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Abstract. Runt-related transcription factor 3 (RUNX3) is a 
member of Runt domain family that is known to play key roles 
in various different types of tumor. It was recently demon-
strated that RUNX3 may also be associated with cervical 
cancer. The aim of the present study was to investigate the 
potential association between transcriptome changes and 
RUNX3 expression in cervical cancer. A RUNX3 overexpres-
sion model was constructed using cervical cancer cell lines 
by RUNX3 plasmid transfection. It was demonstrated that the 
upregulated expression of RUNX3 inhibited proliferation of 
cervical cancer cell lines, particularly SiHa cells, and was 
associated with the expression of the IL‑6, PTGS2, FOSL1 
and TNF genes. In addition, it was revealed that the TNF and 
FoxO pathways may also be affected by RUNX3. Therefore, 
the expression of the RUNX3 gene may be involved in the 
occurrence and progression of cervical cancer.

Introduction

Cervical cancer was reported as the most common gyneco-
logical tumor in developing countries in 2012 (1). It was also 
estimated that 527,600 women were first diagnosed with 
cervical cancer and 265,700 women succumbed to this disease 
worldwide in the same year (1). In recent years, cervical 
cytology screening and vaccination have been used to prevent 
cervical cancer development due to human papillomavirus 
(HPV) infection (2). However, thousands of women are still 
affected by cervical cancer, with detrimental effects on their 

quality of life (3). Alongside the increased amount of research 
that makes the molecular mechanism underlying cervical 
cancer more clear, particularly with the knowledge that HPV 
and E6 oncoproteins potentially affect the progress of cervical 
cancer, an increasing number of genes have been demonstrated 
to be implicated in cervical cancer (4,5). Identifying new 
molecular targets for the prevention and treatment of cervical 
cancer would further improve the quality of life of the patients.

Runt-related transcription factor 3 (RUNX3), along with 
RUNX1 and RUNX2, are members of the Runt domain 
family (6). RUNX3 is involved in the transforming growth 
factor β (TGF-β) signaling pathway, which is a key down-
stream effector affecting the progression of tumors (7). In a 
number of previous studies on gastric, hepatocellular and 
breast cancer, RUNX3 has been revealed to play a significant 
role in tumor suppression (8-11). Recent research has demon-
strated that RUNX3 may also act as a tumor suppressor gene in 
cervical cancer (12). RUNX3 expression may be suppressed by 
promoter hypermethylation, gene deletions, inactivating muta-
tions and protein mislocalization (8,11,13-16). By contrast, 
other researchers concluded that RUNX3 acts as an oncogene 
in skin, ovarian and head and neck cancer, where its expres-
sion level was observed as significantly increased (17‑20). In 
addition, Lotem et al (21) hypothesized that this gene plays 
important roles in immunity and inflammation, and may affect 
the development of epithelial tumors.

In a previous study, it was observed that the polymor-
phisms of RUNX3 may be associated with cervical cancer, and 
the mRNA expression of RUNX3 was significantly different 
between the cervical cancer group and the healthy female 
subjects (22). However, the specific molecular mechanism 
through which RUNX3 regulates cancer-associated signaling 
pathways and affects tumorigenesis remains elusive. The aim 
of the present study was to investigate the effect of RUNX3 
on cervical cancer cell lines, and to identify the transcriptome 
changes in cervical cancer.

Materials and methods

Cell culture. SiHa, HeLa and C33A cells were obtained 
from the Laboratory of Molecular Translational Medicine, 
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West China Institute of Women and Children's Health, Key 
Laboratory of Obstetric & Gynecological and Pediatric 
Diseases and Birth Defects of Ministry of Education, West 
China Second University Hospital, Sichuan University 
(Sichuan, China). SiHa is an HPV-16 infected cervical cancer 
cell line, HeLa is an HPV-18 infected cervical cell line, and 
C33A is an HPV-negative cervical cancer cell line. The cells 
were cultured in DMEM high‑glucose medium at 37˚C in 5% 
CO2, supplemented with 10% fetal bovine serum and peni-
cillin/streptomycin (50 U/ml) (both Thermo Fisher Scientific, 
Inc.). There was no contamination of SiHa and C33A cells by 
HeLa cells.

Construction of plasmids, RNA interference and transfection. 
Homo sapiens RUNX3 mRNA sequence (23) was used to 
design and identify the RUNX3 overexpression model and 
empty plasmid (plasmid EX-NEG-M98; Guangzhou FulenGen 
Co., Ltd.), was used as the control; in addition, RUNX3 
short-hairpin RNA (shRNA) was designed and identified 
(Guangzhou FulenGen Co., Ltd.). The following base pairs of 
shRNA (shRNA31, shRNA32, shRNA33 and shRNA34) and 
the non-targeting sequence control shRNA (shRNA001) were 
used for RUNX3 gene interference (Table I). After the single 
clones were obtained, the extracted plasmids were identified 
and sequenced via digestion, following the instructions of 
endotoxin-free plasmid extraction kit (Tiangen Biotech Co., 
Ltd.). Briefly, 8 ml buffer P1 with RNase A was added to the 
collected bacteria and vortexed. Subsequently, 8 ml buffer P2 
was added, and the samples were shaken gently and left to 
stand at 25˚C for 5 min. This was repeated with buffer P4, after 
which the samples were centrifuged at 8,228 x g for 10 min at 
25˚C. Following which, 0.3 of the volume of isopropanol and 
2.5 ml buffer BL was added, and the samples were transferred 
to CP6 columns and centrifuged at 8,228 x g for 2 min at 25˚C, 
twice. A total of 10 ml buffer PW with absolute ethanol was 
added and the samples were centrifuged at 8,228 g for 2 min 
at 25˚C, twice. Subsequently, cervical cancer cells were trans-
fected with RUNX3 overexpression plasmid or shRNA (0.5 µg 
plasmid) by X-tremeGene HP DNA Transfection Reagent 
(Roche Diagnostics). In the present study, cells with RUNX3 
overexpression were referred to as ‘ORF’ RUNX3 cells, the 
empty plasmid was the control of ORF RUNX3 cells as ‘NEG’ 
control cells, and those with RUNX3 shRNA as ‘shRNA’ 
RUNX3 cells. In addition, the control groups were treated 
only with transfection reagent in SiHa, HeLa and C33A cells, 
respectively which were referred to as ‘Control’, and without 
any intervention as ‘cell line name’ (baseline controls). At 24, 
48 and 72 h after transfection, the cells were harvested and 
prepared for subsequent experiments.

RNA isolation and reverse transcription‑quantitative PCR 
(RT‑qPCR) analysis. Total RNA was extracted from cervical 
cancer cells and purified using TRIzol® reagent according 
to the manufacturer's protocol (Thermo Fisher Scientific, 
Inc.). RT-PCR was performed using a One-Step RT-PCR kit 
(Bioneer), according to the manufacturer's protocol. RT-qPCR 
was performed using the SYBR Green PCR Master Mix 
(Roche Diagnostics). The samples of all genes were ampli-
fied in a thermocycler as follows: 95˚C for 10 min (1 cycle), 
95˚C for 15 sec and 60˚C for 1 min (48 cycles). The primer 

sequences are presented in Table II. Data were normalized 
against β‑actin expression with the comparative quantification 
cycle method. Triplicate Cq values were averaged and the rela-
tive expression levels were determined as 2-ΔΔCq (24).

WST‑1 measurement and flow cytometry. WST-1 measurement 
was used to detect cell viability using a WST-1 cell prolifera-
tion and cytotoxicity assay kit (Boster Biological Technology 
Co., Ltd.) according to the manufacturer's protocol. Briefly, the 
cervical cancer cells were seeded at a density of 104 cells/ml into 
96‑well plates and incubated overnight at 37˚C. Subsequently, 
the plasmids were transfected into cancer cells for 24/48/72 h 
3 times, as aforementioned. WST-1 (10 µl) was added, followed 
by incubation for a further 2 h at 37˚C. In order to exclude 
the effect of the WST-1 reagent, the same concentrations of 
transfection reagent were added to the cells directly when the 
WST-1 measurement was performed. The absorbance of cells 
was monitored at 450 nm.

Apoptosis was also analyzed via flow cytometry. First, the 
transfected tumor cells in each group were lysed with trypsin 
without EDTA (HyClone; GE Healthcare Life Sciences), and 
the cells were stained using the FITC Annexin V Apoptosis 
Detection kit with propidium iodide (PI; both BestBio, 
http://bestbio.bioon.com.cn/). Finally, for the cell cycle 
analysis, cells in each group were stained with PI and then 
analyzed by flow cytometry (Guava® easyCyte™), using nCyte 
v2.7 software (both EMD Millipore; Merck KGaA).

Transcriptome sequencing. A total of 3 µg RNA from each 
sample was used, which was prepared for input material of the 
RNA samples. Sequencing libraries were generated, using the 
NEBNext® Ultra™ RNA Library Prep kit for Illumina® (New 
England Biolabs) according to the manufacturer's protocol. The 
index codes were added to assign sequences to each sample. 
Briefly, mRNA was purified from total RNA using poly‑T 
oligo-attached magnetic beads NEBNext® Ultra™ Directional 
RNA Library Prep kit for Illumina® (New England Biolabs, 
Inc.) according to the manufacturer's protocol. Fragmentation 
was then performed using divalent cations at increasing 
temperatures of 25˚C for 10 min, 42˚C for 15 min, and 70˚C for 
15 min after which the samples were held at 4˚C, in NEBNext 
First-Strand Synthesis Reaction Buffer (5X) (New England 
Biolabs, Inc.). Finally, the PCR products were purified 
(AMPure XP system), and the library quality was assessed on 
the Agilent Bioanalyzer 2100 system. According to the manu-
facturer's instructions, clustering of the index-coded samples 
was performed on a cBot Cluster Generation System, which 
used a TruSeq PE Cluster kit v3-cBot-HS (Illumina, Inc.). 
The library preparations were then sequenced on an Illumina 
Hiseq 2000/2500 platform, and 100/50 bp single-end reads 
were generated. Gene Ontology (GO; http://geneontology.
org) enrichment analysis of differentially expressed genes 
was implemented by the GOseq R package (clusterProfiler 
v3.4.4; http://bioconductor.org/), in which gene length bias 
was corrected. GO terms with corrected P<0.05 were consid-
ered significantly enriched by differentially expressed genes. 
The Kyoto Encyclopedia of Genes and Genomes (KEGG; 
http://www.genome.jp/kegg) is a database resource for under-
standing high-level functions and utilities of the biological 
system, such as the cell, the organism and the ecosystem, from 
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molecular-level information, particularly from large-scale 
molecular datasets generated by genome sequencing and 
other high-throughput experimental technologies. The present 
study used clusterProfiler v3.4.4 software (http://bioconductor.
org/) in order to test the statistical enrichment of differen-
tially expressed genes in the KEGG pathways. Through this 
analysis, different genes were identified as potential regulators 
of cervical cancer, which may be downstream or upstream of 
RUNX3.

Statistical analysis. GraphPad Prism software (version 5.01; 
GraphPad Software, Inc.) was used for the data analysis and to 
assess the normal distribution and equal variance of all data. 
The baseline characteristics of the participants were assessed 
by Student's t-test and single-factor Pearson's χ2 test. Only the 
difference between two groups were evaluated by Student's 
t test. Differences among multiple groups were evaluated 
by the one-way ANOVA, followed by Bonferroni's multiple 
comparisons test. The RUNX3 mRNA expression levels were 
compared between transfected cells, or between groups of 
cervical cancer cells and controls using Bonferroni's multiple 
comparisons test. P<0.05 was considered to indicate a statis-
tically significant difference. According to transcriptome 
sequencing, differential expression analysis of two groups 
was performed using the DESequencing (DESeq) R package 
(v1.10.1; https://www.bioconductor.org/). DESeq provides 
statistical analysis for determining differential expression 

in digital gene expression data using a model based on the 
negative binomial distribution. The resulting P-values were 
adjusted using the Benjamini and Hochberg's approach for 
controlling the false discovery rate. Genes with an adjusted 
P‑value (q value) found by DESeq were classified as differ-
entially expressed. q<0.05 was considered to indicate a 
statistically significant difference.

Results

Expression of RUNX3 in cervical cancer lines. The effi-
ciency of exogenous RUNX3 expression and RUNX3 shRNA 
in cervical cancer cells was verified via RT‑qPCR analysis. 
The mRNA levels of RUNX3 were markedly higher in ORF 
RUNX3 cells compared with the NEG control group of the 
three cervical cancer cell lines (P<0.001; Fig. 1), which were 
also extremely significantly higher than the ‘Control’ and ‘cell 
name’ groups (P<0.001; Fig. 1). It also demonstrated the low 
expression levels of RUNX3 in all the control groups, with 
or without intervention. In addition, the shRNA RUNX3 and 
control groups (shRNA001) were significantly different in 
the three cell lines, particularly in SiHa cells (P<0.001 and 
P<0.05, respectively; Fig. 2). As the RUNX3 gene was success-
fully suppressed by shRNA34 in SiHa, HeLa and C33A 
cells, particularly the SiHa cell line at 24 (P<0.001) and 48 h 
(P<0.05), shRNA34 was selected as the interference plasmid 
for subsequent experiments (Fig. 2).

Table I. shRNAs used in the present study.

Clone name Symbol Chromosome location Length 5'-3' 

HSH021393-31-LVRH1GP(OS503663) RUNX3 815 21 GGCAATGACGAGAACTACTCC
HSH021393-32-LVRH1GP(OS545091) RUNX3 159 21 GGAATCCAAATTCTTGGGTAC
HSH021393-33-LVRH1GP(OS503664) RUNX3 2895 21 GGTCTCTTACAGGTATAGTTC
HSH021393-34-LVRH1GP(OS545092) RUNX3 3858 21 GGGATAGTAAATAAATTGCTC
CSHCTR001-1-LVRH1GP(OSNEG20)   19 GCTTCGCGCCGTAGTCTTA

shRNA, short hairpin RNA; RUNX3, runt-related transcription factor 3.

Table II. Primer sequences used in the present study.

    Product
Gene Gene ID Forward (5'-3') Reverse (5'-3') size, bp

TNC NM_002160.3 TCGCTACAAGCTGAAGGTGG GTTAACGCCCTGACTGTGGT 214
PTGS2 NM_000963.3 CAAATTGCTGGCAGGGTTGC AGGGCTTCAGCATAAAGCGT 139
ICAM1 NM_000201.2 ATGGCAACGACTCCTTCTCG GCCGGAAAGCTGTAGATGGT 142
TNF SF10 NM_001190942.1 TGCGTGCTGATCGTGATCTT TCTTGGAGTCTTTCTAACGAGC 234
IL6 NM_000600.3 TTCAATGAGGAGACTTGCCTGG CTGGCATTTGTGGTTGGGTC 206
IL7R NM_002185.3 TGAAATATGTGGGGCCCTCG GTCATTGGCTCCTTCCCGAT 223
FOSL1 NM_005438.4 AGCCCAGCAGAAGTTCCAC CCTCTTCCTCCGGGCTGAT 227
IL32 NM_001308078 AGACAGTGGCGGCTTATTATGAGG GCCTCGGCACCGTAATCC   86
TGF‑β NM_000660.4 TATCGACATGGAGCTGGTGAAG CAGCTTGGACAGGATCTGGC   67
β‑actin NM_001101.3 TGACGTGGACATCCGCAAAG CTGGAAGGTGGACAGCGAGG 205
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Role of RUNX3 in proliferation and apoptosis of cervical 
cancer cells. The WST-1 results suggested that there were 
significant differences among ORF and NEG plasmid trans-
fection groups and shRNA34 and shRNA001 groups in the 

SiHa cell line (P<0.05; Fig. 3A), However, the shRNA34 and 
shRNA001, and ORF and NEG groups exhibited less promi-
nent differences in HeLa and C33A cell lines, respectively, 
although the results were still significant; (Fig. 3B and C). 

Figure 1. RUNX3 mRNA expression levels were significantly different between the ORF RUNX3 cells and NEG control groups in SiHa, HeLa and C33A cell 
lines. The name of ‘SiHa’, ‘HeLa’ and ‘C33A’ groups were not altered, which were set as baseline controls. ***P<0.001. RUNX3, Runt-related transcription 
factor 3; ORF, RUNX3 overexpression cells; NEG, empty plasmid-transfected cells.
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There was no significant difference between the groups of 
cervical cancer cells with WST-1 or without WST-1 (Fig. 3). 
In addition, the results revealed that there were significant 
differences at different transfection times; the ORF and NEG 

groups were significantly different at 24, 48, 72 and 96 h in 
the SiHa cell line, the shRNA34 and shRNA001 groups were 
significantly different at 72 and 96 h in the HeLa cell line and 
the ORF and NEG groups were significantly different at 24, 

Figure 2. RUNX3 mRNA expression levels in shRNA RUNX3 and control groups (shRNA001) differed significantly in SiHa, HeLa and C33A cell lines, 
particularly between the shRNA34 and shRNA001 groups in SiHa cell. *P<0.05 and ***P<0.001 vs. shRNA001. RUNX3, Runt-related transcription factor 3; 
shRNA, short hairpain RNA.
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48 and 96 h in the C33A cell line (P<0.05). The results also 
demonstrated that the effects on different cervical cancer cells 
varied and indicated that RUNX3 may inhibit the proliferation 
of cervical cancer cells.

PI/Annexin V flow cytometry analysis was performed 
in the present study in order to detect the apoptosis rates in 
RUNX3-transfected cell lines. The apoptosis rates of different 
cervical cancer cell groups were significantly different, 
especially in SiHa cells (Fig. 4). The apoptosis rate of the 
ORF group was significantly higher compared with that in 
the control group in SiHa cell at 24, 48 and 72 h (P<0.001), 
indicating an apoptosis-promoting role of RUNX3 in cervical 
cancer. Furthermore the apoptosis rate of the shRNA34 
group was significantly higher compared with that in the 
control group at 24, 48 and 72 h, which were inconsistent as 
expected (P<0.001, Fig. 4). In addition, the apoptosis ratios 
of HeLa and C33A cells were not significantly higher in the 
ORF group compared with that in the control group at 24 and 
48 h, which were not consistent with those of the SiHa cells in 
ORF and control group, but in the 48 and 72 h time periods, 
shRNA34 group was significantly higher compared with that 
in the control group, in both the HeLa and C33A cells, which 
is consistent with the SiHa cells (P<0.05; Fig. 4). Finally 
the apoptosis ratios of ORF group were significantly lower 
compared with that in the shRNA34 group at 48 h in SiHa, 
HeLa and C33A cell lines (P<0.05; Fig. 4), and at 72 h in SiHa 
and HeLa cell lines (P<0.05; Fig. 4). The results may suggest 
the low expression of RUNX3 in cervical cancer is complexity 
to interfere and further research should be preceded.

Effects of RUNX3 on cervical cancer cells by transcriptome 
sequencing. The molecular mechanisms through which 
RUNX3 may affect cervical cancer were investigated in 
SiHa cells in vitro. Relative transcript levels were tested by 
transcriptome sequencing in order to determine the differ-

ence in transcripts mediated by RUNX3 in SiHa cells. The 
present study identified 31 genes that were differentially 
expressed in RUNX3‑overexpressing SiHa cells. A total of 9 
genes showed differences in the three groups simultaneously, 
including IL‑6, PTGS2, FOSL1, TNC, ICAM1, IL‑7R, IL‑32, 
TGF‑β and TNFSF10 (Figs. 5 and 6), which may be potential 
regulators of cervical cancer combined with RUNX3. The 
mRNA expressions of the 9 genes confirmed the results of the 
transcriptome sequencing (Fig. 7), although further research 
is required to clarify the connection between RUNX3 and 
these genes. However, in the shRNA34 groups, except with 
the TNC and IL‑6 gene, the expression levels of these genes 
were not changed, which may be due to the low expression 
of RUNX3 mRNA in cervical cancer and limited interfer-
ence of shRNA34. Additional research is required in order to 
develop an improved understanding. Furthermore, following 
verification of the mRNA expression levels, there was no 
significant difference between the control groups. In addition, 
the GO enrichment analysis of biological processes revealed 
that certain genes were enriched, such as those involved in the 
regulation of carboxypeptidase, exopeptidase and hydrolase 
activity. Furthermore, the GO enrichment analyses of the 
KEGG pathways concluded that these genes were enriched 
in signaling pathways such as the tumor necrosis factor 
(TNF) pathway, Forkhead box O (FoxO) pathway, African 
trypanosomiasis and malaria (Fig. 8). Transcription factors 
and proto-oncogenes, such as HMGA1 and FOSL1, IL7R and 
MALAT1, were demonstrated as likely to be associated with 
RUNX3 in cervical cancer (Fig. 6) and may be associated 
with microfollicular thyroid adenoma, various benign mesen-
chymal tumors and renal cell carcinoma (25,26). Finally, the 
transcriptome sequencing analysis results indicated that two 
long non-coding RNAs, RP11‑54O7.3 and MALAT1, were 
significantly different between groups, suggesting that RUNX3 
may affect their expression level (Fig. 6). These findings indi-

Figure 3. Expression of RUNX3 affected the proliferation of different cervical cancer cells. (A) The proliferation rate of RUNX3-expressing SiHa cells 
was different at 24, 48, 72 and 96 h. (B) The proliferation rate of RUNX3-expressing HeLa cells was different at 72 and 96 h. (C) The proliferation rate of 
RUNX3-expressing C33A cells was different at 24, 48 and 96 h. *P<0.05. RUNX3, Runt-related transcription factor 3.
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cate that the expression of RUNX3 may affect the expression 
of other genes, which may also be associated with cervical 
cancer in vitro.

Discussion

Cervical cancer has been confirmed to be associated with 
HPV infection; furthermore 0.7% of women initially found to 
be infected with high-risk HPV will develop invasive carci-
nomas within 3 years (2,3). In recent years, immunological 

mechanisms and genetic factors have been demonstrated to 
play critical roles in cervical cancer (4,27-30). A previous 
study demonstrated that RUNX3 is likely a potential gene 
involved in cervical cancer susceptibility, and was associated 
with the type of HPV infection and cervical intraepithelial 
neoplasia progression (22). In the present study, three types of 
cervical cancer cell lines were selected: SiHa, HeLa and C33A, 
infected by HPV-16, HPV-18 or not infected, respectively. It 
was recently reported that RUNX3 may play a key role in the 
development and progression of cervical cancer (12). It was 
also observed in the present study that RUNX3 may inhibit 
cervical cancer cell proliferation, particularly in the SiHa cell 
lines, indicating its potential function as a tumor suppressor; 
inconsistencies in these results may be due to the different 
cell lines. In addition, the expression levels of RUNX3 were 
lower in the three cell lines, which were almost the same level 
in the control groups with or without any intervention. The 
molecular mechanisms and signaling pathways underlying 
the role of RUNX3 in cervical cancer remain elusive. The 
aim of the present study was to elucidate the potential effects 
of RUNX3 on cervical cancer by transcriptome sequencing, 
which may help improve the current therapy options and prog-
nosis of patients with cervical cancer.

It was previously demonstrated that the tumorigenicity of 
human gastric cancer cell lines was significantly associated 
with the level of RUNX3 in nude mice, which suggested that 
suppression of RUNX3 function was directly associated with 
the occurrence and progression of human gastric cancer (9). In 
a previous study on ovarian cancer, the researchers observed 
that the overexpression of RUNX3 in A2780s cells rendered 
them more resistant to carboplatin, whereas the sensitivity of 

Figure 4. Expression of RUNX3 affected the apoptosis of different cervical cancer cells. The apoptosis ratios of SiHa cells were significantly different between 
each group However, RUNX3 did not affect the apoptosis ratios of HeLa and C33A significantly. *P<0.05, **P<0.01 and ***P<0.001. RUNX3, Runt-related 
transcription factor 3; ORF, RUNX3 overexpression cells; shRNA, short hairpin RNA.

Figure 5. A total of 31 genes were identified as differentially expressed in 
RUNX3‑overexpressing SiHa cells with transcriptome sequencing analysis. 
S_RUNX3, RUNX3‑overexpressing SiHa cells; S_Con, Untransfected SiHa 
cells. RUNX3, Runt-related transcription factor 3; DEGs, differentially 
expressed genes.
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A2780cp cells to carboplatin increased significantly following 
inhibition of RUNX3 (31). In the present study, the upregulated 
expression of RUNX3 consistently inhibited the proliferation 
and promoted the apoptosis of cervical cancer cells, particu-
larly in the SiHa cell line. The results were similar to those 
of a recent study on cervical cancer, which reported that 
upregulated expression of RUNX3 inhibited the proliferation, 
migration and invasion of cervical cancer cells (12). According 
to these results, it may be concluded that RUNX3 acts as a 
tumor suppressor gene in cervical cancer (12).

As the mechanisms of action of RUNX3 have not yet been 
fully elucidated, the molecular mechanisms and signaling 
pathways of RUNX3 have become a focus in cancer research. 
It is generally recognized that the transcription factor RUNX3, 
which is a key effector of the TGF‑β signaling pathway, 
acts on the TGF‑β receptor, thereby promoting cell prolif-
eration and apoptosis through the TGF‑β signal transduction 

pathway (7,10,32-34). This may explain its wide involvement 
in tumorigenesis (35). However, several other signaling path-
ways are affected by RUNX3. The Wnt signaling pathway was 
confirmed to be associated with RUNX3 in intestinal tumori-
genesis (36) through the formation of a ternary complex with 
β‑catenin/TCF4 and attenuation of Wnt signaling activity, 
whereas the inactivation of RUNX3 may promote intestinal 
adenoma formation (36). In addition, the mitochondria-medi-
ated pathway has been demonstrated to be associated with 
RUNX3, inducing apoptosis in gastric cancer cells (37). In 
a study on hepatocellular carcinoma (HCC), the researchers 
reported that RUNX3 suppressed Notch signaling in HCC 
SMMC7721 cells (38). In the present study, the TNF and FoxO 
signaling pathways were demonstrated to be associated with 
RUNX3.

TNF is a member of the TNF superfamily of cytokines, 
which mediates cell processes such as differentiation, inflam-

Figure 6. Cluster analysis of differentially expressed genes. The color scale represents re-processed log10 (FPKM+1), with the expression of each gene 
displayed by colors ranging from red to blue, indicating high to low expression, respectively. FPKM, fragments per kilobase million; RUNX3, Runt-related 
transcription factor 3; shRNA, short hairpin RNA.
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Figure 7. mRNA expression levels of different genes were partly consistent with the results of transcriptome sequencing in cervical cancer cells, which were all 
confirmed in SiHa, HeLa and C33A cell lines. *P<0.05. ORF, RUNX3 overexpression cells; RUNX3, Runt-related transcription factor 3; shRNA, short hairpin RNA.

Figure 8. Signaling pathways potentially involved in RUNX3‑overexpressing cells with Kyoto Encyclopedia of Genes and Genomes enrichment analysis. The 
size of the point indicates the number of differentially expressed genes in the pathway, and the color of the point corresponds to a different q value range. 
RUNX3, Runt-related transcription factor 3; q value, P-adjusted value.
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mation, proliferation and apoptosis (39), and has double the 
effect in cancer cells. More specifically, it has been reported 
that TNF is associated with cervical cancer (40). In addition, 
the TNF‑α/TNFR1/NF‑κB pathway is potentially implicated in 
tongue cancer and lung metastasis (41). The NF‑κB signaling 
axis (defined by the interactions of NF‑κB dimers, IκB regula-
tors and IKK complexes) is responsive to external stimuli and 
signal received (42). FoxO is a subfamily member of the fork-
head transcription factor family. FoxO has been revealed as a 
key determinant of cell fate, and to play an important functional 
role as a tumor suppressor in different types of cancer (43,44). 
During apoptosis, FoxO is involved in mitochondria-dependent 
and -independent processes that trigger the expression of death 
receptor ligands, such as Fas ligand, TNF apoptosis ligand, Bcl 
XL, bNIP3 and Bim (43,44). The most important pathway asso-
ciated with FoxO is the PI3K/AKT pathway. The PI3K/AKT 
pathway is also dysregulated and activated in a wide variety 
of cancers, such as breast, thyroid and cervical cancers (43). 
In addition, the Ras/MEK/ERK, IKK and AMPK pathways 
have also been demonstrated to be associated with FoxO, 
and they may play a role in tumorigenesis (43-45). However, 
the role of FoxO in cervical cancer has not been extensively 
investigated. An association between FoxO and TGF‑β in 
tumors has also been reported (46,47). In an HCC study, the 
Thr32 residue of FoxO3 was proven to be a critical factor for 
TGF‑β-induced apoptosis, which was mediated via Bim (47). 
Due to the complexity and uncertainty of the associations 
between RUNX3 and signaling pathways, further research is 
required in order to confirm the association between RUNX3 
and the TNF/FoxO pathway in cervical cancer.

Recently, the associations of lncRNAs with RUNX3 in 
different cancers were investigated. A previous study identified 
a potential competing endogenous RNA regulatory network 
involving MT1JP and the regulation of RUNX3 expression and 
progression of gastric cancer (48). In a study of human colorectal 
cancer, miR‑532‑5p mimic was revealed to markedly down-
regulate the mRNA and protein levels of RUNX3, potentially 
acting as an oncogenic miRNA (49). Finally, the present study 
demonstrated that RUNX3 may affect the expression levels of 
RP11‑54O7.3 and MALAT1. According to previous reports, 
MALAT1 may participate in tumor formation, such as lung, 
prostate and ovarian cancer (50-53). It was recently reported 
that overexpression of MALAT1 could sponge miR‑429 and 
regulate cervical cancer pathogenesis in vivo and in vitro (54), 
while the associations between MALAT1 and RUNX3 remain 
unclear. However, the role of RP11‑54O7.3 has not yet been 
fully elucidated, and the association between RP11‑54O7.3 
and RUNX3 remains unknown (55,56). These results indicate 
that RUNX3 may affect the expression of lncRNAs, which 
may be associated with cervical cancer in vitro. The specific 
mechanisms of action and role of RUNX3 in cervical cancer 
will be further investigated in future studies.

In conclusion, the present study demonstrated that RUNX3 
inhibited proliferation and promoted the apoptosis of cervical 
cancer cells. In addition, the TNF and FoxO pathways were 
demonstrated to be affected by RUNX3, and the effects of 
MALAT1 and RP11‑54O7.3 are likely mediated by RUNX3 
in cervical cancer. However, further research is required in 
order to achieve an improved understanding of the molecular 
complexities and functions of RUNX3 in cervical cancer.
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