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Abstract

Various diseases and toxic factors easily impair cellular and organic functions in mammals. Organ transplantation is used to rescue organ func-
tion, but is limited by scarce resources. Mesenchymal stem cell (MSC)-based therapy carries promising potential in regenerative medicine
because of the self-renewal and multilineage potency of MSCs; however, MSCs may lose biological functions after isolation and cultivation for a
long time in vitro. Moreover, after they are injected in vivo and migrate into the damaged tissues or organs, they encounter a harsh environment
coupled with death signals due to the inadequate tensegrity structure between the cells and matrix. Preconditioning, genetic modification and
optimization of MSC culture conditions are key strategies to improve MSC functions in vitro and in vivo, and all of these procedures will con-
tribute to improving MSC transplantation efficacy in tissue engineering and regenerative medicine. Preconditioning with various physical, chem-
ical and biological factors is possible to preserve the stemness of MSCs for further application in studies and clinical tests. In this review, we
mainly focus on preconditioning and the corresponding mechanisms for improving MSC activities in vitro and in vivo; we provide a glimpse into
the promotion of MSC-based cell therapy development for regenerative medicine. As a promising consequence, MSC transplantation can be
applied for the treatment of some terminal diseases and can prolong the survival time of patients in the near future.
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Introduction

Various diseases and toxic factors easily impair cellular and organic
functions in mammals; parenchymal cells and stromal cells move into
an apoptotic state, accelerating the development of injury or disease.
If the functions cannot be repaired in a timely manner, multiple com-
plications will occur as a consequence. Previously, organ transplanta-
tion was the only effective repair for tissue injury, whereas cell
transplantation has gradually become a burgeoning route for regener-
ative medicine. However, transplantation of primary cells is limited by
scarce resources; therefore, stem cell transplantation becomes a hot

topic in current tissue engineering. In general, stem cells are classi-
fied as embryonic stem cells (ESCs), induced pluripotent stem cells
(iPSCs) and adult stem cells such as mesenchymal stem cells (MSCs)
and other tissue-specific stem cells [1]. ESCs are stem cells isolated
from the inner cell mass of early-stage embryos; they can proliferate
indefinitely without a senescent phenotype and differentiate into all
cell lineages [2]. Transcription factors such as OCT4 and NANOG are
indispensable for maintaining the high pluripotency state of ESCs [3],
and then, iPSCs were generated via conversion of somatic cells into
an ESC-like pluripotent state by overexpression of several vital tran-
scription factors [4]. Although both of them have extreme pluripo-
tency, unlimited self-renewal and multilineage potency, their
application should be considered carefully because of potential ethical
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problems, safety issues and low efficiency [5]. MSCs, which are
prevalent in tissues, exist in almost all kinds of tissues, and they are
adult stem cells with multilineage potentials [6]. There are no ethical
issues associated with their use, and they serve as a promising cell
source for cell-based therapy to maintain homeostasis under physio-
logical and pathological conditions [7, 8]. Furthermore, the low
immunological rejection rate permits their autotransplantation and
allogeneic transplantation applications [9]. MSCs exhibit plastic
adherence and fibroblast spindle-like-shaped morphology when cul-
tured in vitro and can highly proliferate and differentiate towards adi-
pocytes, osteocytes, chondrocytes, hepatocytes, endothelial cells,
cardiomyocytes, neural cells, etc. [1, 10–12]. MSCs have been
reported to exert various effects on host cells or organs via
immunomodulation [13]: pro-angiogenic [14], antiapoptotic [15] and
antioxidative effects [16] and activation of local quiescent stem cells
[17]. In fact, MSCs together with local somatic cells establish cell-to-
cell interactions and produce autocrine and paracrine factors [18],
and culture medium isolated from MSCs also contains biological fac-
tors including mRNAs, microRNAs and enzymes that protect cells or
organs from further damage [19]. Moreover, cell fusion of MSCs also
contributes to the repair of tissues or organ function [13, 14]; it
occurs rarely and is classified into two types, namely homotypic and
heterotypic cell fusions, with the former occurring between the same
lineage, while the latter occurs between different lineages [15]. In
addition, evidence demonstrated that MSCs could still transdifferenti-
ate into cardiomyocytes or neural cells at low rates after infusion or
injection in mammals although MSCs mainly promoted the regenera-
tion of injured organs through paracrine mechanism [12, 16].

MSCs reside in the general microenvironment with low oxygen
tension (i.e. 1–5% O2) in vivo, while the oxygen concentration of the
general culture environment (i.e. 20–21% O2) is higher than their
original living environment [17, 20]. The changed culture oxygen
tension in vitro may decrease the cell activities, including prolifera-
tion, differentiation, the anti-inflammatory response, and also
decrease the cell activities for repairing dysfunctional organs [21,
22]. MSCs are generally deprived of nutrients and oxygen after isola-
tion ex vivo, and the addition of trophic factors is not enough to
maintain the cell activities for further application [20]. MSCs isolated
from unhealthy individuals or those that have proliferated for a long
period will have an impaired self-renewal ability and physiological
state [23, 24]. In contrast, transplanted MSCs are confronted with
apoptosis or senescence attributed to harsh environmental condi-
tions, anoikis and inflammation induced by damaged tissues or
organs [25], which leads to an imbalance between the generation of
reactive oxygen species (ROS) and antioxidant mechanisms [26].
Inflammatory cells, such as neutrophils, monocytes and macro-
phages, which are recruited by chemokines or cytokines, will induce
apoptosis and inactivate the cytoprotective production of nitric oxide
(NO) [27]. The acute inflammatory response promotes angiogenesis
and the recruitment of progenitor cells, while chronic inflammation
inhibits the recruitment and survival of local progenitor cells and
implanted MSCs [28]. To this end, MSCs have been shown to pro-
tect tissues and organs from external injury; however, investigating
more effective routes to improve their therapeutic effects is still nec-
essary (Fig. 1).

Preconditioning, genetic modification and optimization of MSC
culture conditions are key strategies to improve MSC function in vitro
and in vivo. All of these procedures contribute to improving MSC
transplantation efficacy in tissue engineering and regenerative medi-
cine [29]. Recently, studies have demonstrated that pretreated MSCs
showed better cell survival, increased differentiation efficacy,
enhanced paracrine effects and an improved homing ability into injury
sites [29–31]. Preconditioning of MSCs by hypoxia, pharmacological
agents, chemical agents, trophic factors, cytokines and physical fac-
tors prior to their application is capable of initiating survival signalling
to counter the rigorous harsh microenvironment for MSC transplanta-
tion application (Fig. 2). However, the optimization of these external
factors for MSC preconditioning and the underlying mechanisms
should be further investigated to improve MSC therapeutic effects.
Currently, the mechanisms of preconditioning with hypoxia and other
important strategies (Tables 1 and 2) have been widely investigated
in experimental studies and clinical trials. In this review, we mainly
focus on the preconditioning and the corresponding mechanisms for
improving MSC activities in vitro and in vivo. In this way, we provide
a glimpse in the promotion of MSC-based cell therapy development
for regenerative medicine. As a promising consequence, MSC trans-
plantation can be applied for the treatment of some terminal diseases
and can prolong the survival time of patients in the near future.

Hypoxia preconditioning for improving
the cell activities of MSCs

O2 is essential for cellular homeostasis as the lack of O2 is involved in
the pathogenesis of some diseases with high morbidity and mortality
[32]. Hypoxia preconditioning including culturing for 15 min at 2.5%
O2, reoxygenation for 30 min at 21% O2 and hypoxia preconditioning
for 72 hrs at 2.5% O2 significantly improves the proliferation and
migration abilities of MSCs in vitro [33]. Hypoxia reduces the cell via-
bility and proliferation of MSCs but the following reoxygenation pro-
motes the recovery of MSCs, and the process of hypoxia and
reoxygenation (H/R) improves the expression of pro-survival genes
and various trophic factors in MSCs [34]; moreover, hypoxia or H/R
has been proven to promote multipotency of MSCs in determined
microenvironments in vitro [33, 35]. Considering the advantages of
hypoxia or H/R, current studies have focused on the optimization of
oxygen concentrations to improve the cell activities and therapeutic
effects of MSCs. Hypoxia at 0.5% O2 for 24 hrs can act as a protec-
tive factor to effectively counteract the deficiency of adipose-derived
MSCs from older donors and highly improve their differentiation
capacity [23]. When incubated in low-serum medium, MSCs will
move into an apoptotic state, but hypoxia preconditioning (1% O2)
can prohibit the damage via increasing the secretion of angiogenic
factors, VEGF and basic fibroblast growth factor (BFGF) [36]. More-
over, 1% O2 also increases the metabolic activity and decreases the
caspase-3/7 activity and lactate dehydrogenase release of MSCs, thus
decreasing the sensitivity of MSCs to the ischaemic microenviron-
ment without changing their biological behaviour, immunophenotype
or karyotype [37]. The decreased tumorigenic potential of MSCs
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induced by 2% O2 has been demonstrated to be mediated by the
down-regulation of the expression levels of tumour-suppressor genes
and TERT and the induction of suboptimal double-stranded DNA
breaks in MSCs in vitro [17]. Intriguingly, a hypoxic condition at 3%
O2 decreases the incidence of aneuploidy in MSCs compared to that
in the normoxic condition at 20% O2, indicating that pretreatment
with hypoxia improves the genetic stability and chromosome stability
and guarantees the safety of MSCs in vitro [38]. Culture in 5% ambi-
ent O2 consistently enhances the clonogenic potential and

proliferation rate of MSCs via up-regulation of vascular endothelial
growth factor (VEGF) secretion [35]. Liu et al. [39] demonstrated that
5% O2 exerted no effect on the phenotype or differentiation ability of
MSCs but significantly enhanced the autophagy by increasing the
expression of HIF-1a and the activation of the AMPK/mTOR signalling
pathway. While Boyette et al. [35] proved that 5% ambient O2

improved the osteogenesis and chondrogenesis of MSCs expanded
under normoxia, while it inhibited the adipogenesis and chondrogene-
sis of MSCs expanded under three-dimensional pellet conditions.

Fig. 1 After isolation in vitro, MSCs can be pretreated with various protective factors to improve survival rate and further enhance its application
in vitro and in vivo.

Fig. 2 Preconditioning, genetic modifica-

tion and optimization of MSC culture con-

ditions are key strategies to improve MSC
function in vitro and in vivo, and precon-

ditioning is effective at activating various

important signalling pathways for protect-

ing cells and organs from injury.
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After transplantation in vivo, the pathological environment signifi-
cantly decreases the self-renewal and survival rate of MSCs. Evidence
has shown that transplantation of hypoxia-pretreated MSCs enhanced
the therapeutic effects via up-regulating the secretion of cytokines
and growth factors [40, 41]. After hypoxia preconditioning (0.1–0.3%
O2), transplanted MSCs migrate into peri-injury regions in the intrac-
erebral haemorrhagic stroke brain and promote neurogenesis and
neurological functional recovery through secreting various growth
factors, including brain-derived neurotrophic factor (BDNF), glial cell
line-derived neurotrophic factor (GDNF) and VEGF [40]. In traumatic
brain injury rats, hypoxia preconditioning at 0.5% O2 promotes MSCs
to secrete more growth factors, including hepatocyte growth factor
(HGF) and VEGF, to improve the motor and cognitive functions of the
animal models [42]. In addition to the above-mentioned growth fac-
tors, the expression levels of HIF-1a, the VEGF receptor, erythropoi-
etin (EPO), the EPO receptor, stromal-derived factor-1 (SDF-1) and
CXC chemokine receptor 4 (CXCR4) were improved, while the release
of pro-inflammatory cytokines was decreased by MSCs precondi-
tioned with hypoxia at 0.5% O2. Furthermore, these pretreated MSCs
have been demonstrated to suppress microglia activity in the brain
and promote locomotion recovery more effectively than a normoxia-
cultured MSC group [43]. Although MSCs that are pretreated by
hypoxia at 0.5% O2 can improve the left ventricular function of mon-
keys with myocardial infarction more effectively than normoxia-cul-
tured MSCs, they are not able to increase the occurrence of
arrhythmogenic complications [44]. MSCs that are pretreated under
1% O2 have been shown to promote liver regeneration in massive
hepatectomy models via increasing expression of cyclin D1 and
VEGF, enhancing proliferation of hepatocytes and increasing the liver
weight/bodyweight ratio [41]. Sublethal oxygen concentration (1%)
up-regulates the release of angiogenesis- and neuroprotection-related
factors including VEGF, the VEGF receptor, angiotensin, BFGF, BDNF,
GDNF, SDF-1 and CXCR4 in MSCs, and transplantation of these cells
significantly up-regulates the expression levels of NO synthases,
endothelial markers and smooth muscle markers and also improves
the intracavernosal pressure and erectile function in diabetes models
[45]. Preconditioning with 1.5% O2 enhances the activities of MSCs
and effectively improves the proliferation, migration, angiogenesis,
antioxidant, antiapoptotic and antifibrotic properties of implanted
MSCs to compensate the loss of lung functions in idiopathic pul-
monary fibrosis models [46]. Most importantly, preconditioning with
hypoxia at 1.5% O2 inhibits the malignant transformation of MSCs
after transplantation and thus highly guarantees the safety of cell
transplantation [47]. After transplantation in a murine hindlimb
ischaemia model, MSCs that are pretreated by 1% to 7% O2 activate
the HIF-1a/GRP78/Akt signal axis for repairing the injury [48]; more-
over, 2% O2 improves the expression of prion protein (PrPC), acti-
vates PrPC-dependent JAK2 and STAT3 signalling pathways and then
up-regulates the activity of superoxide dismutase and catalase to inhi-
bit the oxidative stress-induced apoptosis of MSCs and promote the
recovery of the ischaemic tissue [49]. Transplantation of 2% O2-trea-
ted MSCs significantly increases the angiogenesis function and
decreases the tissue apoptosis in rabbit femoral head osteonecrosis
compared to that observed in 20% O2-treated MSCs [50]. MSCs that
are pretreated with hypoxia at 5% O2 can not only improve theTa
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migratory and tube-forming capacities of endothelial cells in vitro but
also facilitate revascularization in diabetic lower limb ischaemia
(DLLI) via increasing the expression levels of angiogenin, matrix met-
allopeptidase (MMP)-9, VEGF-1a and HIF-1a and activation of the p-
AKT signalling pathway [51]. Although most studies have proven that
hypoxia is a protective factor for MSCs in vitro and in vivo, determin-
ing the optimal oxygen concentration for improving the survival rate
and therapeutic effects of MSCs is still necessary.

Preconditioning with pharmacological
or chemical agents for MSC-based
regenerative medicine

Various drugs exert therapeutic effects in different diseases and pro-
tect organs from further loss of function, thus elongating the long-
term survival rate of patients. In current studies, specialists focus on
investigating the underlying mechanisms of drugs to protect MSCs
from injury and improve their application in regenerative medicine.
Although special medications have been demonstrated to exert pro-
tective effects on MSCs, as a premise, extremely high concentrations
of drugs will impair the function of MSCs. Thus, exploring the optimal
concentration of drugs for MSCs in vitro and in vivo is a prerequisite.
High concentrations of zoledronic acid inhibited the proliferation and
osteogenic differentiation of bone marrow-derived MSCs, while low
concentrations of zoledronic acid played the opposite role without
influencing their immunomodulatory properties [52]. Preconditioning
with drugs is presumed to be responsible for protecting against
ischaemic injury during stem cell transplantation and further activat-
ing endogenous cellular machinery for regeneration.

Under the pathological state in various diseases, the self-renewal
and differentiation abilities of MSCs are undoubtedly decreased, thus
limiting the supply of cell resources for basic application. For
instance, MSCs isolated from those with low- but not high-risk
myelodysplastic syndrome demonstrated a lower erythroid and mye-
loid colony formation of early haematopoietic progenitors; fortu-
nately, preconditioning with lenalidomide effectively rescued the
dysfunction in the disease-derived MSCs [53]. Because hydrogen
peroxide (H2O2) induces oxidative stress and senescence in MSCs
in vitro, vitamin E pretreatment counteracts the injury and up-regu-
lates the expression levels of proliferative markers and transforming
growth factor-beta (TGF-b), while it reduces the expression levels of
apoptosis-related genes and the release of VEGF and lactate dehydro-
genase (LDH) in vitro [54]. Hypoxia and serum deprivation (H/SD)
in vitro initiates apoptosis of MSCs, while preconditioning of MSCs
with low-dose lipopolysaccharide (LPS) preserves the mitochondrial
membrane potential and inhibits cyto C release in H/SD-cultured
MSCs; LPS preconditioning also decreases the expression of con-
nexin 43 via regulation of the ERK signalling pathway, thus stabilizing
the cell membrane of MSCs [55]. Preconditioning with sevoflurane
up-regulates the expression levels of HIF-1a, HIF-2a, VEGF and p-
Akt/Akt and prevents the initiation of apoptosis and loss of the mito-
chondrial membrane potential, thus maintaining the survival and
migration rates of MSCs after H/SD [56]. In addition, valproic acidTa
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(VPA), a histone deacetylase inhibitor with anticonvulsive function,
takes part in the promotion of hepatogenic differentiation via activa-
tion of the AKT and ERK signalling pathways and up-regulation of the
expression of endodermal genes in MSCs in vitro [57]. Chinese
medicines and some natural extracts have also been applied to pro-
tect MSCs from injury and enhance the differentiation content of
MSCs in vitro. Astragaloside IV, which can resist oxidative stress-
induced injury, has been used to promote the proliferation of MSCs
and inhibit the high glucose-induced expression of Toll-like receptor
4 (TLR4) in MSCs via decreasing the translocation of NF-jB p65 and
increasing MMP-2 expression [58]. Apple extract dose dependently
enhances the proliferative ability of adipose-derived MSCs via phos-
phorylation of p44/42 MAPK, mTOR, p70S6K, S6RP, eIF4B and eIF4E
and up-regulation of the release of VEGF and interleukin-6 [59]. Pre-
conditioning with icariside II (ICSII) has been demonstrated to pro-
mote the proliferation and osteogenic differentiation of bone marrow-
derived MSCs via up-regulating PI3K/AKT/mTOR/S6K1 signalling
pathways, and wortmannin or rapamycin neutralizes the transition
and acts as antagonists for this type of Chinese medicine [60]. Genis-
tein, which is a type of phytoestrogen, has anti-inflammatory and
antioxidative abilities; it exerts different effects on MSCs as it
enhances cell proliferation and adipogenic differentiation of MSCs but
inhibits the osteogenic progress by up-regulating PPARc expression
[61]. On the other hand, hormones that can maintain the homeostasis
of mammals and protect organs from injury contribute to the precon-
ditioning of MSCs in vitro. Oxytocin (OT), which is secreted from the
hypothalamus, induces activation of the Akt/ERK1/2 pathway to pro-
mote the cell proliferation and migration of MSCs, thus protecting
against the H/SD-induced cytotoxic and apoptotic effects on MSCs
[62].

Preconditioning of MSCs with various drugs in vitro also
improves the therapeutic effects of MSCs in vivo for multiple diseases
by repairing the lost functions via regulation of various pathways.
Deferoxamine (DFO), a type of iron chelator, increases the migration
in vitro and homing ability in vivo of MSCs via increasing the expres-
sion of HIF-1a, CXCR4, C-C motif chemokine receptor 2 (CCR2),
MMP-2 and MMP-9 but can be significantly down-regulated by an
HIF-1a inhibitor, namely 2-methoxyestradiol [63]. Atorvastatin is
widely used in coronary heart disease for inhibiting hyperlipidaemia,
preconditioning with which has been demonstrated to enhance car-
diac function and improve post-implantation survival via activation of
the eNOS/NO system in MSCs [24]. 2,4-Dinitrophenol (DNP)-pre-
treated MSCs significantly improve cardiac function and reduce scar
formation via up-regulation of angiogenesis in myocardial infarction
models [64]. The renin–angiotensin–aldosterone system (RAAS)
takes part in physiological processes by responding to external stim-
uli, and pretreatment with the derivatives of RAAS can effectively
influence MSC activities in vivo. Transplantation of angiotensin II-pre-
treated MSCs leads to less cardiac fibrosis, smaller infarct size via
up-regulation and the release of growth factors in the myocardial
infarcted myocardium, whereas there is no promotion of cardiogenic
differentiation in MSCs [65]. Pretreatment with angiotensin receptor
blockers (ARBs) increases the cardiomyogenic differentiation effi-
ciency of MSCs in vitro. Furthermore, transplantation of ARB-pre-
treated MSCs can significantly maintain the left ventricular ejection

fraction in vivo [66]. Streptozotocin is widely used to produce dia-
betes models, and MSCs isolated from these models show severely
impaired proliferation and angiogenic activities. OT significantly
reversed the self-renewal and differentiation ability of these MSCs
in vivo. Consequently, transplantation of OT-pretreated diabetes-
derived MSCs significantly improves cardiac function and reduces
fibrosis in a rat myocardial infarction model [67]. VPA pretreatment
significantly up-regulates the expression levels of neuroprogenitor
markers including nestin, Musashi, prominin 1 and glial fibrillary
acidic protein and consequently increases the number and neurite
length of neurogenic MSCs [68]. In a cerebral ischaemia model, mela-
tonin pretreatment increases the post-transplantation survival of
implanted MSCs and protects brain function from injury via activating
the ERK signalling pathway [69]. In spite of cardiogenic differentiation
and neural differentiation, other drugs have been used to improve the
other differentiation abilities of MSCs in vivo. Rapamycin (RAP),
which is an antifungal antibiotic, can significantly promote the osteo-
genesis of MSCs in vivo by the activation of autophagy, but the effect
can be reversed by an autophagy inhibitor, namely 3-methyladenine
[70]. The transplantation of vitamin E-pretreated MSCs increases the
proteoglycan content in the cartilage matrix for chondrogenic differ-
entiation of MSCs [54]. Preconditioning with all-trans retinoic acid
(ATRA) increases the expression levels of cytochrome c oxidase
(COX)-2, HIF-1, CXCR4, CCR2, VEGF, angiogenin-2 and angiogenin-4
in MSCs, which can be reversed by a selective COX-2 inhibitor, namely
celecoxib, in vitro; ATRA-pretreated MSCs enhance tube formation and
the in vivo wound healing ability [71]. Pretreatment of umbilical cord-
derived MSCs with polyribocytidylic acid enhances the therapeutic effi-
ciency in trinitrobenzene sulphonate (TNBS)-induced colitis mouse
models; Notch-1 signalling promotes the release of prostaglandin E2
for immune suppression of umbilical cord-derived MSCs [72].
Although drugs exert their specific protective effects on MSCs and pro-
mote the repair of injured tissues via enhancing MSC activities after
transplantation, whether the drugs have adverse effects on MSC prop-
erties should be further investigated for their safe application.

In regenerative medicine, small molecules are applied to generate
iPSCs from somatic cells and contribute to current cell and tissue
engineering. They have been demonstrated to participate in the regu-
lation of MSC fate in vitro and in vivo, although whether the effects
are advantageous or disadvantageous should be further investigated.
As shown above, mechanical stretch increases VEGFA expression and
resistance to apoptosis. A small molecule, namely BAY 11-708,
blocks the pro-angiogenesis and antiapoptosis function of MSCs via
the inhibition of NF-jB activity [73]. As a naturally occurring antimi-
crobial peptide that can effectively enhance the proliferative and
migratory abilities of MSCs to assist in wound repair, LL-37 has been
demonstrated to contribute to the improvement of MSC proliferation
and migration by activation of the MAPK signalling pathway [74].
Dimethyloxalylglycine (DMOG) is a prolyl hydroxylase inhibitor that
induces the migration of MSCs into peripheral blood circulation. How-
ever, Ge et al. [75] showed that DOMG-pretreated MSCs had a similar
immune phenotype and multilineage differentiation capability as con-
trol MSCs, and the release levels of transforming growth factor (TGF)
and PDGF were comparable in both groups. DMOG can effectively
increase the expression levels of survival and angiogenic factors
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including HIF-1a, VEGF, glucose transporter 1 and phospho-AKT in
MSCs and improve the therapeutic effects of MSCs via reducing heart
infarct size and promoting functional repair in myocardial infarction
after transplantation [76]. Pretreatment with RU486, an antagonist of
the glucocorticoid receptor, significantly increases the proliferation of
human MSCs in a gender-dependent way and enhances the expres-
sion of osteogenic markers in osteogenic MSCs compared to that
observed in control MSCs [77]. Moreover, preconditioning with JI-34,
a growth hormone-releasing hormone agonist, enhances the differen-
tiation into endothelial tube cells in vitro and improves the engraft-
ment of MSCs into hemic hindlimb muscles for repairing injured
parts [78]. Although small molecules are widely used in current
reprogramming programmes, they are still a negligible portion of
active factors for preconditioning of MSCs, and a large number of
small molecules should be developed for the protection of MSCs.

Trophic factors and cytokines for
regulation of MSC fate

The interaction between growth factor and its receptors activates the
downstream signal transduction for cell survival and cell differentia-
tion; thus, growth factor and cytokine preconditioning may influence
the host tissue through paracrine/autocrine pathways. MSCs contain
a variety of trophic factors or cytokines with biological functions
including immunomodulatory properties [79] and anti-inflammatory
capacities [80]. Despite the promising results, one impediment is that
the short biological half-lives of the growth factors inhibit the stable
therapeutic effects. SDF-1 pretreatment protects MSCs from H2O2-
induced apoptosis via enhancing the proliferation, migration and sur-
vival rate; concurrently, angiogenic cytokines including BFGF and
VEGF and pro-survival signalling pathways including AKT and ERK
are also up-regulated by preconditioning with SDF-1 [81]. Intrigu-
ingly, TGF-b1 drives MSC fate towards osteoblasts generation
in vitro, while it inhibits adipogenic differentiation; furthermore, the
addition of TGF-b1 into adipogenic medium switches MSCs from adi-
pogenesis into osteogenesis, mainly through activating SMAD/C/
EBPs/PPARc signalling pathways [82]. A short-term preconditioning
with TNF-a on MSCs enhances proliferation, mobilization and osteo-
genic differentiation via activation of ERK1/2 and MAPK signalling
pathways, whereas silencing by siRNA can partially inhibit ERK1/2
signalling and osteogenic differentiation of MSCs [83]. Pretreatment
of MSCs with interferon (IFN)-c suppresses natural killer (NK) activa-
tion and NK-mediated cytotoxicity partly via up-regulating the synthe-
sis of indoleamine 2,3-dioxygenase (IDO) and prostaglandin E2 [84].
On the other hand, an optimal combination of growth factors for
directed differentiation of stem cells into the desired lineage remains
a challenge. IL-1 and TNF-a inhibit the osteogenesis and adipocyte
generation of MSCs via activating the canonical NF-jB signalling [85]
and IL-1R1/MyD88 signalling pathway [86]. Moreover, the addition of
TNF-a and IFN-c into MSCs in vitro increases the production of IDO
for the generation of anti-inflammatory M2 macrophages and the sup-
pression of human peripheral blood mononuclear cell proliferation
[87]. A sequential pretreatment with BFGF followed by sex steroid

hormones highly improves the expression of neural markers and pro-
motes the differentiation efficacy of bone marrow-derived MSCs [88].

Preconditioning with various cytokines have also been proven
to have protective effects on injury models and can participate in
the regulation of cell fate. Preconditioning with IL-1b increases the
expression levels of various cytokines including TNF-a, IL-6, IL-8
and IL-23A and chemokines such as CCL5, CCL20, CXCL1, CXCL3,
CXCL5, CXCL6, CXCL10 and CXCL11, as well as adhesion mole-
cules such as vascular cell adhesion molecule (VCAM)-1, intercellu-
lar adhesion molecule (ICAM)-1 and ICAM-4 in MSCs, thus
improving the migration ability of MSCs to the site of inflammation
in vivo [89]. In addition, IL-1b pretreatment not only increases the
proliferation but also up-regulates the chondrogenic potential of
synovial MSCs; however, high concentrations of IL-1b exert
adverse effects on synovial MSCs by reducing the adhesion ability
and pluripotency [90]. TGF-b1, which can be released from the
bone matrix, induces MSC migration into the remodelling sites and
couples bone formation and resorption via the canonical SMADs
signalling pathway or the non-canonical signalling pathways involv-
ing AKT, ERK1/2, FAK and p38 [91]. A low concentration of TGF-
b1 has the optimal effect on human umbilical cord-derived MSC
proliferation and stimulates the expression of ECM-related genes
without altering their immunophenotype and differentiation capacity,
whereas pretreatment can significantly improve the survival of
umbilical cord-derived MSCs in damaged lungs in vivo [92]. Pre-
conditioning with oncostatin M (OSM), which belongs to the IL-6
family, significantly increases the expression of type 2 OSM recep-
tor and HGF in MSCs, consequently maintaining pulmonary respira-
tory function and down-regulating the release of inflammatory and
fibrotic factors in bleomycin-induced lung fibrotic mice [93]. IFN-a-
pretreated MSCs can be used to treat dextran sodium sulphate
(DSS)- and TNBS-induced colitis via increasing the migration
potential of MSCs and inhibiting Th1 inflammatory responses [94].
Even under conditions of H/SD, pretreatment with migration inhibi-
tory factor (MIF) significantly reduces the apoptosis rate of aged
MSCs and rejuvenates the senescence by activating the AMPK-
FOXO3a signalling pathway [95]. These trophic factors and growth
factors may influence MSC properties synergistically or antagonisti-
cally; thus, the concentration or combination of these factors needs
to be optimized according to their chemical characteristics.

Preconditioning with physical factors
and materials for regulating MSC fate

Physical factors are generally noxious for MSC activities in vitro; how-
ever, an increasing number of studies have proven that they could
enhance the proliferation and differentiation abilities in vitro and
in vivo. Extremely low-level lasers are effective for improving the pro-
liferation rate via increasing the S-phase proportion and enhancing
mitochondrial biogenesis via up-regulating the generation of ROS and
NO in MSCs; moreover, the migration ability of MSCs is improved by
activating the ERK1/2 and FAK signalling pathways and up-regulating
expression levels of HGF and platelet-derived growth factor (PDGF)
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[96]. Pretreatment with pulsed electromagnetic fields (PEMF)
increases the expression levels of MSCs and decreases cell death by
up-regulating the expression of AKT and RAS in a dose- and time-
dependent manner [97]. After suspension in culture medium, silica
can be divided into NPs and MPs according to its differently sized
particles, and NPs increase the proliferation of adipose-derived MSCs
via promoting phosphorylation of ERK1/2, while MPs cause a slight
increase in apoptosis via increasing phosphorylation of p38 [98].
Intriguingly, some external elements only exert their protective effects
under harmful microenvironments. For instance, mechanical stretch
preconditioning increases the angiogenic capacity and survival rate of
MSCs via up-regulation of VEGFA and NF-jB p65 activity in a condi-
tion of nutrient deprivation [73]. GFc7, a nanochelating-based
nanocomplex, improves cell proliferation, expression of pluripotency
genes and homing markers and antioxidative defence; spontaneous
differentiation-related genes are repressed, while specific differentia-
tion-related genes for the direction of the determined cell fate are sig-
nificantly up-regulated [99]. Selenite recovers the osteoblastic
differentiation of MSCs and inhibits the activation of the ERK sig-
nalling pathway in MSCs under the conditions of excessive H2O2 via
improving the activity of glutathione peroxidase and the total antioxi-
dant capacity and reducing glutathione for ROS generation [100]. Pre-
treatment with carboxyl-terminated hyperbranched polyester (CHBP)
maintains the MMP and mitochondrial membrane integrity and acti-
vates the Nrf2/Sirt3/FoxO3a pathway, thus providing more resistance
to starvation-induced oxidative stress in a dose-dependent manner,
while CHBP exerts little effects on the differentiation and self-renewal
capacity of MSCs under normal conditions [101]. The three-dimen-
sional microenvironment mimics the physical environment for MSC
culture by providing intensive cell–cell interactions, providing enough
space for MSC proliferation and generating more biochemical and
biomechanical cues [102]; thus, multiple physical factors can be
applied to organization of three-dimensional microenvironment
in vitro or in vivo according to their advantages. However, the usage
of physical factors and materials may effectively improve MSC-based
therapeutic effects, while it may also lead to DNA damage and apop-
tosis of MSCs in vitro.

Conclusions

Once MSCs are isolated from original tissues and induced to pro-
liferate in vitro, the surrounding environment is not sufficient for
maintaining their self-renewal and differentiation capacities indefi-
nitely. In fact, MSCs also lose a portion of their functions after

isolation and cultivation in vitro as the surrounding microenviron-
ments are changed and not the same as the environment in vivo.
In addition, after they are injected in vivo and migrate into dam-
aged tissues or organs, they encounter a harsh environment cou-
pled with death signals due to the inadequate tensegrity structure
between the cells and matrix. Consequently, although cultured
MSCs are widely applied in cellular transplantation, the low sur-
vival rate and high apoptosis rate lower their therapeutic effects.
Various protocols including preconditioning, gene modification and
various coculture methods have been tested and widely investi-
gated in recent studies. Preconditioning can influence the biologi-
cal activities of MSCs in vitro and in vivo, thus highly improving
the repairing efficacy for injury and disease models. However,
there are still many obstacles to determine the optimal methods
for preconditioning in MSC-based therapy. First, will the factors
exert adverse effects on MSCs? Secondly, what is the applicable
dose of these factors? Thirdly, will MSCs acquire tumorigenicity
after pretreatment? Fourthly, how can some factors be combined
to synergistically enhance MSC activities? Fifthly, more factors
that can effectively protect MSCs from apoptosis should be devel-
oped or produced. Lastly, the detailed mechanisms should be fur-
ther investigated as there is not a simple regulative route to
protect MSCs from injury. Although MSC transplantation has been
applied to multiple clinical trials, additional studies should be con-
ducted to more precisely understand whether and how such
strategies may affect the in vivo biological activity of transplanted
cells. After these potential problems that inhibit the application of
preconditioning on MSCs are solved, MSC-based therapy may be
applied more widely in current regenerative medicine and can be
applied for the treatment of some terminal diseases in the near
future.
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