitive and specific to preictal changes. In particular, it
can be observed that delta activity was continuously dominant in the
EEG and only slightly modulated by sleep (Fig. 2a).

Table 1 shows the parameters selected for the whole group of 53
patients, as well as the performance (SS and FPR) of the algorithm.
Performance varied strongly between patients, presumably due to
diverse etiologies, exogenous triggers, and the inherent physiological
variability. Even so, compared to a random predictor, significant
preictal changes were identified prospectively at above chance level
in 13.2% of the patients (7/53). Based on a binomial approximation
(see Methods for details), this result is significant for the whole group
of patients at the 5% level (Pbinom{7,53,0.05} 5 1.6% which is less
than 13.2%). For the 7 patients with statistical significant results, that
average sensitivity was 68% (range: 36–100%) and the FPR was 0.33/
h (range: 0.08–0.72/h). There was a preference for slow wave/LG
coupling in 5/7 patients where preictal phase identification was suc-
cessful (Table 1). All significant cases corresponded to epilepsies with
temporal or frontal foci. A third of cases (33%) were significant for
patients with frontal lobe epilepsy, and only 10% were significant for
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cases of temporal lobe epilepsy. Significant performances during the
test period, were comparable for patients with temporal lobe (SS 5

66% and FPR 5 0.33/h) and frontal lobe epilepsy (SS 5 62% and FPR
5 0.27/h). For all data sets from the different patients, we varied the
duration of preictal window lengths on the training period and found
an optimal duration of 60 minutes in 6/7 patients with significant
performances. Finally, we found no substantial differences in predic-
tion of seizures occurring during the night and during the day for the
significant patients: 44% of seizures occurring during the day and
56% of night-time seizures were predicted). Similar performances
were observed for nocturnal or day-time seizures (10 pm-7 am; SS
5 73% and FPR 5 0.25/h during the night; SS 5 64% and FPR 5

0.19/h during the day). To confirm the specificity of our results, we
compared them with predictions based on the power in individual
frequency bands. Only 4 patients had significant results for delta (SS
5 64% and FPR 5 0.15/h), 2 for theta (SS 5 50% and FPR 5 0.07/h)
and 1 for gamma band (SS 5 62% and FPR 5 0.3/h). These results
suggest that the performances of our detector are relatively inde-

pendent from the different states of vigilance. In addition, the coup-
ling between these different rhythms carries more information about
preictal changes than the information of individual frequency bands
taken separately.

Finally, we made a detailed analysis of the coupling phase distri-
bution during preictal/interictal states in the 7 patients with statistical
significant results. Two distinct types of phenomena emerged. In most
cases (5/7), the preictal and interictal phase distributions were very
similar except that wider brain regions were involved during preictal
periods. Figure 3a shows a representative case (Id: 20 in Table 1). In
this patient with mesial temporal epilepsy, seizures occurred preferen-
tially at night, and analysis of slow wave/LG phase coupling revealed a
low FPR (0.1/h) and a high sensitivity (56%). The preictal phase
distribution was centered around 2p, close to the one detected in
day or night-time interictal states but with a larger involvement of
intracranial contacts (Fig. 3a, right). In contrast, the preictal phase
distribution shifted towards a different preferred phase in a minority
of cases (2/7). Figure 3b shows a representative case (Id: 46 in Table 1).

Figure 1 | Preictal changes in phase relations of gamma and slow activity in an ensemble of intracranial signals. (a). Raw and filtered signals in the low

frequency (0.5–3 Hz) and gamma frequency (40–70 Hz) bands with the respective instantaneous phase and envelope. (b). Phase-Amplitude modulation

plot of a 20-minute preictal recording, showing the cross-coupling between different low and high frequencies. The colors depict the modulation strength

as defined in Ref. 32. (c). Average amplitude of high frequency activity at different bins of low frequency phase. The mean of the distribution gives the

mean coupling phase. (d). Top: For representative interictal and preictal segments, the proportion of channels with a coupling phase in the interval

[Qc1, Qc2] is depicted in color. The vertical green lines indicate seizure onset. Middle: black points correspond to the contacts within this interval. Bottom:

Power in delta and low gamma bands, shows preictal changes were not induced by an increase in gamma activities. (e). Preictal raw signals showing a

strong cross-frequency modulation. (f). Spatial distribution of contacts (in red) implicated in the preictal changes projected on post implantation MRI

scans. Implicated contacts were defined when incidences within the interval [Qc1, Qc2] were 2 times higher than the interictal average. Blue circles indicate

contacts in the seizure onset zone.
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In this patient with frontal lobe epilepsy, the delta/HG phase coupling
was selected to give the best performances with a remarkable high
specificity (SS 5 36% and FPR 5 0.08/h). As for the patient of Fig. 1–
2, pre- and interictal phase dynamics had distinct modulation prop-

erties and preictal shifts towards -0.9 rad were observed at multiple
locations. In all significant cases, preictal changes occurred in regions
close to but outside the seizure onset zone, indicating a widespread and
diffuse spatial distribution (Fig. 3c, d).

Table 1 | Patient information and results: the sampling frequency, focus, and number of channels is given for each patient. Focus is
indicating by lobe (frontal (f), temporal (t), occipital (o), central (c), parietal (p)), by region (mesial (m), lateral (l), basal (b), posterior
(p)), and by lateralization (right (r), left (l), both (b)). Optimal parameters obtained in training phase, as duration, number of seizures,
preictal period length, coupling frequency band (L for low gamma, H for high gamma, D for delta and T for theta), threshold, and
performances (SS and FPR) are indicated. Additionally, the duration, number of seizures and performances obtained during testing phase
(SS, FPR and significant patients) are given. Last column shows the significant patients obtained when the same prediction strategy was
applied to the power in individual bands delta (D), theta (T), or gamma (G)

Training Testing

ID Fs (Hz)

Focus
(lobe/region/
lateralization) # Chan Dur (h) #Sz

SOP
(min)

Frequency
Band

Preictal
phase
(rad) Thr % SS % FP/h Dur (h) #Sz SS % FP/h Sig. D/T/G

1 1024 f-r 98 126 4 60 LT 22,62 30 75 0,38 120 6 100 2,04
2 1024 t-l 96 135 4 60 HT 1,38 21 100 0,60 82 4 50 2,21
3 1024 tml,t-r 57 64 4 60 LD 0,81 30 75 0,44 55 9 11 0,18
4 1024 tmr,tlr 117 108 4 60 HD 0,24 21 75 0,36 75 5 20 0,37
5 1024 tlr 38 171 3 60 HT 0,81 11 67 0,14 80 2 50 0,64
6 1024 tml 74 99 4 60 LD 20,90 19 100 0,45 63 5 100 0,72 *
7 1024 t-l 46 85 4 60 HD 22,62 11 75 0,59 163 5 80 4,35
8 1024 t-l,f-l 115 42 4 60 LT 22,05 21 75 0,42 86 8 63 0,44
9 1024 tmr 62 16 4 60 HD 1,95 19 75 0,11 139 10 20 0,46
10 1024 fbr,tm- 124 104 4 60 LT 22,05 15 75 0,22 48 3 33 6,02
11 1024 f-r 48 25 4 60 LT 22,05 11 75 0,11 116 8 13 0,35 -**
12 256 tll 40 70 4 60 LD 1,95 22 100 0,10 129 13 54 1,11
13 1024 f-r 93 35 4 30 LD 0,24 44 100 0,10 89 11 73 0,30 *
14 1024 f-l 89 123 4 60 HD 2,52 30 100 0,30 122 12 75 0,77 *- -
15 1024 o-r,t-l 114 29 4 60 LT 2,52 18 100 0,27 85 6 17 0,30
16 1024 tlr,tmr 69 18 4 60 HT 1,95 36 75 0,09 153 11 73 0,43 *
17 1024 tml,t-l 83 34 4 60 HT 22,05 27 75 0,08 109 18 22 0,13
18 1024 tmr,tlr 46 23 3 60 HD 2,52 42 100 0,06 201 10 40 0,33
19 1024 f-l,c-l 83 25 4 60 HT 22,05 7 75 0,24 85 13 31 1,72
20 1024 tml 84 79 4 60 LD 22,62 50 100 0,06 346 32 56 0,10 * *- -
21 256 tmr 54 61 4 60 HT 22,05 19 100 0,30 164 18 6 0,31
22 256 tbl,tll,--b 41 96 4 60 LT 2,86 39 75 0,36 71 2 0 0,33
23 512 tml,t-- 39 143 4 60 LD 1,38 25 75 0,52 21 2 50 0,71
24 256 t-b 28 42 3 60 HT 2,86 47 67 0,22 92 2 0 1,37
25 256 tml,tll,t-r 42 156 4 60 LT 2,52 39 100 0,68 41 3 67 1,31
26 256 t--,f-l 36 72 4 60 HD 21,48 25 75 0,46 108 16 63 2,35
27 256 fml 47 180 4 60 LD 0,81 36 100 0,41 49 4 100 0,63 *
28 256 tbr 96 74 4 60 HD 2,52 10 75 0,19 125 13 62 1,59
29 256 tml,tll 84 87 4 60 HT 1,95 47 75 0,14 136 6 0 0,02
30 400 tpr 52 390 4 60 HT 21,48 27 100 0,41 74 3 67 0,27
31 400 f-l 58 27 4 30 LT 22,05 24 75 0,13 168 21 10 0,17
32 400 fpl 38 210 3 60 HT 20,90 36 100 0,44 136 2 100 1,17
33 400 tml 42 117 3 60 HD 22,05 22 100 0,33 120 2 100 2,22
34 400 tmr 49 197 3 60 LT 22,05 22 100 0,10 154 2 50 0,14
35 400 t-r 51 124 3 60 HD 1,38 22 100 0,52 213 2 100 1,69
36 400 tml 56 145 3 60 LD 22,05 22 67 0,07 14 2 100 2,70 **-
37 400 tpr 48 177 4 60 HD 0,81 16 75 0,12 168 5 60 0,56
38 400 o-- 42 407 2 60 LT 1,38 22 100 0,20 37 2 0 0,03
39 400 tml 32 155 4 30 HD 21,48 22 75 0,25 69 3 0 0,31
40 400 tlr 41 109 4 60 LD 0,81 19 75 0,39 39 4 50 2,31
41 400 t-r,o-r 34 198 4 60 LD 20,33 28 75 0,04 145 4 0 0,13
42 400 f-r 28 62 3 60 LD 1,38 23 67 0,09 152 8 38 0,08 *
43 400 p-r 33 170 4 60 LT 0,24 31 75 0,12 15 2 50 1,61
44 400 tbr 32 508 2 30 HD 2,52 47 100 0,09 51 2 0 0,35
45 1024 fbr,tmr 41 17 4 60 LD 22,62 36 75 0,35 301 11 27 0,10
46 1024 fbr,tml 29 82 4 60 HD 20,90 34 75 0,12 185 11 36 0,08 *
47 1024 h-l,fpl 63 131 3 60 HD 0,24 30 100 0,09 268 2 0 0,03
48 1024 tmr 63 180 4 60 LD 1,95 24 100 0,41 265 4 100 1,79
49 1024 tlr 60 403 2 60 LD 0,24 24 100 0,19 53 2 50 0,47
50 1024 tm- 56 196 4 60 LT 2,52 24 75 0,16 291 9 0 0,15
51 512 t-l 25 31 3 60 LD 20,33 28 67 0,28 104 2 100 0,66
52 1024 p-l 39 42 2 60 HD 0,24 42 100 0,29 42 2 50 0,48
53 512 f-r 10 149 3 60 LD 22,62 31 100 0,15 42 2 50 0,80 *- -
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Discussion
Our study evaluated the feasibility of long-term seizure forecasting
using intracranial EEG in a multicenter group of epilepsy patients
with continuous long-term recordings (total analyzed duration of
531 days with total 558 clinical seizures). Bias introduced by selecting
epochs for analysis was removed by using continuous multi-day EEG
records from each patient3. Furthermore, as suggested3,43, we used a
first part of available data for training and adjusting parameters for
each patient and a second part to test prediction quasi-prospectively
on unselected data. Finally, since our data was obtained with differ-
ent EEG acquisition systems in three different hospitals, the evalu-
ation provided a realistic sample of the heterogeneity of clinical
circumstances and focal epileptic syndromes44. We found that a
measure of brain excitability based on the coupling between low-
frequency phase and high-frequency amplitude was able to identify
preictal states for a significant number of patients (13.2%). Therefore,
our observations demonstrated that a quasi-prospective analysis can
distinguish between preictal and non-preictal states on long-term
intracranial EEG recordings.

The existence of a preictal state in partial epilepsy is debated6.
Despite several encouraging results, only very few studies have

shown that a (quasi-) prospective prediction algorithm can perform
above chance level3,4. For example, a forecasting algorithm using
multiple spectral power bands as features and support-vector
machine classification was tested on intracranial recordings of 18
patients (433 hours; 80 seizures) and reported a high sensitivity
(97.5%) and low false prediction rate (0.27 per hour)43. In particular,
the power changes in gamma bands (including the low and high
gamma: 30–128 Hz) have been shown to be very relevant for pre-
diction. Similarly, another study reported sensitivities of 0–100% and
false prediction rates of 0–1.67/h in 6 patients based on the energy
and entropy of high frequency activity (50–450 Hz)45. Nevertheless,
the EEG recordings in these two studies were not continuous, with
gaps between interictal and preictal segments, and data containing
artifacts were sometimes removed. These procedures weaken long-
term evaluation of the prediction performance during changing
physiological or epileptic states. Therefore, although these studies
may present higher sensitivity and/or specificity than ours, these
results are not directly comparable. Recently, using a chronically
implanted device running an algorithm which was trained on the
basis of each patient’s EEG signals, Cook et al.7 demonstrated that
prospective seizure prediction is possible on long-term recordings of

Figure 2 | Prospective preictal state detection from dynamics of the mean coupling phase. (a). From top to bottom: Proportion of electrodes with a

specific coupling phase over time (11 phase intervals; vertical green lines indicate seizure onsets); raster plot of contacts with a coupling phase in the

interval [Qc1, Qc2] (horizontal blue lines); total proportion of channels over time; alarm triggered when the proportion of channels crosses a selected

threshold. Several parameters of the algorithm were optimized from data of the training period, before the optimal selection was tested on new data from

the testing period; Triggered alarms of the same prediction strategy but applied to the power in individual bands delta, theta and gamma. (b). Triggered

alarms for two different seizures (green lines), followed by a refractory time equal to the assumed preictal duration. Vertical red lines show raised alarms

and green dashed lines indicate the preictal interval. (c). Histogram of phase of coupling during preictal, interictal/day and interictal/night periods reflect

the changes of coupling phase prior to seizures.
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several months. The algorithms used in this work relied purely on
classification of power measures in different frequency bands (8–
128 Hz) and derived from subdurally recorded neural activity.
During the prospective evaluation, the warning device worked to a
level better than would be expected by chance in 8 over 11 patients.
Using the same implanted device, but in dogs with naturally occur-
ring epilepsy, a similar seizure forecasting algorithm performed sig-
nificantly better than a random predictor in all investigated cases46.
In our study, we used data from a large group of patients obtained
during clinical monitoring for epilepsy surgery. Based on this data-
base, we were only able to find a small group of patients having
seizures that can be forecasted better than chance. Our observation
seems to contrast with Cook’s optimistic observations using long-
term outpatient ‘‘real life’’ recordings and reporting high prediction
performances in most of the investigated patients. One reason of this
discrepancy could be the known limitations related to use of inpa-
tient intracranial EEG data to evaluate prediction algorithms, includ-
ing relatively short duration of EEG recordings (in particular for
training purposes) and the effects of drug changes or surgery. Also,
differences in statistical thresholds could explain different perfor-

mances. Nevertheless, both studies support the feasibility of long-
term seizure forecasting.

Statistically significant results were obtained in a small group of
patients, which does not facilitate a full identification of pathophy-
siological mechanisms. Nevertheless, we resolved two types of pre-
ictal phenomena. In the first type (see data from patients of Fig. 2 or
Fig. 3b), the preictal phase distribution shifted toward a distinct
preferred phase. This situation may reflect the existence of a specific
pathological state distinct from physiological states and independent
of changes in the state of vigilance. Alterations in the modulation of
high-frequency power may provide an indirect access to pathological
spiking activities47 and reflect abnormal interactions between
coupled networks48. In the second type of preictal phenomena (such
as that shown in Fig. 3a), their phase distributions were very similar
than those during interictal states but involved more distant brain
regions. This may reflect a widespread increase in brain excitability,
thereby a global state that is more susceptible to seizures. Clinical
evidence suggests that certain normal states, particularly related to
sleep and arousal, can favor seizure occurrence in epilepsy patients.
For example, most nocturnal partial seizures occur during slow wave

Figure 3 | Data from two representative patients with statistically significant results. (a–b). Proportion of electrodes with a specific coupling phase over

time (top) and alarms triggered when the proportion of channels crosses a selected threshold (bottom). Green lines depict seizures. Alarms linked to

correct predictions shown in red and false positives in black reveal a high sensitivity and specificity. In (a) (left), the histogram of the coupling phase for 3

different periods (preictal, interictal/day and interictal/night) showed no significant phase variation but a preictal increase in the number of implicated

contacts. In (b) (left), the histogram of phase of coupling shifts clearly during the preictal period. (c–d) Spatial representation of contacts for the two

patients shown in A and B. Projected over the MRI reconstruction, contacts in the epileptic focus are indicated in blue. Contacts where the phase changed

significantly to the optimal phase during preictal periods are indicated in red. Contacts outside the focus which did not change during the transition are

depicted in green. Note that, despite a widespread spatial distribution, the contacts remained close to the focal regions.
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sleep while few ictal events occur during rapid eye movement (REM)
sleep49,50. These preictal states may not reflect a deterministic, trans-
itional state that inevitably leads to seizure, but a permissive
‘‘pro-ictal’’ state conforming to a normal brain state with a higher
probability of seizure generation51. Thus, the high-level of false-posi-
tives detected by our algorithm may reflect underlying physiological
mechanisms rather than short-comings of our detection that tend to
label distinct events as similar. Nevertheless, as shown by our com-
parison with the power fluctuations in several frequency bands, there
is not one to one correspondence between preictal changes and spe-
cific states of vigilance; this complex relationship is an area of
ongoing research52.

We have shown that cross-frequency coupling can provide new
insights into the transition from interictal to ictal states, but clinical
applicability will depend on several other factors. False seizure pre-
diction rates greater than about 0.15 FP/h are generally felt to be
unacceptable for clinical application53,54. Our most favorable analyses
provided an average sensitivity of 68% and a specificity of 0.33 FP/h,
insufficient for clinical application. In only one of seven patients with
significant performance, we observed both a remarkably high spe-
cificity and sensitivity (Fig. 3a). Nevertheless, we are encouraged by
these results and believe that the discrimination framework we pre-
sent here may be improved in the future towards a clinically accept-
able performance if combined with other seizure prediction
techniques55.

Methods
Database. Long-term intracranial EEG recordings from 53 epilepsy patients (26
males; age range, 3–63 years; mean age: 32 years) suffering from medically intractable
partial epilepsy were analyzed. The data were recorded in three different epilepsy
units: Epilepsy Center, University Medical Centre of Freiburg, Germany; Unité
d’Épilepsie of the Pitié-Salpêtrière Hospital, Paris, France; Hospitais da Universidade
de Coimbra, Portugal. Data acquisition and database were performed in accordance
with the approved guidelines of the local ethic committees (Ethik-Kommission der
Albert-Ludwigs-Universität Freiburg; Comité consultatif sur le traitement de
l’information en matière de recherche dans le domaine de la santé, Pitié-Salpêtrière
University Hospital; and Ethics Committee of the Coimbra University Hospital,
respectively). Patients gave a written consent for a research use of these data. Funded
by the European Union, this database was established to compile high-quality, long-
term continuous EEG data, enriched with clinical metadata40 (http://www.epilepsiae.
eu/). A standardized EEG annotation protocol was developed to ensure the
comparability and reliability of seizure onset times at all project sites56. A total of 531
days of EEG records (,10 days/patient) included 558 seizures (,11 seizures/
patient). Records include at least 5 days of continuous EEG from each patient with at
least 5 clinically manifest epileptic seizures separated by more than 1.5 hours. EEG
data were recorded using different digital video EEG systems with different sampling
rates in the three different centres; Nicolet, 256 Hz; Micromed, 400 Hz;
Compumedics, 512 Hz and Neurofile NT, 1024 Hz. Subclinical intracranial
electrographic events were not analyzed. Table 1 shows patient characteristics,
recordings details and locations of the seizure onset zone.

Measuring the mean coupling phases. Cross-frequency coupling was defined by a
statistical measure of interaction between different frequency bands. Specifically the
phase of a slow oscillation was compared with the amplitude of a fast oscillation. The
highest amplitude occurred at the so-called mean coupling phase. In accordance with
previous human studies29,36,37, we investigated the coupling between delta (0.5–3 Hz)
or theta (3–8 Hz) for low frequency phases, and low gamma (LG: 40–70 Hz) or high
gamma (HG: 70–140 Hz or 70–120 Hz when sampling frequency was 256 Hz) for
high frequency amplitude envelopes. We extracted coupling by implementing an
algorithm previously proposed41, where raw signals were first filtered in the bands of
interest, and then phase and amplitude were extracted using the Hilbert transform.
Raw signals were filtered for frequency bands of interest using an 8-order Butterworth
forward-backward IIR filter to avoid phase delays and improve frequency selectivity.
Instantaneous phase Q(t) and instantaneous amplitude envelope A(t) were then
extracted for delta (Qd) and theta (Qh), and for LG (ALG) and HG (AHG), respectively.
The Hilbert Transform produces an analytical representation of the signal, with real
part x(t) corresponding to the filtered signal and complex part y(t), its phase-delayed
version by p/2:

xa(t)~x(t)zjy(t)~Ax(t)e{jQx (t) ð1Þ

In this complex representation, the angle and magnitude of the transform correspond
respectively to the instantaneous phase and envelope of the filtered signal (see Fig. 1a
for an example). The modulation between four possible low phase – high amplitude
pairs (Qx(t) Ax(t)), was computed as follows. First, the range of the phase signal Qx(t),
with values within the interval (2p,p), was divided into bins Qi with i 5 1,…,40. Then,

the time indexes ki when the phase fell in the interval Qi # Qx(ki) , Qi11, were
determined. For each bin, amplitudes at time ki of the high frequency time series were
averaged (,Ax(ki).). The distribution of mean amplitudes versus phase defined the
phase of the slower activity, where high frequencies tend to appear (Fig. 1b). We
quantified this tendency by approximating the distribution to a Von Mises function
(circular Gaussian), and extracting the mean phase representing the preferred phase
of coupling Qc. A statistical threshold (based on a phase randomization procedure for
instance) was not used41. We thus maintained computationally efficiency in treating
data from data epochs of 1 minute. Codes are freely available in the EPILAB
platform55 at: http://www.epilepsiae.eu/project_outputs/epilab_software/.

Identifying fluctuations of mean coupling phase patterns. We followed the time
course of mean coupling phases of multiple contacts, during consecutive non-
overlapping time windows of 1 minute, by determining the proportion of contacts
with a mean coupling phase at a specific phase interval [Qc1, Qc2]. Figure 1c shows an
analysis for a representative patient during interictal and preictal periods. Long-term
trends of coupling phase were determined by applying a first-order Kalman filter to
the proportion of electrodes within [Qc1, Qc2]. Thus short-time fluctuations were
smoothed, as previously proposed43. A variable threshold was then set to produce an
alarm when the number of intracranial contacts exceeded a defined value (Fig. 2a, b).
After an alarm, a new alarm could be generated only after a refractory period
corresponding to the defined preictal time.

Prospective evaluation of preictal changes. Application of highly optimized
methods to small and preselected data may result in overestimating the results that are
poorly reproducible on unselected, longer continuous data3. While algorithm
parameters may be adjusted to data from an individual patient, this optimization
must be performed only on one part of the data (the training set) excluded from the
data set used subsequently to assess algorithm performance (the testing set). For
training, we used continuous data including the first 4 seizures and at least 10 hours of
recording. This training data permitted parameter selection to optimize sensitivity
and specificity. We determined optimal values for the coupling band (among 4 pairs:
slow waves or theta versus LG and HG), phase interval [Qc1, Qc2] (among 11 intervals)
and preictal duration (10, 30, 60 min). Statistical performance was calculated, as
usual, in terms of sensitivity (SS, ratio between correct detections and total seizures),
and false prediction rate (FPR, number of false predictions per hour). Optimization
was performed such that the performance was the closest to the optimal value (SS of

100%, FPR of 0), with distance measured by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(100%{SS)2zFPR2

q
. Finally, the test

set containing unknown data and seizures was used to derive a prospective statistical
assessment of performance of the optimized algorithm. FPR was defined as the
number of false alarms during the test set divided by the duration in which false
alarms could be triggered (with refractory periods excluded), which is obtained by
subtracting the time under false warning from the total interictal period3.
Mathematically, the FPR is expressed as:

FPR~
#false alarms

interictal duration{(#false alarms:preictal duration)
ð2Þ

Comparison with a random predictor. Once the sensitivity and specificity of a
prospective prediction algorithm has been assessed on the test dataset, it is necessary
to ask whether it is indeed superior to the chance level. We evaluated statistical
significance by comparing results to chance established by a random predictor, which
produced alarms in the absence of information from the EEG signal42. With random
alarm generation, the probability to predict at least k out of K seizures was given by a
binomial distribution:

Pbinomfk;K ;Pg~
X
j§k

K

j

� �
Pj(1{P)K{j ð3Þ

Where P indicated the probability (Poisson process) of that a single alarm was
triggered during the preictal time. A unique predictor was used for the final evaluation
of the testing phase of the prospective approach. Therefore the critical level of
sensibility for the random predictor srand was stated as follows:

srand~
1
K

maxk Pbinomfk; K; Pgwað Þ:100% ð4Þ

Where a represented the significance level of the predictor (a 5 0.01 in this case). For
the same value of FPR, the sensitivity of our method must be above srand to be
superior to the random predictor, and thus reach statistical significance.

Statistical evaluation on the whole group of patient. In order to test whether the
observed results can be considered significant for a whole group of patients, the
number of patients with statistical significant results can be calculated for the null
hypothesis of no true predictive performance. For a significance level of a, the
probability to observe, for at least n of N patients, sensitivities larger than srand follows
a binomial distribution:
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Pbinomfn;N ;ag~
X
j§n

N

j

� �
aj(1{a)N{j ð5Þ

Comparison to prediction based on the power of delta, theta or gamma bands. To
evaluate whether our observations based on cross-frequency coupling did not simply
reflect power fluctuations related to different states of vigilance, a similar strategy was
developed to generate alarms based on the relative power of different bands: delta
(0.1–4 Hz), theta (4–8 Hz) and gamma (30–140 Hz). After filtering the raw signals,
the power spectral density was computed by Burg method over consecutive windows
of 5 seconds. Then, the power of each band relative to the power in the whole
frequency range was extracted. The averaged relative power over all channels was
used to determine an optimal threshold above which an alarm of preictal period was
triggered. As in our cross-frequency coupling strategy, the predictor based on the
individual bands was first optimized on the training data (in sample definition of
preictal times and thresholds). Finally, the algorithm performance (sensitivity and
FPR) and the comparison with a random prediction were assessed on independent
data (out-of-sample).
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