
biomolecules

Article

Microstructure, Wettability, Corrosion Resistance and
Antibacterial Property of Cu-MTa2O5 Multilayer
Composite Coatings with Different Cu
Incorporation Contents

Zeliang Ding 1,*, Yi Wang 1, Quan Zhou 1, Ziyu Ding 2, Jun Liu 3, Quanguo He 3,* and
Haibo Zhang 1

1 School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China;
wy15292222379@163.com (Y.W.); zhouquan321@163.com (Q.Z.); zhbtywzhb@163.com (H.Z.)

2 School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China;
dingziyu0320@163.com

3 School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China;
liu.jun.1015@163.com

* Correspondence: 10176@hut.edu.cn (Z.D.); hequanguo@126.com (Q.H.); Tel.: +86-731-2218-3537 (Z.D.);
+86-731-2218-3883 (Q.H.)

Received: 5 December 2019; Accepted: 29 December 2019; Published: 31 December 2019 ����������
�������

Abstract: Bacterial infection and toxic metal ions releasing are the challenges in the clinical application
of Ti6Al4V alloy implant materials. Copper is a kind of long-acting, broad-spectrum and safe
antibacterial element, and Ta2O5 has good corrosion resistance, wear-resistance and biocompatibility,
they are considered and chosen as a potential coating candidate for implant surface modification. In
this paper, magnetron sputtering technology was used to prepare copper doped Ta2O5 multilayer
composite coating Cu-Ta2O5/Ta2O5/Ta2O5-TiO2/TiO2/Ti (Cu-MTa2O5 for short) on Ti6Al4V alloy
surface, for studying the effect of copper incorporation on the microstructure, wettability, anticorrosion
and antibacterial activities of the composite coating. The results showed that Cu-MTa2O5 coating
obviously improves the hydrophobicity, corrosion resistance and antibacterial property of Ti6Al4V
alloy. In the coating, both copper and Ta2O5 exhibit an amorphous structure and copper mainly
presents as an oxidation state (Cu2O and CuO). With the increase of the doping amount of copper,
the grain size, roughness, and hydrophobicity of the modified surface of Ti6Al4V alloy are increased.
Electrochemical experiment results demonstrated that the corrosion resistance of Cu-MTa2O5 coated
Ti6Al4V alloy slightly decreased with the increase of copper concentration, but this coating still
acts strong anticorrosion protection for Ti6Al4V alloy. Moreover, the Cu-MTa2O5 coating can kill
more than 97% of Staphylococcus aureus in 24 h, and the antibacterial rate increases with the increase
of copper content. Therefore, Cu-MTa2O5 composite coating is a good candidate for improving
anticorrosion and antibacterial properties of Ti6Al4V alloy implant medical devices.

Keywords: implant material; corrosion resistance; antibacterial property; tantalum pentoxide; copper

1. Introduction

Reducing postoperative pain and the probability of postoperative complications, and speeding
up the recovery of patients are both urgent problems to be addressed in the clinical application of
implant materials [1]. Therefore, many scholars have carried out a lot of studies on improving the
properties of implant materials such as stainless steel, titanium and its alloy, etc. [2–4]. Unfortunately,
many problems, such as bacterial infection during surgery and toxic ion release during service, have
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not been effectively solved [5,6]. Since the corrosion and infection of implant materials are highly
related to their surface properties, surface modification is considered to be the most effective method
to overcome the problems in the clinical application of implant materials [7]. Among the availability
of various surface modifications, the coating technique is often adopted, since it is not only a simple
process, low-cost and easy industrialization way, but also enables the performance customization [1,8].

In recent years, various metal oxides such as titanium oxide, zirconia, alumina, silicon oxide,
niobium oxide, and tantalum oxide have been used for surface modification coating of biomedical
Ti6Al4V alloy, and their biological properties in vitro have also been investigated [4,9–13]. Among these
oxides, tantalum oxide (Ta2O5) coating has recently drawn extensive attention due to its advantages
such as excellent corrosion resistance and good biocompatibility and wear resistance [14,15]. At present,
the main preparation methods of Ta2O5 coating include magnetron sputtering [16], sol-gel [17] and
electron beam evaporation [18]. Ceramic coating with high purity, compact structure, uniform particle
size, and good bonding performance, deposited by radio frequency sputtering ceramic target, has been
widely used in aerospace, machinery, electronics, medical and other industries [19–23]. In addition,
Ta2O5 coating also has antibacterial activity. For example, the bactericidal rate of Ta2O5 coating is
12% for Escherichia coli (E. coli) [24] and 30% for Staphylococcus aureus (S. aureus) [7]. However, the
antibacterial effect of Ta2O5 coating is far from reaching the requirement of clinical application.

With the excellent bactericidal ability, copper shows strongly antibacterial to five kinds of bacteria
such as S. aureus. Additionally, the bactericidal rate of copper towards a variety of bacteria can
reach more than 90% or even 100%, and it presents a long-term, broad-spectrum and safety during
this bactericidal process [25–27]. In 2008, copper and copper-bearing alloy were registered as the
first effective metallic antibacterial material by the U.S. Environmental Protection Agency, which
were considered to have the effect of killing 99.9% of bacteria within 2 h [28]. Moreover, copper,
as an indispensable trace element in the human body, plays a vital role in maintaining the normal
physiological ability of the body [29], such as the formation of osteoblasts in bone metabolism [30],
regulating microvascular development, and accelerating skin wound healing [31,32]. Missing copper
ions in the body may result in impaired bone growth and bone strength in animals [33]. It turned out
that the copper, once added into TiO2, ZrO2 and other ceramic coatings can significantly improve the
antibacterial properties of the coatings [34,35]. However, there are few reports on copper incorporation
into Ta2O5 coating.

Meanwhile, for the good corrosion resistance, mechanical properties, and biocompatibility, Ti6Al4V
titanium alloy is a research focus of implant materials in the fields of dentistry and orthopedics [15,36,37].
However, it was found by clinical studies that Ti6Al4V titanium alloy could be corroded by body fluids,
releasing metal ions with the toxic and side effects, such as aluminum and vanadium, which could
induce inflammation, allergy, poisoning and other reactions in human body, subsequently lead to the
failure of implant surgery in serious cases [6,38]. Furthermore, because Ti6Al4V alloy itself has no
fungicidal activity, during the surgery, bacteria could adhere to the surface of the implant to multiply
to form biofilms, causing postoperative infection [39,40].

In our previous research [41], a Copper-incorporated Ta2O5 multilayer composite coating
Cu-Ta2O5/Ta2O5/Ta2O5-TiO2/TiO2/Ti (Cu-MTa2O5 for short) on Ti6Al6V titanium alloy has been
developed by magnetron sputtering technology. The microstructure, bonding strength, anticorrosion
behavior and antibacterial activity of the coating were studied, revealing that the coating has excellent
corrosion resistance and antibacterial performance, and bonding strength of 2.9 times that of monolayer
Ta2O5 coating. For the further understanding of the influence of copper content on the microstructure
and properties of the coating, the Cu-MTa2O5 multilayer composite coating with different copper content
was prepared on Ti6Al4V by magnetron sputtering in this study. Scanning electron microscope (SEM),
atomic force microscope (AFM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) and
X-ray photoelectron spectroscopy (XPS) analysis were carried out for the microstructure characterization,
phase composition and elemental chemical status of the coating. The wettability, anticorrosion and
antibacterial properties of the coating were characterized by contact angle measurement instrument,
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electrochemical workstation and coating plate count method, respectively. As far as we know, this is
the first study on the effect of copper doping on the microstructure and properties of Ta2O5 multilayer
composite coatings on Ti6Al4V titanium alloys.

2. Materials and Methods

2.1. Coating Deposition

The substrates are silicon wafer (10 mm × 10 mm × 2 mm) and Ti6Al4V titanium alloy (10 mm ×
10 mm×0.6 mm). The composition of Ti6Al4V titanium alloy is Al, 6.8 wt %; V, 4.5 wt %; Fe, 0.3 wt %;
O, 0.2 wt %; C, 0.1 wt %; N, 0.05 wt %; H, 0.015 wt %; and the surplus, Ti. Ta2O5, Ti and Cu target
material (ZNNM., Beijing, China) have a size of Ø 75 mm × 4 mm and a purity of 99.99%. Argon is
used as the working gas, oxygen as the reaction gas, their purity is 99.99%.

The structural diagram of Cu-MTa2O5 multilayer composite coating is presented in Figure 1. The
first to the third layer of the composite coating is the intermediate transition layer, which is used to
enhance the adhesion strength between the Ta2O5 coating and the Ti6Al4V substrate. The fourth layer,
Ta2O5, and the fifth layer, Cu-Ta2O5, both are functional layers, which have functions of corrosion
resistance and antibacterial effect respectively. Before depositing the coating, the Ti6Al4V substrate
was successively ground with 240 to 2000 mesh SiC sandpaper, then polished for 10 min with 5
microns diamond paste and 500 nm alumina solutions respectively. Subsequently, the samples were
washed under ultra-sonication for 15 min by acetone and anhydrous ethanol, respectively. After being
dried by vacuum dryer, the samples were loaded into magnetron sputtering coating system (JCP-450,
BJTN., Beijing, China) which can simultaneously install three targets and has three power sources of
radio-frequency (RF), direct current (DC) and intermediate frequency (IF) (see Figure 2). The plasma
was then employed to clean the substrates so as to remove the surface contamination and enhance
surface activity.

Biomolecules 2019, 9, x FOR PEER REVIEW 3 of 16 

status of the coating. The wettability, anticorrosion and antibacterial properties of the coating were 
characterized by contact angle measurement instrument, electrochemical workstation and coating 
plate count method, respectively. As far as we know, this is the first study on the effect of copper 
doping on the microstructure and properties of Ta2O5 multilayer composite coatings on Ti6Al4V 
titanium alloys. 

2. Materials and Methods 

2.1. Coating Deposition 

The substrates are silicon wafer (10 mm×10 mm× 2 mm) and Ti6Al4V titanium alloy (10 mm×10 
mm×0.6 mm). The composition of Ti6Al4V titanium alloy is Al, 6.8 wt%; V, 4.5 wt %; Fe, 0.3 wt %; O, 
0.2 wt %; C, 0.1 wt %; N, 0.05 wt %; H, 0.015 wt%; and the surplus, Ti. Ta2O5, Ti and Cu target 
material (ZNNM., Beijing, China) have a size of Ø 75 mm × 4 mm and a purity of 99.99%. Argon is 
used as the working gas, oxygen as the reaction gas, their purity is 99.99%. 

The structural diagram of Cu-MTa2O5 multilayer composite coating is presented in Figure 1. 
The first to the third layer of the composite coating is the intermediate transition layer, which is used 
to enhance the adhesion strength between the Ta2O5 coating and the Ti6Al4V substrate. The fourth 
layer, Ta2O5, and the fifth layer, Cu-Ta2O5, both are functional layers, which have functions of 
corrosion resistance and antibacterial effect respectively. Before depositing the coating, the Ti6Al4V 
substrate was successively ground with 240 to 2000 mesh SiC sandpaper, then polished for 10 min 
with 5 microns diamond paste and 500 nm alumina solutions respectively. Subsequently, the 
samples were washed under ultra-sonication for 15 min by acetone and anhydrous ethanol, 
respectively. After being dried by vacuum dryer, the samples were loaded into magnetron 
sputtering coating system (JCP-450, BJTN., Beijing, China) which can simultaneously install three 
targets and has three power sources of radio-frequency (RF), direct current (DC) and intermediate 
frequency (IF) (see Figure 2). The plasma was then employed to clean the substrates so as to remove 
the surface contamination and enhance surface activity. 

 
Figure 1. Scheme of Cu-MTa2O5 multilayer composite coatings. 

 
Figure 2. Schematic diagram of the magnetron sputtering system. 

Figure 1. Scheme of Cu-MTa2O5 multilayer composite coatings.

Biomolecules 2019, 9, x FOR PEER REVIEW 3 of 16 

status of the coating. The wettability, anticorrosion and antibacterial properties of the coating were 
characterized by contact angle measurement instrument, electrochemical workstation and coating 
plate count method, respectively. As far as we know, this is the first study on the effect of copper 
doping on the microstructure and properties of Ta2O5 multilayer composite coatings on Ti6Al4V 
titanium alloys. 

2. Materials and Methods 

2.1. Coating Deposition 

The substrates are silicon wafer (10 mm×10 mm× 2 mm) and Ti6Al4V titanium alloy (10 mm×10 
mm×0.6 mm). The composition of Ti6Al4V titanium alloy is Al, 6.8 wt%; V, 4.5 wt %; Fe, 0.3 wt %; O, 
0.2 wt %; C, 0.1 wt %; N, 0.05 wt %; H, 0.015 wt%; and the surplus, Ti. Ta2O5, Ti and Cu target 
material (ZNNM., Beijing, China) have a size of Ø 75 mm × 4 mm and a purity of 99.99%. Argon is 
used as the working gas, oxygen as the reaction gas, their purity is 99.99%. 

The structural diagram of Cu-MTa2O5 multilayer composite coating is presented in Figure 1. 
The first to the third layer of the composite coating is the intermediate transition layer, which is used 
to enhance the adhesion strength between the Ta2O5 coating and the Ti6Al4V substrate. The fourth 
layer, Ta2O5, and the fifth layer, Cu-Ta2O5, both are functional layers, which have functions of 
corrosion resistance and antibacterial effect respectively. Before depositing the coating, the Ti6Al4V 
substrate was successively ground with 240 to 2000 mesh SiC sandpaper, then polished for 10 min 
with 5 microns diamond paste and 500 nm alumina solutions respectively. Subsequently, the 
samples were washed under ultra-sonication for 15 min by acetone and anhydrous ethanol, 
respectively. After being dried by vacuum dryer, the samples were loaded into magnetron 
sputtering coating system (JCP-450, BJTN., Beijing, China) which can simultaneously install three 
targets and has three power sources of radio-frequency (RF), direct current (DC) and intermediate 
frequency (IF) (see Figure 2). The plasma was then employed to clean the substrates so as to remove 
the surface contamination and enhance surface activity. 

 
Figure 1. Scheme of Cu-MTa2O5 multilayer composite coatings. 

 
Figure 2. Schematic diagram of the magnetron sputtering system. Figure 2. Schematic diagram of the magnetron sputtering system.



Biomolecules 2020, 10, 68 4 of 16

Figure 3 shows that the deposition sequence of each film layer in Cu-MTa2O5 multilayer coating
is Ti layer, TiO2 layer, TiO2-Ta2O5 layer, Ta2O5 layer and Cu-Ta2O5 layer in turn. Ti and Cu were
deposited by direct current sputtering, TiO2 by direct current reactive sputtering, while Ta2O5 by radio
frequency sputtering. Since the deposition rate of the metal film is positively proportional to sputtering
power in an argon atmosphere, the doping amount of Cu in Cu-MTa2O5 composite coating can be
adjusted by sputtering power of the Cu target. The sputtering power of Cu is set to be 0, 40, 60 and
80 W, and the corresponding codes of Cu-MTa2O5 multilayer composite coating samples are C0, C1,
C2 and C3 respectively. The preparation parameters of the coating are shown in Table 1. The expected
thickness of Ti film, TiO2 film, TiO2-Ta2O5 film, Ta2O5 film and Cu-Ta2O5 film are estimated to be about
200 nm, 50 nm, 100nm, 1000 nm and 250–450 nm, respectively. Silicon substrate coating samples were
applied for characterization of coating surface and section, while Ti6Al4V substrate coating samples
were used for performance study.
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Table 1. Coating preparation parameters.

Layer
Number

Coating Materials Sputtering
Power (W)

Deposition
Time (min)

Gas Flow (sccm)

Ar O2

1st layer Ti 200 8 20

2nd layer TiO2 200 8 16 4

3rd layer TiO2-Ta2O5
TiO2 200

8 20 5Ta2O5 200

4th layer Ta2O5 200 105 20

5th layer Cu-Ta2O5
Cu 0, 40, 60, 80

15 20Ta2O5 200

2.2. Coatings Characterization

Scanning electron microscope (Helios Nanolab G3 UC, Thermo Fisher Scientific Inc., USA) was
employed to analyze the surface and interface micromorphology of coating specimens. The roughness
of the coating surface was detected by AFM (EasyScan2, Switzerland). XRD (Ultima IV, Rigaku
Corporation, Japan) was used to analyze the phase composition of the coating. The content of coating
elements on the surface and cross-section of specimens was analyzed with EDS (Team Octane Plus,
Ametek Group, USA). Element composition and chemical state of the coating surface were studied by
XPS (EscaLab 250Xi, Thermo Fisher Scientific Inc., USA).

2.3. Contact Angle Tests

Generally, the contact angle (CA) is applied to assess the wettability of the sample surface [42]. At
room temperature of 20 ◦C and ambient humidity of 50%, the CA measuring instrument (JC20001,
POWEREACH, Shanghai, China) was used to determine the water contact angle of the sample. During
the test, the liquid drops were placed on the sample surface with a standard microinjector and captured
by a camera. In order to obtain accurate CA value, five different positions on the surface of the sample
were measured, and the average value was taken as the test result.
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2.4. Electrochemical Experiments

The corrosion properties of the sample were tested by PS-268A electrochemical detection system
(SP-15/20A, Bio-Logic Science Instruments, France). During the test, simulated body fluid (SBF) with
pH of 7.4 was used as electrolyte [43]. Platinum plate, saturated Ag/AgCl and target sample were
used as counter electrode (CE), reference electrode (RE) and the working electrode (WE), respectively,
where 1 cm2 of specimen surface area was exposed to SBF solution. The measurement range of the
potentiodynamic polarization curve was −0.3~2.0 V, and the scanning rate was 1mV/s. Corrosion
parameters including corrosion potential (Ecorr) and corrosion current (Icorr) can be calculated from the
potentiodynamic polarization curve by Tafel extrapolation. The polarization resistance (Rp) can be
calculated by the following formula [44,45]:

Rp =
βa × βc

2.3× icorr(βa + βc)
(1)

where, βa and βc are the Tafel slopes of the anode and cathode, respectively. All experiments were
repeated three times and the experimental data were averaged.

2.5. Antibacterial Test

The plate counting method is the most common method for the quantitative evaluation of
antibacterial properties of materials [41]. S. aureus is one of the common pathogens causing
implant-related infection and implant inflammation [41]. In this study, the antibacterial effect
of the sample on S. aureus (ATCC6538, Guangzhou Institute of Microbiology, Guangzhou, China)
was tested by the plate counting method. Before the experiment, all specimens were sterilized by a
vertical pressure steam sterilizer (parameters: 121 ◦C, 0.1 MPa, 30 min). The concentration of bacterial
suspension was adjusted to 107 CFU/mL by 0.9% of NaCl solution. 4 mL of bacterial suspension was
injected into a sterile glass tube, the sample was placed in it and sealed, and then incubated in a shaking
incubator for 24 h (ambient temperature was 37 ◦C). After that, the sample was taken out from the
glass tube and the liquid was shaken for a uniform solution, then 100 µL of this bacterial solution was
evenly coated on the agar plate and cultured in shaking incubator at 37 ◦C for 24 h. The automatic
colony imaging analysis system (Sphere Flash, Barcelona, Spain) was used to take photos of the plate
and count the active bacteria. The sterilizing rate (X) of the sample is calculated using the following
formula [25]:

X =
M−N

N
× 100% (2)

where M and N is the average number of alive S. aureus colonies found on Ti6Al4V alloy and coating
specimens, respectively.

3. Results and Discussion

3.1. Microstructure Characterization

Figure 4 displays SEM and AFM images of the surface of the coating samples. Figure 2a shows that
Ta2O5 coating on the surface of the C0 sample is smooth, with small grain size and no obvious defects
such as pores and cracks. With the increase of Cu incorporation into Ta2O5 coating, the grain diameter
and grain boundary gap increased, and the microstructure density decreased (see Figure 4b–d). The
increase of grain size is related to Cu grain agglomeration around Ta2O5 grain [46]. Figure 4e,f shows
the AFM images of the coating sample surfaces with a scanning range of 5 µm × 5 µm and their
corresponding roughness values. As shown in this Figure, the surface of all samples is composed of
peak-type particles, the particle size is increased with the increasing of doped Cu element. The average
values of surface roughness (Ra) of the C0 sample without Cu doping is 3.48 ± 0.3 nm. The surface
roughness of the C1 sample that mixed with 7.14 at % Cu is increased to 12.8 ± 0.3 nm. With the increase
of Cu element incorporation, the surface roughness of C2 and C3 samples increased to 14.5 ± 0.2 nm
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and 30.0 ± 0.3 nm, respectively. Fewer doped elements in the coating can increase the compactness
of the layer and reduce the surface roughness, while higher incorporated elements can increase the
surface roughness [47]. These results show that the increase of Cu content will significantly affect the
surface structure of the composite coating, inducing in the increase of grain size and roughness on the
surface of these coatings.
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Figure 5 depicts the surface EDS analysis of coating samples. The outlayer of all three coating
samples contains Cu, Ta and O elements. Among them, the incorporation of Cu in the C3 sample
was the highest of 18.76 at %, followed by the C2 sample (13.28 at %), and the Cu content of the C1
sample was the lowest (7.14 at %). Because the coating deposited by magnetron sputtering technology,
the deposition rate of the coating is positively proportional to the sputtering power of the target
material [48]. Among these three samples, the C3 sample has the highest Cu target sputtering power
(80 W), its Cu content is the highest.
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Figure 6 shows the SEM image and EDS line scan results of cross-section of C3 coating sample.
In Figure 6a, there are three obvious layers S1, S2 and S3 in the coating section. According to the
coating structure (Figure 1) and the expected thickness of the individual film layer, it can be concluded
that S1, S2 and S3 layers can be assigned to Ti film, TiO2/TiO2-Ta2O5/Ta2O5 film and Cu-Ta2O5 film,
respectively. In the S2 region, there is no obvious interface among TiO2 film, TiO2-Ta2O5 film and
Ta2O5 film, and no micropores or cracks appear. The two layers are basically integrated, which helps
to improve the adhesion of adjacent layers. Figure 6b shows that Ta, Cu, Ti and O are contained in all
S1, S2 and S3 of the coating. Among them, the rising trends of the contents of O, Ta and Cu in the
coating are observed, while the Ti element was relatively stable. The fluctuation of element content is
related to the region of the film and its components. These elements are distributed throughout the
coating and diffused into the substrate, which helps to improve the chemical affinity between adjacent
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film layers and form the metallurgical bonding interface for reducing interfacial stress and improving
coating bonding strength.Biomolecules 2019, 9, x FOR PEER REVIEW 8 of 16 
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Figure 6. (a) Cross-section SEM image and (b) EDS line scan results along the thickness of C3 coating
on the Si substrate.

Figure 7 displays the XRD images of Ti6Al4V and coated Ti6Al4V samples. No characteristic
peaks of Cu and Ta2O5 appear in the XRD patterns of all the coating samples, indicating that Cu and
Ta2O5 in the coatings are amorphous structure [49]. The appearance of an amorphous structure could
be related to low deposition temperature and low sputtering power [50,51]. Previous studies have
found that when the annealing temperature is about 800 ◦C, the Ta2O5 film deposited by sputtering
at room temperature starts to crystallize, while the crystallization temperature of Cu film is above
300 ◦C [52,53]. In addition, the diffraction peak of Ti appears in the XRD pattern, which may be due to
the porous structure and small thickness of the coating, causing Ti to diffuse from the intermediate
layer or substrate to the coating surface. With the increase of Cu incorporation, the coating thickness
increases, and the strength of the Ti peak gradually decreases. The chemical valence of the elements in
the coating needs to be further determined by XPS testing.
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Figure 7. XRD patterns of coated and un-coatedTi6Al4V.

Figure 8 displays the XPS spectra of the C3 sample. The full XPS spectrum in Figure 8a shows
the peaks of Cu 2p, O 1s and Ta 4f, indicating the presence of Cu, O and Ta on the surface of the
C3 sample. In the high-resolution spectrum of Ta 4f (Figure 8b), two peaks located at the binding
energy position of 25.8 eV and 27.7 eV correspond to the characteristic peaks of Ta 4f7/2 and Ta 4f5/2,
respectively, indicating that the chemical state of Ta on the surface of C3 sample is Ta2O5 [17].
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Figure 8. (a) XPS survey spectrum and (b) Ta 4f, (c–e) Cu 2p, (f) O 1s high-resolution spectra of the C3
coating sample.

Two characteristic peaks of Cu 2p3/2 and Cu 2p1/2 appear in the high-resolution spectrum of Cu 2p
shown in Figure 8c, and are deconvolved to obtain the high-resolution spectrum of Figures 8d and 8e,
respectively. In Figure 8d, the peak at the binding energy of 933.9 eV is related to CuO, while the peak
of 932 eV is related to Cu or Cu2O [34]. The peak located at 951.8 eV could be ascribed to the Cu 2p1/2

from Cu or Cu2O in the high-resolution spectrum of Figure 8e, while the peak located at 953.7 eV is
from CuO. In addition, two satellite peaks are also observed, which are attributed to CuO (Figure 8c),
which further confirms the existence of CuO in the coating [33]. Since copper is easy to be oxidized,
the oxidation state of copper is observed in this Cu doped in C3 coating.
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In high-resolution XPS spectrum of O 1s (Figure 8f), three deconvolution peaks at binding
energy position of 531.3 eV, 530.2 eV and 529.8 eV could be attributed to Ta2O5, CuO and Cu2O,
respectively [54–56]. These results show that the chemical state of the Ta element in Cu-MTa2O5

composite coating is Ta2O5, while both CuO and Cu2O existed as state Cu elements. More importantly,
Ta2O5 can improve the corrosion resistance and biocompatibility of the implant material [15], while
CuO and Cu2O can improve the antibacterial activity of the implant material [34].

3.2. Wettability

Wettability is one of the important surface properties of implant materials that affect cell/bacterial
response, which is generally evaluated by testing the surface contact angle [41]. Figure 9 is the test
result of the water contact angle on the surface of the sample. The contact angles of coated samples
are all greater than that of uncoated Ti6Al4V alloy (73 ± 1◦). The contact angle of C0 sample without
adding Cu was 81.68 ± 1◦. With the increase of Cu incorporation in the coating, the contact angle is
gradually increased. The contact angle of the C3 sample with the most Cu content was 105.51 ± 1.5◦.
This is because the roughness surface of this sample, it is increased with the adding of Cu element, and
the contact angle is in direct proportion to the surface roughness [57].

Biomolecules 2019, 9, x FOR PEER REVIEW 10 of 16 

3.2. Wettability 

Wettability is one of the important surface properties of implant materials that affect 
cell/bacterial response, which is generally evaluated by testing the surface contact angle [41]. Figure 
9 is the test result of the water contact angle on the surface of the sample. The contact angles of 
coated samples are all greater than that of uncoated Ti6Al4V alloy (73 ± 1 °). The contact angle of C0 
sample without adding Cu was 81.68 ± 1 °. With the increase of Cu incorporation in the coating, the 
contact angle is gradually increased. The contact angle of the C3 sample with the most Cu content 
was 105.51 ± 1.5 °. This is because the roughness surface of this sample, it is increased with the 
adding of Cu element, and the contact angle is in direct proportion to the surface roughness [57]. 

 

Figure 9. Contact angle value and water droplet photo of coated and uncoated samples. 

3.3. Anticorrosion Property 

Figure 10a shows the electrochemical potentiodynamic polarization curve of the specimens in 
SBF, Figure 10b,c presents the corrosion parameters corresponding to Figure 10a obtained by Tafel 
extrapolation. The Ecorr value of bare Ti6Al4V is −0.42 V, while the Ecorr values of all coating specimens 
are higher than that of bare Ti6Al4V. However, the Ecorr values of coating specimens decrease with 
the increase of Cu content, where C0 (0.03 ± 0.01 V) has the highest Ecorr value, followed by C1 (−0.04 
± 0.03 V), C2 (−0.06 ± 0.05 V) and C3 (−0.08 ± 0.01 V). 

In addition, the Icorr value of Ti6Al4V alloy (1.07 ± 0.02 μA/cm2) was the highest among all 
specimens, while the Icorr values of coating specimens decrease first and then increases with the 
increase of Cu incorporation, and the Icorr value of C1 sample (0.26 ± 0.01 μA/cm2) was the lowest. In 
Figure 10d, Ti6Al4V alloy shows the smallest Rp value, while the C1 sample with the least addition of 
Cu has the highest Rp value. Higher Ecorr, smaller Icorr and larger Rp may make the materials more 
resistant to corrosion [15]. These results indicate that the Cu-MTa2O5 composite coating has a good 
effect of corrosion protection on Ti6Al4V alloy. The improvement of anticorrosion property for these 
coating specimens is attributed to the excellent chemical stability of Ta2O5 ceramic coating [58]. A 
small amount of Cu can improve the densification of the coating, and prevent the substrate from 
eroding by corrosion ions, and enhance the anticorrosion property of the substrate. However, since 
Cu can be easily oxidized, when the addition of Cu in the coating is relatively large, more copper ion 
is released into the corrosive solution, leading to a reduction in anticorrosion property of the sample 
[59]. 

Figure 9. Contact angle value and water droplet photo of coated and uncoated samples.

3.3. Anticorrosion Property

Figure 10a shows the electrochemical potentiodynamic polarization curve of the specimens in
SBF, Figure 10b,c presents the corrosion parameters corresponding to Figure 10a obtained by Tafel
extrapolation. The Ecorr value of bare Ti6Al4V is −0.42 V, while the Ecorr values of all coating specimens
are higher than that of bare Ti6Al4V. However, the Ecorr values of coating specimens decrease with the
increase of Cu content, where C0 (0.03 ± 0.01 V) has the highest Ecorr value, followed by C1 (−0.04 ±
0.03 V), C2 (−0.06 ± 0.05 V) and C3 (−0.08 ± 0.01 V).

In addition, the Icorr value of Ti6Al4V alloy (1.07 ± 0.02 µA/cm2) was the highest among all
specimens, while the Icorr values of coating specimens decrease first and then increases with the increase
of Cu incorporation, and the Icorr value of C1 sample (0.26 ± 0.01 µA/cm2) was the lowest. In Figure 10d,
Ti6Al4V alloy shows the smallest Rp value, while the C1 sample with the least addition of Cu has
the highest Rp value. Higher Ecorr, smaller Icorr and larger Rp may make the materials more resistant
to corrosion [15]. These results indicate that the Cu-MTa2O5 composite coating has a good effect of
corrosion protection on Ti6Al4V alloy. The improvement of anticorrosion property for these coating
specimens is attributed to the excellent chemical stability of Ta2O5 ceramic coating [58]. A small
amount of Cu can improve the densification of the coating, and prevent the substrate from eroding by
corrosion ions, and enhance the anticorrosion property of the substrate. However, since Cu can be
easily oxidized, when the addition of Cu in the coating is relatively large, more copper ion is released
into the corrosive solution, leading to a reduction in anticorrosion property of the sample [59].
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3.4. Antibacterial Properties

Figure 11 shows the appearance of S. aureus colony on the surface of the agar plate. The Figure
shows the characteristics of bacterial colonies after the sample is co-cultured with bacterial liquid for
24 h and then cultured on the surface of the agar plate for 24 h. The largest number of bacterial colonies
is observed in the polished Ti6Al4V sample (Figure 11a), the second one is C0 sample. But the bacterial
colonies cultured with Cu doped samples C1, C2 and C3 are significantly reduced, with only 40, 10
and 2 of strains, respectively, and the antibacterial rate is more than 90% (Figure 11c,d). These results
show that Ta2O5 coating has a certain bactericidal ability, while Cu doped Ta2O5 coating has excellent
antibacterial properties by compared with pure polished Ti6Al4V alloy.

The antibacterial effect of Cu-containing coating is attributed to Cu ions dissolved from the
coating [34]. As shown in Figure 12, when the Cu-bearing coating sample is immersed in the bacterial
solution, Cu ions are released from the coating surface and diffuse into the solution. These Cu ions
are adsorbed on the cell membrane of bacteria through electrostatic action, which limits the activity
of bacteria, inducing metabolic disorders and cell death [60]. Moreover, after contact with bacteria,
Cu ions penetrate the membrane into the cell, which destroys membrane integrity and leads to cell
death due to the leakage of the cytoplasm such as proteins and reducing sugars [61]. In addition, Cu
ions entering the cell can damage the respiratory chain of the bacterial, cause the production of a large
amount of ROS, degradation of DNA and proteins, and ultimately cell death [26]. The antibacterial
activity of C0 sample is related to the amorphous structure [62] and the release of Ta5+ ions [24]. But
at present, there is few researches focus on the antibacterial mechanism of Ta2O5, and its detailed
mechanism needs to be further investigated carefully.
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4. Conclusions

In conclusion, Cu-Ta2O5/Ta2O5/Ta2O5-TiO2/TiO2/Ti (Cu-MTa2O5 for short) multilayer composite
coating with different Cu incorporation content is fabricated on Ti6Al4V alloy by magnetron sputtering.
The effect of Cu content on microstructure, wettability, corrosion resistance and antibacterial activity of
the composite coating was investigated. The surface of the Ta2O5 multilayer composite coating with or
without copper had greater surface roughness and water contact angle than Ti6Al4V alloy. With the
increase of copper content, the surface roughness and hydrophobicity of the copper-containing coating
samples were increased. More importantly, although the corrosion potential of the copper-doped
coating samples is slightly lower than that of copper-undoped coating sample, it shows smaller
corrosion current and is able to effectively prevent the corrosion medium from attacking the Ti6Al4V
alloy. In addition, the antibacterial rate of Cu-MTa2O5 multilayer composite coating containing 7.14
at% copper reached 97.8 ± 3%, and improved with the increase of copper content. Therefore, this
study can provide useful help in the multi-functionalization of Ti6Al4V alloy surface modification for
biomedical implant applications. However, further effort, such as preparation parameter optimization
and biocompatibility assessment of Cu-MTa2O5 coatings, needs to be carried out.
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