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Abstract
Purpose Functional inoperability in advanced oral cancer is
difficult to assess preoperatively. To assess functions of lips
and tongue, biomechanical models are required. Apart from
adjusting generic models to individual anatomy, muscle acti-
vation patterns (MAPs) driving patient-specific functional
movements are necessary to predict remaining functional
outcome. We aim to evaluate how volunteer-specific MAPs
derived from surface electromyographic (sEMG) signals
control a biomechanical face model.

All raw data (excluding raw videos), are available from the Open
Science Framework (Eskes, M. (2017, August 20). Simulation of
facial expressions using person-specific sEMG signals controlling
a biomechanical face model. Retrieved from osf.io/dux3w.
doi:10.17605/OSF.IO/DUX3W.
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Methods Muscle activity of seven facial muscles in six vol-
unteerswasmeasured bilaterallywith sEMG.A triple camera
set-up recorded 3D lip movement. The generic face model in
ArtiSynth was adapted to our needs.We controlled themodel
using the volunteer-specific MAPs. Three activation strate-
gies were tested: activating all muscles (actall), selecting
the three muscles showing highest muscle activity bilater-
ally (act3)—this was calculated by taking the mean of left
and right muscles and then selecting the three with high-
est variance—and activating the muscles considered most
relevant per instruction (actrel), bilaterally. The model’s lip
movement was compared to the actual lip movement per-
formed by the volunteers, using 3D correlation coefficients
(ρ).
Results The correlation coefficient between simulations and
measurements with actrel resulted in a median ρ of 0.77. act3
had a median ρ of 0.78, whereas with actall the median ρ

decreased to 0.45.
Conclusion We demonstrated thatMAPs derived from non-
invasive sEMG measurements can control movement of the
lips in a generic finite element face model with a median
ρ of 0.78. Ultimately, this is important to show the patient-
specific residual movement using the patient’s own MAPs.
When the required treatment tools and personalisation tech-
niques for geometry and anatomy become available, thismay
enable surgeons to test the functional results of wedge exci-
sions for lip cancer in a virtual environment and to weigh
surgery versus organ-sparing radiotherapy or photodynamic
therapy.

Keywords Forward modelling · Biomechanical modelling ·
Surface electromyography · Lips · Head and neck cancer ·
Functional inoperability
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Introduction

Surgical treatment in advanced head and neck cancer can lead
to severe function loss, including chewing deficits, dyspha-
gia, and speech impairment. If this function loss is expected
to be unacceptable, then other treatments, like radiotherapy,
chemotherapy and photodynamic therapy, can be considered
[1]. Although alternative curative treatments like radiother-
apy have their own effects on functional outcome, in the
future we will focus on surgical effects first by develop-
ing a virtual surgery tool because these are relatively easier
to model. Unfortunately, it is difficult to predict functional
outcome of the aforementioned treatments accurately. In
fact, the prediction depends heavily on the subjective judge-
ments by members of the multidisciplinary tumour board
and therefore can differ greatly among specialists [2]. To
tackle the problem of preoperative prediction of surgical
outcome, biomechanical models are preferred as these mod-
els can be adjusted to represent the actual anatomy and
pathological anatomical changes and they can simulate phys-
ical processes. Biomechanical models of the head and neck
region have been developed. In particular, in the field of
animation and facial surgery planning [3–7], these models
mainly predicted aesthetic outcome. A couple of those mod-
els also predicted functional outcome, like effects of scar
tissue on tongue mobility [8,9], intraoral swallowing effects
[10], and facial expressions after maxillofacial surgery [11].
The models can be controlled by simulated muscle activa-
tion patterns. These activation patterns contract the models’
muscles (elements) resulting in a visible movement. This
process is called forward modelling: the determination of
motion calculated from known forces. Each person learns
to perform functional tasks (e.g. mastication, speech, and
swallowing) with a specific motor control strategy. These
strategies differ per person. Moreover, muscular compen-
satory mechanisms might be used after impairment. Forward
modelling is a prerequisite for prediction of functional con-
sequences after surgery using biomechanical models. When
a tumour is virtually resected in a model, forward modelling
may give insight in residual movement when controlling the
adapted model with the patient’s muscle activation strate-
gies, whereas inverse modelling (calculating the required
muscle activation patterns from known movement) may give
insight in compensatory possibilities. This residual move-
ment can then be addressed by the multidisciplinary medical
team, and function loss may be estimated. Modelling of the
perioral region is of interest because it is easily accessible
and can serve as a proof of principle for more complex
organs like the tongue. Besides, surgery of the lips could
lead to both cosmetic and function deficits. Lip cancers
are surgically treated by wedge excision and primary clo-
sure with consequences for pursing the lips and opening
the mouth. Larger defects require reconstruction with local

or free flaps. In those last cases, function preservation is
even more at stake. The obtained information on function
loss with the use of our future models may deliver patient
and physician an overview of the possible cosmetic and
function deficits of the different treatment options, both
surgical and nonsurgical curative alternatives such as radio-
therapy or photodynamic therapy. This also increases the
quality of patient counselling. In other words, it makes
objective and more informed choices in treatment options
possible.

Biomechanical models have been created for many parts
of the human body: upper and lower limb, shoulder, elbow,
and wrist (see Erdemir et al. [12] for an overview). These
models are commonly used for calculating forces on regions
of interest. The models are controlled by muscle activation
patterns, which can also be derived from electromyographic
(EMG) signals. Research in EMG-controlled biomechan-
ical models of the perioral region is still a subject of
ongoing research [13–18]. Lucero and Munhall [18] used
intramuscular EMG as input for standard Hill-type mus-
cles in their biomechanical face model with a multilayer
deformable mesh. Although reasonably good correlation
coefficients were obtained between the model’s move-
ment and measured movement in general, markers around
the lips performed poor in anterior–posterior direction.
Flynn et al. [17] developed a model of the face with a
complex anisotropic multilayer skin with in vivo tension.
They, and others, tested their model by manually activat-
ing facial muscles to obtain simulated facial expressions
[13,19,20].

Before embarking on complex personalised biomechan-
ical models including the patient’s as well as the tumour’s
geometry and anatomy, we investigated in this study whether
we could supply such models with patient-specific motor
control by means of sEMG measurements.

In previous research we demonstrated that noninva-
sive surface EMG (sEMG) conveys sufficient information
to predict static facial expressions and volunteer-specific
lip motion [21,22]. However, these statistical models lack
the physiological relationship required to predict surgi-
cal outcomes. Therefore, we aim to demonstrate that a
biomechanical 3D lip model can be controlled by muscle
activation patterns derived from volunteer-specific sEMG
signals of facial muscles to simulate facial expressions.
These principles will be applicable in our future projects
in which we will add a virtual surgery tool and in which
we plan to take the step towards intraoral sEMG mea-
surements of the tongue muscles to make tongue models
more patient specific. The results demonstrated in this study
may not only be of interest in speech research or in facial
animation but also in biomechanics research with an impor-
tant prelude for our virtual surgery models. Demonstrating
the feasibility of driving biomechanical face models via
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Fig. 1 Left Surface electrode locations, orientation markers, and lip
markers. Right Anterior–posterior view and lateral view of the model
and the model’s muscle bundles and lip markers. The muscles are
abbreviated as follows: zygomaticus major (ZYG), risorius (RIS), lev-
ator labii superioris alaeque nasi (LLSAN), levator anguli oris (LAO),

buccinator (BUC), orbicularis oris peripheralis (OOP) and marginalis
(OOM), depressor labii inferior (DLI), depressor anguli oris (DAO), and
mentalis (MEN), subscript L for ten left-sided muscles and subscript R
for ten right-sided muscles

individual sEMG measurements is important because it
forms the basis for affected function by patient-specific
motor control. When a virtual surgery tool or radiother-
apy tool becomes available, it will show the movement
in the affected situation based on personalised innervation
signals.

Methods

Volunteers and data acquisition

For detailed information regarding the data acquisition, we
refer to Eskes et al. [22]. Here follows a summary: six healthy
volunteers participated, three males and three females, ages
ranging from 21 to 30. We measured sEMG signals (sm ,
signal per muscle channel m) with the TMSi� PortiTM sys-
tem (TMSi�, Oldenzaal, the Netherlands) of seven facial
muscles bilaterally (see Fig. 1). A common ground self-
adhesive reference electrode was placed on the left wrist.
Six optical face markers—for head orientation—and ten
optical lip markers—to follow lip movement—were drawn
using a skin marker (Fig. 1) and tracked at 100 frames per
second with our triple camera set-up [22,23]. The Medi-
cal Research Ethics Committee of the Netherlands Cancer
Institute approved this study, and the volunteers gave their
informed consent.

Instructions to volunteers

Volunteers performed four facial expressions to maximise
independent muscle contraction of the recordedmuscles: (A)
purse lips, (B) raise upper lip, (C) depressmouth corners, and
(D) voluntary smile, an asymmetric motion: (E) left-right-
left with closed lips, and a combination of two expressions:
(F) purse lips and closed mouth smile (Fig. 2). These facial
expressions were based on the work of Lapatki et al. [24]
and Schumann et al. [25]. At the start of the experiment
the instructions were shown to the volunteer in combination
with a live demonstration by the experimenter. Oral feed-
back on the volunteer’s performance was given, while he or
she was repeating the instructions four times with 2-s rest in
between.

Finite element face model

We used the reference finite element face model in ArtiSynth
that was originally developed with ANSYS� software at the
ICP/GIPSA and TIMC-IMAG laboratories in Grenoble [15,
16,26–28]. It is described in detail in Nazari et al. [14]. The
most important details are as follows. The soft tissues of the
face are represented by three layers of elements and includes
6342 elements (6024 linear hexahedral and 318 linearwedge)
and 8720 nodes. The epidermis and dermis are contained
in the outer layer of about 1.5 mm thick. The hypodermis
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Fig. 2 Instructions to volunteers: A purse lips, B raise upper lip, C depress mouth corners, D voluntary smile, E left-right-left with closed mouth,
F purse lips–closed mouth smile–purse lips

comprises the inner and centre layers that vary between 4 and
11 mm in thickness. All layers were given the same passive
tissue properties, including tissue density of 1040 kg/m3, and
material stiffness specified as a Mooney–Rivlin constitutive
equation given by:

W = C10( Ĩ1 − 3) + C20( Ĩ1 − 3)2 + κ

2
(ln J )2 (1)

where W is the stress energy, and C10 = 2.5 kPa, C20 =
1.175 kPa, and κ = 25 kPa are the material parameters. The
left Cauchy–Green tensor: B̃ = F̃F̃T is used to calculate
Ĩ1 = trace(B̃), and J = det(F). The distortional part of the
deformation gradient F is described by F̃ = j−1/3F.

The facial muscles were represented by muscle fibres
within the finite element mesh, and they are organised into
20 muscle groups (Fig. 1). During simulations finite element
muscles were used in which the elements surrounding the
fibres were assigned as muscle elements with transversely
isotropicmaterial properties described byBlemker et al. [29].
Elements that were within a radius of 5 mm of the muscle
fibres were considered a muscle element. In the case of the
orbicularis oris peripheralis (OOP) and marginalis (OOM)
muscle elements were manually assigned.

Common muscle model parameters were used across vol-
unteers. They are based on values from the literature [17]:
maximum stretch λ∗ = 1.4, where the force–stretch rela-
tionship becomes linear, exponential stress coefficient P1 =
0.05, and uncrimping factor P2 = 6.6. The maximum stress
of themuscle elements σmax, as exception, was optimised per
volunteer by decreasing the maximum stress with 10% each
time inverted elements occurred, starting at 300 kPa.

The mandible and maxilla underlying the face tissue
model were represented as rigid bodies. Gravity acted on the
modelwith acceleration set to−9.8m/s2 in vertical direction.

Boundary conditions, collision behaviour, and
incompressibility

Nodes on the inner surface of the finite element face model
were attached to the underlying mandible and maxilla (sim-
ilar to the attachments shown in Stavness et al. [28]; Fig. 3).
The nodes of the centre and the outer layer were dynamic.
Contact of elements, which is especially important when
pressing the lips together, is handledwith themesh-based col-
lision behaviour in ArtiSynth. Interpenetration of the upper
and lower lip surfaces is detected; node penetrations are
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Fig. 3 Synchronisation example. The first principal component coef-
ficient vectors of the measurement bmeas and the model output best are
shown. Together with the resampled coefficient vector, and the resam-
pled and aligned coefficient vector

corrected with impulse-based contact constraints [30]. The
friction coefficient for contacts was set to zero. Instead of
constraint-based soft tissue incompressibility, we used nodal
soft incompressibility with a quadratic bulk potential and a
bulkmodulus of 25 kPa. Soft incompressibility tries to ensure
that the volume of the finite element model remains locally
constant by generating a restoring pressure based on a poten-
tial field.

sEMG to normalised model activations

sEMG measures the total contribution from motor units
beneath the electrodes as well as contributions from neigh-
bouring motor units. sEMG is, by its nature, indiscriminate,
and therefore, cross talk is inevitable. Moreover, in the
complex face region muscles overlap and intertwine. A
monopolarmeasurement configuration ismore prone to cross
talk as itmeasures the deeper and surroundingmuscle signals,
whereas in a bipolar configuration, the acquisition depth and
pickup of cross talk depend on the interelectrode distance.
Therefore, we recorded sEMG signals in bipolar configu-
ration with a sample frequency of 2048 Hz. A fourth-order
Butterworth band-pass filterwith a high- and low-pass cut-off
frequency of 15 and 500 Hz was used to filter the recorded
sEMG signals, as recommended by van Boxtel [31]. The
placement of our microelectrodes was done by considering
the generic facial muscle anatomy and the optimal placement
as described by Lapatki et al. [32]. A limiting factor was
the face dimension of the volunteers and the corresponding
availability of skin to place the electrodes, which was usu-
ally directly adjacent to each other (Fig. 1). Occasionally, no

signal was sensed because of the tiny surface of the elec-
trodes and the small surface of the underlying muscle belly.
This occurred mainly when acquiring signals of the risorius
muscle. In these cases, replacements of the microelectrode
over 1–2 mm yielded good signal-to-noise ratios. Thus, a
ruler-based placement strategy appeared to be impractical.

To generate input for the activation patterns of the
ArtiSynthmodel, a transformation functionwas required that
converted the sEMG signals from our seven bilaterally mea-
suredmuscles into usable activations for ten bilateralmuscles
of the model. The design of this transformation was based
on the study of Schumann et al. describingmonopolar sEMG
profiles of 30 healthy males for various instructions and on
the activation patterns described by Flynn et al. [17,25].

The measured muscles are: the orbicularis oris superior
(OOS, electrodes 1, 2, 15, 16), the orbicularis oris inferior
(OOI, electrodes 3, 4, 17, 18), the risorius (RIS, electrodes
9, 10, 23, 24), the zygomaticus major (ZYG, electrodes 11,
12, 25, 26), the levator labii superioris alaeque nasi (LLSAN,
electrodes 5, 6, 19, 20), the depressor anguli oris (DAO elec-
trodes 7, 8, 21, 22), and the mentalis (MEN, electrodes 13,
14, 27, 28). The missing muscle activations were determined
as follows:

sOOP = 0.50 · (sOOS + sOOI) (2)

sOOM = 0.10 · (sOOP + sOOI) (3)

sBUC = 0.50 · (sRIS + sZYG) (4)

sLAO = 0.75 · sLSSAN (5)

sDLI = 0.75 · sDAO (6)

In the ArtiSynth model, the orbicularis oris muscles are
defined as peripheralis (OOP) andmarginalis (OOM). There-
fore, a combination of OOS and OOI was used for the OOP
(Eq. 2). Based on Flynn et al. [17], a fifth of the OOP was
used for the OOM (Eq. 3). The electrodes associated with the
RIS were probably also influenced by the buccinator (BUC).
Presumably, the electrodes of the ZYG were also influenced
by the BUC. Therefore, we set BUC as a combination of
ZYG and RIS activity (Eq. 4). The levator anguli oris (LAO)
is close to the LLSAN. Thus, the LAO was set to 75% of
LLSAN (Eq. 5). The depressor labii inferior (DLI) is adjacent
to the DAO, which is why we chose 75% of the DAO as DLI
activation (Eq. 6). The MEN, ZYG, RIS, DAO, and LLSAN
muscles were set to their corresponding measurements.

In previous research in which we used statistical models
[21,22], the best performing sEMG feature extractor was
Willison amplitude (WAMP) with a threshold slim = 10
mV and a sliding window of 200 ms with maximum over-
lap. In preliminary experiments for the current study we
also tested the transfer function described by Buchanan et
al. [33]. Eventually, the WAMP feature again proved to be
best and therefore this feature was used for all the experi-
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Table 1 The muscles used with
the relevant muscle strategy per
instruction

Instruction Relevant muscles (actrel)

Purse lips OOP, OOM, BUC

Raise upper lip LLSAN

Depress mouth corners DAO, MEN

Voluntary smile LLSAN, RIS, ZYG, LAO, DAO, DLI

Left-right-left with closed mouth OOP, OOM, LLSAN, RIS, ZYG, LAO, BUC

Purse lips–closed mouth smile–purse lips OOP, OOM, LLSAN, RIS, ZYG, LAO, BUC

ments described in this study. It can be calculated as follows
for all sliding windows:

gm(t, i, r) =
N−1∑

n=1

[ f (|sm(t + n − 1) − sm(t + n)|)]

with f (sm) =
{
1 if sm ≥ slim i is instruction index
0 otherwise r is repetition index

(7)

sm(t) is the measured sEMG of muscle m, and t is the time
index. n is the running time index within each sliding win-
dow consisting of N samples. There were six instructions:
i = 1, . . . , 6. Each instruction was repeated four times:
r = 1, . . . , 5. As there are ten muscles on both sides of
the face, the muscle index runs from 1 to 10 (left) and 11 to
20 (right).

We tested three different activation strategies:

• actall: all the muscles in the model are activated.
• act3: only the three muscles that were most active mea-
sured bilaterally according to:

1. Muscle feature, averaged bilaterally:
ḡm(t, i, r) = 1

2 (gm(t, i, r) + gm+10(t, i, r))

2. Variance: Vm(i, r) = Var [ḡm(t, i, r)]

3. Sort: for each i, r : determine m j such that
Vm j (i, r) ≥ Vm j+1(i, r)

4. Select largest three: m1, m2, and m3

• actrel: the muscles that are considered most relevant for
an instruction (Table 1).

The model’s activation range is from zero to one. There-
fore, min–max normalisation was applied over the time
index. It linearly transformed the data from original mini-
mum and maximum to data between zero and one.

gnorm,m(t, i, r) =
gm(t, i, r) − min

t
(gm(t, i, r))

max
t

(gm(t, i, r)) − min
t

(gm(t, i, r))
(8)

Synchronisation of repetitions and model output

As volunteers performed the repetitions with different speed
and because the model’s output showed a different timing,
a time shift and timescaling were performed. First, to create
equally sized time series, we resampled the measurements
(i.e. positions and features) in order to have them matched to
the ArtiSynth sampling period. To synchronise the measure-
ments, for each instruction and each repetition a principal
component analysis (PCA) was applied to reduce the 30D
space (ten 3D markers) to a 1D space. This was done both
for the model-predicted positions and for the measured posi-
tions.

The PCA was implemented using singular value decom-
position (SVD) of the 30 × T matrix X containing in each
column the X -, Y -, and Z -coordinates of the 10 markers.
The number T of columns equals the number of time sam-
ples. Application of SVD yields:

X = U�VT (9)

The matrix U ∈ R
30×30 contains the principal components.

The squares σ 2
j of the diagonal of the matrix � contain the

variances of the principal components. These variances are
sorted, σ 2

j ≥ σ 2
j+1. A coefficient vector b ∈ R

T was deter-

mined from the first principal component u1 ∈ R
30 from U:

b = uT1 X (10)

We obtained best and bmeas the coefficient vectors for the
model-predicted positions and the measured ones, respec-
tively. The maximisation of the cross-correlation function
ρ(t) between best and bmeas gave the synchronisation differ-
ence at argmax ρ(t). The procedure was repeated for each
instruction and repetition. Figure 3 shows the synchronisa-
tion process of two repetitions of one volunteer. The optimal
shifting determined in the PCA domain was applied on the
resampled data.

Performance measures

Figure 4 and the online videos provide a qualitative visual
impression. Quantitative performance measures are given by
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correlation coefficients for 3Dquantities as providedbyPiter-
mann and Munhall [34]:

�μv =
(
1

n

n∑

i=1

xi ,
1

n

n∑

i=1

yi ,
1

n

n∑

i=1

zi

)
(11)

σv =
√√√√ 1

n − 1

n∑

i=1

‖�vi − �μv‖2 (12)

ρ�v �w =
1
n

∑n
i=1 �vTi �wi−�μT

v �μw

σvσw

(13)

Equation (11) gives the mean position �μv of a 3D landmark
trajectory of samples �vi = (xi , yi , vi ). The standard devi-
ation σv of the 3D node trajectory �vi is given by Eq. (12).
ρ�v �w is the 3D correlation coefficient between 3D landmark
trajectories �vi and �wi and is calculated with Eq. (13).

Results

Fair performance for all activation strategies was seen in
qualitative assessment (in Fig. 4 visuals are given for vol-
unteer 2). Comparable results were obtained in all data
sets (online videos show the performance of all volunteers).
Activating the relevant facial muscles gave visual results
that best matched the intended instructions. In general, the
amplitude of the model’s movement was less than the vol-
unteer’s movement. The three highest activated muscles
differed among volunteers and sometimes also within repeti-
tive measurements within one volunteer. This can be derived
from Fig. 5 that gives the distribution of activation pat-
terns of the symmetric instructions A–D. Instruction B (raise
upper lip) showed the most selective contraction followed
by instruction A (purse lips). Instruction C (depress mouth
corners) showed a lot of cocontraction of the risorius mus-
cle. Instruction D (voluntary smile) showed that indeed a lot
of facial muscles come into play when producing voluntary
smiles.

In all cases, at least one of the most important muscles
(act3) was also present in the relevant muscle strategy. Com-
paring the model’s movements with those of the volunteers
visually, the most difficult instruction was ‘pursed lips to
closed mouth smile to pursed lips’ resulting in small dis-
placements of the model. The easiest instruction was ‘raise
upper lip’. Selectively depressing the lip corners was difficult
to perform formost volunteers inducing a lot of cocontraction
in the perioral region.

Pursing the lips (A) with act3 resulted in a small opening
between the lips in all volunteers, whereas actall only had a
minuscule opening in volunteer 2 and volunteer 3. actrel had
no opening between the pursed lips.

Raising the upper lip (B) with actall showed less pro-
nounced results, but more compressed lips drawn upwards
in volunteers 2, 4, and 5.

Depressing themouth corners (C) was difficult for the vol-
unteers, but also to simulate with the model. Only actrel gave
visual satisfying results. act3 had fair results in volunteers 2,
3, 5, and 6, though with an opening between the lips.

Voluntary smile (D) showing an open mouth smile was
only possible with actrel, while actall and act3 resulted in
closed mouth smiles except in volunteer 4 which had a mod-
est open smile with act3.

The instruction left-right-left with closed lips (E) in
general showed modest displacements, but recognisable
instructions with all activation strategies.

The instruction purse lips–closed mouth smile–purse lips
(F) with actall showed a small opening during closed mouth
smile in volunteers 2, 4, 5, and 6, while in all volunteers
act3 induced a small opening between the pursed lips in the
model.

The boxplots in Fig. 6 show the distribution of correlation
coefficients between volunteers, instructions, and markers.
Here, we have the following observations:

• The performance between volunteers differed, especially
using actall. act3 and actrel had similar results.

• Although visually assessed instruction B was best exe-
cuted by the volunteers, the corresponding correlation
coefficientswere notmaximal. Instead, instructionsEand
F showed the best correlations. Again, actall performed
worst and act3 and actrel had similar results except for
instruction C .

• The distribution of correlation coefficients between
markers had a clear pattern: lateral markers showed
higher correlations than centre markers, and upper lip
markers had better results than lower lip markers in gen-
eral. The overall mean values were: ρ̄actall = 0.26,
ρ̄act3 = 0.55, ρ̄actrel = 0.53, with overall standard
deviations: σactall = 0.63, σact3 = 0.51, and σactrel =
0.52, respectively. The medians were: ρmedian

actall = 0.45,
ρmedian
act3 = 0.78, and ρmedian

actrel = 0.77.

Discussion

To our knowledge, this is the first study demonstrating that
volunteer-specific activation patterns calculated from sEMG
measurements can be used to control a generic biomechan-
ical model to generate asymmetric facial expressions with
qualitative fair results. When visually assessed, the perfor-
mance looked best when only the subset actrel of all muscles
was activated. These muscles were assumed to be most rele-
vant for the specific instruction. Visual performance seemed
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Fig. 4 Qualitative simulation
results for volunteer 2. The
different instructions are
represented by the capitals: A
purse lips, B raise upper lip, C
depress mouth corners, D
voluntary smile, E left-right-left
with closed lips (left-right is
shown), F purse lips–closed
mouth smile–purse lips (purse
lips–closed mouth smile is
shown). The three different
activating strategies are given by
the numbers: 1 actrel, 2 actall, 3
act3. The ten cyan dots on the
model’s lips are the nodes that
are being compared to the
volunteers’ tracked lip markers
as shown in Fig. 1
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Fig. 5 Boxplot of normalised sEMG features per instruction and per muscle including data of all volunteers and repetitions. High standard
deviations indicate the volunteer-specific differences in activation strategies. The median is shown with a horizontal line and the mean with a dot

Fig. 6 Boxplots of correlation coefficients per volunteer, per instruction, and per marker for the three activation strategies

to be less when activating all muscles actall, which should be
the ideal situation containing all measured information. This
loss of generality can be caused by different limitations of
the method: (a) occurrence of cocontraction of pairs of mus-
cles, (b) cross talk in the sEMG signals, (c) shortcomings in
the transfer function from sEMG feature to activation signal,
and (d) shortcomings in the biomechanical model, e.g. devi-
ations from its optimal parameter setting, and deviation from
the geometry.

The quantitative results: the correlation coefficients,
showed a large standard deviation also caused by the lim-
itations as mentioned above. Predicted mobility of the 3D
lip markers was less than measured in volunteers. This can
be explained by inaccuracies in the tissue parameters (e.g.
soft vs stiff skin parameters) and the resolution of the finite
element model. Increasing the temporal step size and the
number of elements will probably improve the accuracy.
Improving the stability of the model for large deformations
(possibly through model remeshing) is also essential. Lip
shapes and thus the corresponding lip markers differed in
volunteers. Subsequently, they did not match the generic face
model’s geometry completely. This inaccuracy contributes to
the mediocre values and high standard deviation of the cor-

relation coefficients. Besides, instead of using an isotropic
skin—all three layers had the same tissue parameters—a
more sophisticated approach might be superior. This might
be accomplished by giving each layer, or even regions within
layers, specific material properties. This anisotropic skin
model was first demonstrated by Flynn et al. [17].

The sEMG to muscle activation and finally muscle con-
traction is governed by a complex process. During recordings
cross talk is inevitable.A solution could be the use of the cross
talk equation of Lapatki et al. to determine whether an elec-
trode is flooded with neighbouring signals [35]. Cross talk
of adjacent muscles can explain why the model activated
the OOP and OOM in all instructions. OOS and OOI elec-
trodes 1, 2, 3, 4, 15, 16, 17, and 18, used to calculate OOP
and OOM, could measure activity from, e.g. MEN, DAO,
and LLSAN during those specific instructions. This results
in OOP and OOM activity in the model. Intramuscular or
needle EMG electrodes are more selective and are able to
measure contributions of the single muscle, with less cross
talk and reducing false input activity. However, we feel that
a patient-friendly method and a less time-consuming method
are preferred, especially when aiming at future preopera-
tivemodelling of patients to predict functional post-operative
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Fig. 7 The top black flow chart resembles the current workflow in
clinical practice. The bottom red flow chart shows the additional steps
implementing virtual therapy to personalise and optimise the treatment

per patient. The red accentuated text shows the importance of the cur-
rent study

risk. sEMG cross talk problems might further be minimised
by using high-density sEMG (HD-sEMG) [35]. Another
point of attention is the arbitrary composition of the BUC, the
DLI, and theLAO, out of neighbouringmuscles. This induces
an additional error. A future increase of bipolar or HD-sEMG
measurements should compensate for this problem too.

Also, the muscle models may be improved. Instead
of spherical muscles containing the surrounding elements
within a radius of 5 mm of the muscle fibre, this radius can
be optimised permuscle. Possibly by obtaining literature val-
ues or using patient-specific sizes to be determined in MRI
scans of the patient, furthermore, one can manually assign
elements or even improve the muscle representation using
more than one muscle fibre, as was done by Wu et al. [20].
Another activation strategy option instead of act3 is to deter-
mine the muscle channels showing activity that exceeds a
certain threshold. The choice of three recruited muscles is
arbitrarily, and the number of active muscles definitively dif-
fers per instruction and per person. This is demonstrated in
the high standard deviations in the sEMGresults of our exper-
iments (Fig. 5) aswell as the performance of actrel versus act3
(Fig. 6).

Although trivial we showed that asymmetric movement is
possible in ourmodelling experiments, in contrast to previous
research [18], creating unique opportunities for visualising
possible consequences of surgery with a 3D render of the
patient to get objective patient-specific information. This is
particularly important as people never perform perfect sym-
metric movements, as is described by Campbell [36].

Many articles address the issue of facial surgery plan-
ning with a common goal of predicting aesthetics after facial
surgery [5,7,37,38]. Typically, surgical alteration (resection
or replacement) of the bony structures underlying the face is
applied to a virtual model and the resulting passive effects

on soft tissues are then simulated. These principles of sur-
gical alteration in static and dynamic situation and of rigid
structures are important and will be addressed in our future
models. A virtual surgery tool that can be used to simulate
tumour resection in soft tissues is currently being developed
in our institute. The tumourwill be extracted from segmented
MRI data before insertion into the model. Thereafter, the
surgeon is able to perform a virtual resection of lip cancer fol-
lowed by simulation of wound closure. The patient-specific
sEMGmeasurements can then be used to control the adapted
model to show residualmovement after treatment,which is an
essential part of the personalisation of themodel. The promis-
ing results of our sEMG experiments are an important step in
this process. We will first focus on the prediction of dynamic
functions which are established by movement. Therefore,
incorporating motor control strategies into the model as well
as methods to assess motor control is essential. This is why
we investigated the use of sEMG.

The results we created with forward dynamics took about
5 s per time step; each instruction was normalised to 160
time steps resulting in 800 s (13 min and 20 s) on a worksta-
tion with an Intel Xeon processor (3.40 Ghz). Guidelines in
head and neck cancer care suggest 30 days from diagnosis
to treatment [39]. Considering this time frame and the pos-
sibility of 24/7 runs of the analyses, we think the approach
is definitively feasible within the given time. Even with the
current set-up and without optimisation the analysis can be
performed within the waiting time to treatment.

In the current workflow (Fig. 7), a patient is diagnosed
and undergoes all kinds of scans and tests (imaging and his-
tology). The case is presented to the multidisciplinary team
to agree upon treatment. The proposed treatment plan is then
explained to the patient. If the patient agrees, treatment is
started.
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In the future workflow (Fig. 7), after patient diagnosis and
the standard imaging are performed several additional tests
are done to obtain information on the specific patient.With all
these data, a patient-specificmodel is built. Specific treatment
modalities are tested, and the functional outcome (swallow-
ing, speech, aesthetics, etc.) is simulated. The patient is again
discussed at the multidisciplinary team meeting using the
patient-specific modelling and simulations as objective aid.
Next, the patient is informed about various treatment options
considering survival, appearance, and functional outcome.
These outcomes are made visible to the patient, who is also
able to hear the post-treatment voice, if relevant. Together
with the treating physician the patient decides which treat-
ment is best suited for his/her expectations.

Our future experiments can be improved by using
volunteer-specific biomechanical models. Recently, Bucki
et al. [40] have described a method to adapt a model to
volunteer-specific anatomy using personal imaging data and
aMesh-Match-and-Repair algorithm,while earlier Chabanas
proposed amesh correction algorithm after a mesh-matching
procedure [11]. Additionally, we set the friction coefficient
to zero as was done in previous models [14]. However, there
is usually some amount of friction between the lips despite
saliva, etc. Hence, this is probably not the best option. Future
studies on simulation of facial expressions or bilabial andplo-
sive speech articulations may benefit inclusion of a nonzero
friction coefficient, though it should be investigated what the
optimal value should be.

Patient-specific anatomyof in vivomuscle bundlesmay be
extracted using diffusion tensor magnetic resonance imaging
(DT-MRI), as suggested by Wu et al. [13]. Also, appropriate
selection of most relevant personal parameters for inclusion
in the model’s elements could be optimised per volunteer,
such as tissue stiffness (which also depends on age), and
muscle properties such as shortening.

Future experiments should also focus on inverse mod-
elling. A known issue in biomechanical modelling is the
ambiguity problem when sharing forces among a redundant
set of muscles. In the case of multiple inverse solutions for
the same motions, the resulting solution is based on mathe-
matical properties instead of patient-specific factors. Using
inverse modelling the required muscle activation patterns
are calculated based on measured movement. It might be
expected that incorporation of sEMG signals in the cost term,
used to solve the inverse algorithm, contributes to the solu-
tion of the ambiguity problem [41]. Inverse modelling is also
essential if one wants to incorporate compensatory muscle
activity, which is important for the final functional result after
surgery, and thus of importance in virtual therapy.

Other challenges concern preventive and rehabilitation
exercises. Kraaijenga et al. [42] showed that senior healthy
subjects are able to significantly increase swallowing mus-
cle strength and muscle volume after a 6-week training

period. van der Molen et al. [43] demonstrated benefi-
cial effect of preventive swallowing exercises in patients
undergoing chemoradiotherapy for advanced head and neck
cancer. Given these facts, preventive and rehabilitation ther-
apies can influence the functional outcome and thus the
prediction of functional outcome. In the future, we hope
to add decision support to point out the patients that ben-
efit from pre- and post-operative speech, swallowing or
other physical therapies. Besides, a virtual surgery tool and
other treatment tools like radiotherapy should be imple-
mented by utilising radiotherapy planning fields to determine
which anatomical structures will be affected and to what
extent.

To conclude, the use of sEMGopens newways for patient-
specific facial modelling, finally enabling us to predict the
functional and cosmetic outcome after surgery. We applied
a novel method to register two time sequences of vectors
using the first principal components of these two vectors.
Our experiments serve as a proof of principle for other
opportunities as modelling of the oral cavity and tongue
to predict function deficits after oral surgery, e.g. partial
glossectomy, considering personalisedmuscle activation pat-
terns. Although the extraction of muscle activation signals
from tongue muscles is challenging, the epidermal elec-
trodes described by Kim et al. [44] could be a promising
option.

Conclusion

Simulation of facial expressions using a biomechanical face
model controlled bymuscle activation signals estimated from
volunteer-specific sEMG signals of facial muscles is feasi-
ble and may be useful for simulating function losses in the
individual patient. Further experiments should focus on per-
sonalising the anatomical geometry of the model usingMRI,
CT, and DT-MRI, and development of methods to minimise
cross talk between neighbouring muscles using HD-sEMG
and advanced data processing techniques. Finally, thesemod-
els can be expanded to other subsites of the head and neck
like tongue, oropharynx, and larynx, while incorporating a
virtual surgery tool and other treatments like photodynamic
therapy, radiotherapy, and preventive and rehabilitation exer-
cises.
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