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A lot of previous studies have documented that major depressive disorder (MDD) is

a developmental disorder. The cortical surface measure, local gyrification index (LGI),

can well reflect the fetal and early postnatal neurodevelopmental processes. Thus, LGI

may provide new insight for the neuropathology of MDD. The previous studies only

focused on the surface structural abnormality, but how the structural abnormality lead to

functional connectivity changes is unexplored. In this study, we investigated LGI and

corresponding functional connectivity difference in 28 medication-free MDD patients.

We found significantly decreased LGI in left lingual gyrus (LING) and right posterior

superior temporal sulcus (bSTS), and the changed LGI in bSTS was negatively correlated

with disease onset age and anxiety scores. The following functional connectivity

analyses identified decreased functional connectivities between LING and right LING,

precentral gyrus, and middle temporal gyrus. The decreased functional connectivities

were correlated with disease duration, onset, and depression symptoms. Our findings

revealed abnormal LGI in LING and bSTS indicating that the abnormal developmental of

visual and social cognition related brain areas may be an early biomarker for depression.

Keywords: major depressive disorder, resting-state, functional connectivity, fMRI, local gyrification index

INTRODUCTION

Major depressive disorder (MDD) is one of the most common psychiatric disorder and the leading
causes of ill health and disability worldwide (1, 2). Although a large number of studies have
revealed structural and functional abnormalities in MDD patients (3–12), the underlaying neural
basis of MDD is still unclear. Emerging evidence has demonstrated that neurodevelopmental
variation was related to the increased lifetime risk for the onset of MDD suggesting variations of
cortical development may contribute largely to the neuropathology of MDD (13–15). Therefore,
characterization of the cortical developmental patterns may provide a new way to reveal the
neuronal basis of MDD.
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The cortical structural changes in MDD are usually studied
with voxel-based morphometry approach to delineate the
cortical gray matter volume. Given that gray matter volume
includes the information of cortical thickness, surface area, and
cortical folding (16), thus, to direct investigation of thickness,
surface area, and cortical folding patterns which reflect different
biological factors is better and more accurate to reveal the
structural alterations in MDD (17, 18). The cortical thickness
and surface area mainly characterize the neuronal density and
the number and spacing of cortical columns, respectively (19–
21). The cortical folding defined by local gyrification index
(LGI) is considered to be related to the fetal and early postnatal
neurodevelopmental processes (22–24). Thus, LGI is the most
ideal method to investigate the abnormal neurodevelopmental
patterns in MDD. With LGI method, some studies have found
the changed LGI in MDD compared to healthy controls (25–
27). Schmitgen et al. (27) found significantly greater LGI in
frontal, cingulate, parietal, temporal, and occipital regions in
MDD patients. Han et al. (26) found increased LGI in rostral
anterior cingulate cortex, medial orbitofrontal cortex and frontal
pole in MDD patients using region of interest analysis. In
addition, Zhang et al. found decreased LGI in middle cingulate
cortex, insula, orbital frontal cortex, anterior cingulate cortex
and temporal operculum (25). Although these studies found
abnormal LGI in MDD, the studies of Schmitgen et al. (27) and
Han et al. (26) included the patients with medication and the
study of Zhang et al. (25) only included a small sample drug-
naïveMDDpatients (18 patients).Moreover, the previou findigns
in different studies varied greatly, which needs to be further
validated. In addition, the previous studies only revealed the
LGI changes, but the associated changes of functional couplings
are unexplored.

In this study, we applied the LGI method to study
the abnormal development effects on brain structure and
corresponding functional connectivities in 28 medication-free
MDD patients and 30 gender-, age-, education-level matched
healthy controls.

MATERIALS AND METHODS

Participants
Twenty-eight medication-free in the current episode MDD
patients were recruited from the Affiliated Brain Hospital
of Guangzhou Medical University and diagnosed with the
Diagnostic and Statistical Manual of Mental Disorders-IV
criteria. Thirty gender-, age-, and educational level matched
healthy controls (HC) were also recruited. All participants
were right-handed, and the severities of depressive and anxious
symptoms were rated using 24-item Hamilton Rating Scale for
Depression (HRSD) (28) and Hamilton Anxiety Rating Scale
(HAMA) (29), respectively. In this study, the subjects who were
left-handed, substance dependence, pregnant, life threatening
somatic disease, neurological disorders, other comorbid mental
disorders or MRI-related contraindications were excluded. All
the subjects provided written informed consent. The study was in
accordance with the latest revision of the declaration of Helsinki
and fully approved by the Affiliated Brain Hospital of Guangzhou

TABLE 1 | Demographics and clinical characteristics of the subjects used in

present study.

MDD (n = 30) HC (n = 28) P value

Age (years) 33.43 ± 11.76 32.00 ±9.13 0.61

Gender (male/female) 10/20 10/18 0.85

Education level 13.75 ± 4.05 13.5± 3.04 0.79

Onset age (years) 31.90 ± 12.23

Duration of illness (weeks) 92.66 ± 122.81

HRSD scores 31.2 ± 6.90

HAMA scores 19.48 ± 7.08

A Pearson chi-squared test was used for gender comparison. Two-sample t-tests

were used for age, education comparisons. HRSD, Hamilton Depression Rating Scale

score; HAMA, Hamilton Anxiety Scale score; MDD, major depression disorder; HC,

healthy control.

Medical University Ethics Committee. The demographic and
psychological characteristics of the samples are listed in Table 1.

MRI Data Acquisition
All the subjects MRI data were scanned using a 3.0-Tesla
Philips MR imaging system from the Affiliated Brain Hospital
of Guangzhou Medical University. They were instructed to
keep their eyes closed, be relaxed, awake, and not to think of
anything during the scan. The T1-weighted anatomic images
were acquired with the following parameters: repetition time
(TR) = 8.2ms, echo time (TE) = 3.7ms, flip angle (FA) = 7◦;
field of view (FOV)= 256× 256 mm2; acquisition matrix= 256
× 256; voxels size= 1× 1× 1mm3. Resting-state fMRI data were
also collected with parameters: TR/TE= 2000/30ms, acquisition
matrix = 64 × 64, slice thickness = 4mm with inter-slice gap
= 0.6mm, 33 slices, voxel resolution = 3.44 × 3.44 × 4.6mm,
240 volumes.

Resting-State fMRI Preprocessing
All the resting-state fMRI data were preprocessed using
DPARSFA software (http://www.restfmri.net/forum/DPARSF).
The pre-processing steps included: (1), discarding the first 10
volumes for magnetization equilibrium; (2) slice timing for
correcting within-scan acquisition differences between slices;
(3) registering all the remaining images to the first volume to
correct head motion; (4) spatial normalization to the standard
EPI template and resampled to 3mm3 voxels and smoothing with
6mm Gaussian kernel; (5) detrending was performed to remove
the linear drift; (6) Friston 24-parameter model of head motion,
white matter, cerebrospinal fluid, and global mean signals were
regressed out and filtered with band pass 0.01–0.1Hz. To exclude
the head motion effects, if the subjects with head motion
exceeding 3mm or 3◦ were excluded, and no subjects were
excluded under this criterion. Furthermore, a scrubbing method
was conducted to exclude bad images with the mean frame
displacement (FD) above 0.5mm, and one volume before and
two volumes after the bad volume were discarded (30).

Frontiers in Psychiatry | www.frontiersin.org 2 December 2020 | Volume 11 | Article 585401

http://www.restfmri.net/forum/DPARSF
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Long et al. LGI and FC in MDD

FIGURE 1 | Vertex-wise analyses identified changed cortical local gyri index (LGI) in the major depressive disorder (MDD). Decreased LGI in left lingual gyrus (LING)

and right posterior superior temporal sulcus (bSTS) were found in MDD patients compared to healthy controls. The coordinates are MNI space peak locations.

Surface LGI Analyses
Cortical LGI analysis were performed on T1 structure image
using the the Freesurfer 5.0 toolkit (http://surfer.nmr.mgh.
harvard.edu/) with the following steps: first, all the subjects
were processed using the fully automated FreeSurfer “recon-
all” standard procedure; Then, non-uniform intensity correction,
skull stripping, Talairach transforms, normalization and atlas
registration, subcortical segmentation, surfaces reconstruction,
cortical atlas registration and segmentation were performed.
Next, the LGI was calculated by measuring the ratio of local
surface area to the outer hull layer that tightly wraps the pial
surface (31), which is an indication of sulcal cortex buried
in its locality and thus denotes the extent of cortical folding
(32). Finally, the LGI of the left and right hemisphere were
smoothed with a circularly symmetric Gaussian kernel of 5mm
full width half maximum to provide normal distribution of
the results. To identify the LGI differences between MDD and
HC, independent two-sample t-tests were performed, and the
results were corrected for multiple comparisons using Monte
Carlo simulation (a pre-cached cluster-wise level of p < 0.05, a
voxel-wise level of p < 0.001).

Resting-State Functional Connectivity
Analyses
After the LGI analyses, the surface areas with changed LGI were
taken as seed regions for functional connectivity (FC) analyses
which was measured using Pearson correlation coefficients. To
calculate functional connectivity analysis, the peak coordinates of
the seed regions were first obtained andwere transformed toMNI
space to create spheres with 6mm radium. Then, the Pearson
correlation coefficients between the mean time series of each seed
region and that of each voxel of the whole brain were calculated.
Next, all the FCs were converted to Z values to improve normality
using Fisher r-to-z transformation. Finally, independent two-
sample t-tests (FD value as covariant) were performed to identify
the functional connectivity differences between MDD and HCs.

The significance was determined using a cluster-level Alphasim
corrected threshold of p < 0.05 (cluster-forming threshold at
voxel-level p < 0.001, and minimum cluster size= 56).

Correlation Analyses
To determine the relationship between LGI, resting-state FCs
and HRSD, HAMA scores, Pearson’s correlation analyses were
conducted. The significance was set at a threshold of p < 0.05.

RESULTS

Clinical Characteristics
There were no significant difference in gender (p = 0.85), age (p
= 0.61), and education levels (p = 0.79) between MDD patients
and HCs (Table 1).

Vertex-Wise Differences in LGI
Decreased vertex-wise LGI values were observed in the left
lingual gyrus (LING), and right posterior superior temporal
sulcus (bSTS) in MDD patients compared to HCs (Figure 1,
Table 2).

Functional Connectivity Analyses
Resting-state functional connectivity analyses only identified
significant decrease of FCs between left lingual gyrus and right
dorsal precentral gyrus (PreCG), right anterior temporal gyrus,
right lingual gyrus in MDD patients (Figure 2, Table 2). No
significant difference in FCs of bSTS was found.

Correlation Analyses
Correlation analyses identified significantly negative associations
between the LGI values of bSTS and HAMA scores (r = −0.425,
p = 0.022) (Figure 3). The FCs between left and right lingual
gyrus were negatively correlated disease duration (r = −0.636, p
= 0.003), and the FCs between left lingual gyrus and right dorsal
PreCG were negatively correlated HRSD scores (r = −0.47, p =

0.037) (Figure 3).
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TABLE 2 | Regions with differences in LGI and FC in MDD patients.

Parameters Brain regions BA Peak MNI coordinates t value Cluster size

X Y Z

LGI: Lingual gyrus 18 −15 −71 8 −3.81 2,188

Superior temporal sulcus 21 67 −47 3 −3.53 2,250

FC: Precentral gyrus 4 25 −29 72 −4.34 98

Anterior temporal gyrus 21 59 6 −13 −4.21 122

Lingual gyrus 19 26 −57 −3 −3.89 65

LGI, local gyrification index; FC, functional connectivity; BA, Brodmann area; MNI, Montreal Neurological Institute; MDD, major depression disorder.

FIGURE 2 | Changed functional connections with left lingual gyrus (LING). Decreased functional connectivities of left LING with right LING, dorsal precentral gyrus,

and anterior superior temporal gyrus were found in MDD patients compared to healthy controls.

DISCUSSION

In the current study, we found that MDD patients showed
decreased LGI in left lingual gyrus, right posterior superior
temporal sulcus and decreased functional connectivities between
left lingual gyrus and right lingual gyrus, dorsal precentral gyrus,
anterior superior temporal gyrus. Moreover, the LGI values in
left lingual gyrus, functional connectivity between left and right
lingual gyrus, functional connectivity between left lingual gyrus
and right dorsal precentral gyrus were negatively corrected with
HAMA scores, disease duration, and HRSD scores, respectively.
All these findings indicated that LGI and functional connectivity
are effective tools to reveal the abnormal developmental effects
on brain structure and function in MDD patients.

In this study, the decreased LGI in MDD patients compared
to healthy controls was found. There are two prevalent

theories, including tension-based theory and convolutional
development theory, were proposed to account for cortical
folding (33, 34). The tension-based theory considers that the
cortical folding is related to the forces driving the extensive
wiring of cortico-cortical connections along the cortical surface
while convolutional development theory thinks that differential
growth rates of cortical layers affect the degree of cortical
folding. Thus, LGI is a good method to reflect the early
neurodevelopment of brain. The decreased LGI in left lingual
gyrus and right anterior superior temporal gyrus in MDD might
be induced by disrupted development of early white matter or
cortical structures.

We found significantly decreased LGI in the left lingual gyrus
and the decreased functional connections of left lingual gyrus
with right lingual gyrus, dorsal precentral gyrus, and anterior
superior temporal gyrus. The abnormal LGI in lingual gyrus
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FIGURE 3 | Correlation analyses between neural indices and clinical performances. significantly negative correlations between the mean local gyri index (LGI) of right

posterior superior temporal sulcus (bSTS), functional connectivity between left and right lingual gyrus (LING), functional connectivity between left LING and right dorsal

precentral gyrus (PreCG) and HAMA scores, disease duration, HRSD scores were identified, respectively.

was supported by the study of Schmitgen et al. (27). But in
Schmitgen et al. (27) study, they found increased LGI in lingual
gyrus in MDD patients. The discrepancy may result from the
inhomogeneity of the MDD patients used in the two studies
and the medication effects. The MDD patients in our study
are medication-free but 25 of 38 patients in Schmitgen et al.
(27) study received medication treatment. Compared with Zhang
et al. (25) and Han et al. (26) studies, no consistent finding of
LGI was found. The inconsistency may be due to the differences
in sample size and analytical method. The study of Zhang et al.
(25) only included 18 MDD patients, and the study of Han et al.
(26) only analyzed the LGI in prefrontal cortex and anterior
cingulate cortex using region of interest method. Moreover, the
lingual gyrus is an important area of ventral visual processing
stream and visual recognition circuit mainly participating in
object identification (35) and affect identification (36, 37). The
disrupted functional connectivity between visual recognition
circuit and subgenual anterior cingulate cortex was reported
(7). A recent study also reported the decreased functional
connectivity pattern homogeneity in lingual gyrus in MDD
patients before and after treatment (38). These findings revealed
an important role of lingual gyrus in neuropathology of MDD. In
addition, we found disrupted functional connectivities between
left lingual gyrus with right lingual gyrus, anterior superior
temporal gyrus, and dorsal precentral gyrus, and the functional
connectivities between left lingual gyrus with right lingual
gyrus and right dorsal precentral gyrus were closely associated
with disease duration and depression symptoms, respectively.
The decreased functional connections found in MDD patients
indicated that depression has long-term effects on the visual
cognition and somatosensory processing.

We also found decreased LGI in the posterior superior
temporal sulcus in MDD patients. The posterior superior
temporal sulcus is a multisensory integration area (39) and plays
an important role in language processing (40), biological motion
(41), facial processing (42, 43). Moreover, the posterior superior
sulcus is also involved in social perception and interaction

including recognizing, manipulating, and behaving with respect
to socially relevant information (44, 45). Thus, the decreased LGI
in posterior superior temporal sulcus may suggest the abnormal
social emotion processing in MDD patients. Moreover, we found
that the LGI in posterior superior temporal sulcus was negatively
correlated with the anxiety symptoms, i.e., HAMA scores, which
indicated that the posterior superior temporal sulcus may be
mainly related to social anxiety.

There are some limitations in this study. First, the samples
used in this study are still relatively small, and the findings need
to be further validated. Second, this is a cross-sectional study
design and the longitudinal MDD study is needed to describe
the developmental changes of LGI. Third, the correlation
analyses were uncorrected for multiple comparisons due to
limited samples.

In conclusion, the present study revealed the decreased LGI
in left lingual gyrus and right posterior superior temporal
sulcus and disrupted functional connectivities between left
lingual gyrus and right lingual gyrus, anterior superior temporal
gyrus, and dorsal precentral gyrus. The changed LGI and
functional connectivities showed close associations with clinical
performances. Our findings suggested that depression has a
long-term effect on impaired visual cognitive functions, and
the somatosensory symptoms may be an early biomarker for
depression remission. Moreover, our findings indicated that
posterior superior temporal sulcus may be mainly related social
anxiety not emotion processing.
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