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Teaching brain-machine interfaces 
as an alternative paradigm to 
neuroprosthetics control
Iñaki Iturrate1,2, Ricardo Chavarriaga2, Luis Montesano1, Javier Minguez1 & 
José del R. Millán2

Brain-machine interfaces (BMI) usually decode movement parameters from cortical activity to 
control neuroprostheses. This requires subjects to learn to modulate their brain activity to convey 
all necessary information, thus imposing natural limits on the complexity of tasks that can be 
performed. Here we demonstrate an alternative and complementary BMI paradigm that overcomes 
that limitation by decoding cognitive brain signals associated with monitoring processes relevant 
for achieving goals. In our approach the neuroprosthesis executes actions that the subject evaluates 
as erroneous or correct, and exploits the brain correlates of this assessment to learn suitable motor 
behaviours. Results show that, after a short user’s training period, this teaching BMI paradigm 
operated three different neuroprostheses and generalized across several targets. Our results further 
support that these error-related signals reflect a task-independent monitoring mechanism in the 
brain, making this teaching paradigm scalable. We anticipate this BMI approach to become a key 
component of any neuroprosthesis that mimics natural motor control as it enables continuous 
adaptation in the absence of explicit information about goals. Furthermore, our paradigm can 
seamlessly incorporate other cognitive signals and conventional neuroprosthetic approaches, invasive 
or non-invasive, to enlarge the range and complexity of tasks that can be accomplished.

Research on brain-machine interfaces (BMI) has demonstrated how subjects can voluntary modulate 
brain signals to operate neuroprosthetic devices1–6. These BMIs typically decode cortical correlates of 
movement parameters (velocity/position1,5–9 or muscular activity4) in order to generate the sequence of 
movements for the neuroprosthesis. This control approach directly links neural activity to motor behav-
iour10. Mounting evidence, however, seems to suggest that motor control is the result of the combined 
activity of the cerebral cortex, subcortical areas and spinal cord. In fact, many elements of skilled move-
ments, from manipulation to walking, are mainly handled at the brainstem and spinal cord level with 
cortical areas providing an abstraction of the desired movement such as goals and movement onset11. A 
BMI can mimic this principle, as studies have shown the feasibility to decode such a kind of cognitive 
information associated with voluntary goal-directed movements3,12,13. As an advantage of this approach 
over typical BMIs, and once the individual decoders are learnt, subjects do not need to learn to modulate 
their brain activity in order to generate all necessary movement parameters to operate the neuropros-
thesis, which imposes natural limits on the complexity of tasks that can be solved. Nevertheless, this 
approach requires an intelligent neuroprosthesis, emulating the roles of the subcortical areas and spinal 
cord, capable to learn and generate the desired behaviours.

Here we demonstrate this alternative teaching paradigm (Fig.  1), where the neuroprosthesis learns 
optimal motor behaviours (or control policies) to reach a target location based on the decoding of human 
brain signals that carry cognitive information about the appropriateness of goal-directed movements 
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—i.e., the error-related potential (ErrP)14,15, a time-locked potential elicited when actions do not match 
users’ expectations16–21. Error-related signals have been recently used to correct or adapt BMI decoders 
using both invasive22,23 and non-invasive recordings15,24. In our paradigm error information is exploited 
to learn a motor behaviour that accomplishes the user’s intended task from a set of basic pre-programmed 
actions. The user monitors the performance of the neuroprothesis as it executes a sequence of these 
actions. ErrPs are evoked by actions that the user considers wrong to achieve his/her desired goals, 
decoded online, and employed as a reward signal for a reinforcement learning algorithm (RL)25 that 
improves the neuroprosthesis behaviour. We tested this approach in three closed-loop experiments of 
increasing real-life applicability involving twelve subjects (Fig. 2a). They ranged from 1D cursor move-
ment, to a simulated robot, and, finally, a real robot arm—both robots operating in a 2D space.

Each experiment consists of two phases: training the ErrP decoder from the user’s electroenceph-
alogram (EEG) signals and online operation of the neuroprosthesis which, using the trained decoder, 
learns different reaching tasks. To train the decoder, each subject observed around 350 robot movements 
(or device actions) while it tries to reach predefined targets with 20% of wrong actions (i.e., movements 
away from the target location). During online operation, subjects, but not the neuroprosthesis, knew 
the target location and monitored the performance of the device. One run, lasting 100 device actions, 
was performed for each possible target (i.e., circles in Fig.  2a). The device controller was initialized to 
a random behaviour (i.e., equiprobable actions for all states) at the beginning of each run, and updated 
after each action based on the online decoding of the ErrPs. Whenever the device reached the target, the 
former was randomly reset to a new location. For Experiments 2 and 3, there were two targets (practice 
targets) that were used during ErrP calibration and online operation; and two targets (new targets) that 
were only used during online operation.

Results
Decoding error-related EEG potentials. ErrPs elicited in all protocols were consistent with pre-
vious studies20,21. The difference event-related potential (ERP) for erroneous and correct actions of the 
device exhibited a characteristic waveform with prominent fronto-central positive and negative peaks at 
around 300 and 500 ms, respectively. Figure 2b shows these ERPs at electrode FCz for all subjects in the 
three experiments. Statistically significant effects were observed on the latency but not the amplitude of 
these ERPs26,27 (see Supplementary Material). Accuracy of online single-trial decoding of the ErrPs was 
comparable for all experiments, independently of the of the task performed. Classification performance 
(73.8%, 72.5%, 74.3% on average for Experiments 1 to 3 respectively) exceeded the chance level (except 
for one subject in Experiment 2, see Fig. 3a)—a necessary condition for a reinforcement learning system 
to acquire an optimal control policy25. Remarkably, this decoding performance remained similar to the 
overall accuracy (FDR-corrected two-tailed independent t-test, p >  0.05) during the whole experiment 
(see Fig. 3b) despite the fact that the neuroprotheses move randomly at the beginning of an experiment 
and the error rate decreases as the devices learn an optimal motor behaviour (i.e., control policy).

To discard the influence of artifacts on the ErrP decoding, the data used to train the classifier included 
all possible movements for each class, thus reducing the possibility that classification was biased by their 
directions. For instance, during Experiment 1, both targets are used for the classifier training, thus the 
error and correct assessments are not likely to be correlated with left or right eye movements. Moreover, 
results obtained when testing new targets in Experiments 2 and 3 further support the fact that ErrP 
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Figure 1. Teaching BMI paradigm. In contrast with the standard control approach, in this paradigm users 
assess the actions performed by the neuroprosthesis as erroneous or correct. This information is decoded 
from the user’s brain signals, and exploited by the reinforcement learning algorithm embedded in the 
neuroprosthesis controller to learn appropriate motor behaviours (or control policies) to perform different 
reaching tasks. See also Supplementary movie.
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classification depends on the movement evaluation and not on its direction. Indeed, the training set 
only contained samples where the target locations were Up and Down, while the BMI was also tested on 
targets Left and Right. Finally, to assess whether the trained classifier discriminated different directions 
rather than assessments, we computed for each subject the accuracy of decoding the different pairs of 
movement directions (e.g., left versus right, up versus left, …) from a fixed assessment (either correct 
or erroneous) with the same features and classifier used during the experiments. The mean accuracies 
obtained were of 52.16 ±  5.22, 50.07 ±  5.07, and 49.48 ±  6.41 for Experiments 1 to 3, and thus did not 
exceed the chance levels of 56%, 54% and 54% (see Methods, ‘ErrP classifier’), proving that the classifier 
was not trained to distinguish movement directions or associated ocular artifacts, but user’s assessments. 
Additionally, statistical analyses of grand average ERPs shows significant differences only for assessment, 
but not for movement direction (see Methods and Supplementary Fig. S1).

In summary, our ERP analysis supports the hypothesis that ErrPs reflect a common phenomenon 
across all experiments, where the protocol mainly affects the temporal characteristics of the brain 
response.

ErrP-mediated acquisition of control policies. During online operation, the device converged to 
steady performance after 4 targets (Fig. 2c and Fig. S2A), thus rapidly acquiring (quasi) optimal policies 
in all experiments and reaching desired targets from any starting position. On average users reached 
12.38 ±  5.66, 12.46 ±  5.40 and 12.75 ±  6.63 targets per run for Experiments 1, 2 and 3, respectively (see 
Fig. 4). In contrast, the number of targets reached following a random control policy is 2.27 ±  1.56 for 
Experiment 1, and 2.32 ±  1.54 for the other experiments. Despite there was a large variability in the con-
vergence rate among subjects, most of them reached a number of targets significantly greater than chance 
(α  =  0.05). (see Fig. 2c, Fig. 4, Supplementary Fig. S2, and Supplementary movie). Figure 2c summarizes 
the performance in the three experiments when the corresponding device was tested on the same target 
locations used for training the ErrP classifier. It shows the number of actions required to reach each 
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Figure 2. Learning optimal behaviours from error-related brain activity. (a) Experimental setup. In 
Experiment 1, the device (blue square) can move one position to the left or to the right in order to reach 
the target (red square). In Experiments 2 and 3, the robot moves left, right, up, or down across 13 states 
(orange squares) to reach a target (green square). Solid and dashed circles denote practice and new targets, 
respectively. (b) Grand-average difference event-related potentials (ERP) for each experiment during 
the training phase at channel FCz (N =  12); t =  0 ms represents the action onset. This difference ERP is 
computed as the difference of the subjects’ evoked EEG response after erroneous and correct actions of the 
device. (c) Normalized number of actions needed to reach the targets within a run. Lines correspond to the 
fitting of an exponential function to the data of each experiment, with the 95% confidence interval shown 
as shadows of the fitting line (all subjects combined). The horizontal line (Y =  1) indicates the optimal 
performance (See Methods). The inset shows the mean (± the 95% confidence) convergence value of the 
curve for each experiment.
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target within a run. Since the device was initialized at random positions, values were normalized to the 
initial distance to the target (i.e., a value of one corresponds to optimal performance). For illustration, 
data from all subjects and all the targets was fitted to an exponential function. For all subjects and tar-
gets there was a rapid decrease in the number of actions that converged towards values close to optimal 
performance; thus reflecting the acquisition of quasi-optimal behaviours (Fig. 4).

In all experiments, the number of learned optimal actions consistently increased as more actions were 
performed. For experiment 1, the number of optimal actions learned for the visited states was significantly 
above chance level after 10 actions (false discovery rate (FDR)-corrected one-tailed unpaired t-tests, 
p <  0.05). Furthermore, it consistently increased as more actions were performed (correlation r =  0.74, 
p <  1 ×  10−8). The number of normalized actions required to reach the target converged, to 1.19 ±  0.52 
after 9 targets reached, very close to the optimal value (Fig. 2c; red trace). For experiments 2 and 3, the 
convergence was slower due to the higher number of states and actions: whereas for experiment 1 the 
number of actions learnt was above chance after 10 actions, for Experiments 2 and 3 it was necessary 
to execute 15 actions to surpass chance level. (FDR-corrected one-tailed unpaired t-tests, p <  0.05). As 
in Experiment 1, there was also a high correlation between the amount of performed actions and opti-
mal actions learned (r =  0.84, p <  1 ×  10−8 for both experiments). The number of normalized actions 
required to reach the target for experiments 2 and 3 was 2.00 ±  0.76 and 1.97 ±  0.75, slightly worse than 
for Experiment 1 (Fig. 2c). In summary, all brain-controlled devices were operational almost from the 
beginning of the run (above chance results after a few actions), improving performance progressively 
over time (significant correlation between time and number of actions learnt) and approaching optimal 
behaviour at the end of each run (number of targets reached increasing throughout time, Fig. 4).

Learning control policies to reach new targets. Experiments with the robot arms demonstrate 
that control policies can be easily acquired to reach new targets, without the need of retraining the ErrP 
decoder. Figure 5a shows for the Experiment 3 the number of actions required for practice and new tar-
gets. In both cases, the system improves its policy and approaches the optimal behaviour (see Fig. 4 and 
Supplementary Fig. S2). On average, users reached 14.42 ±  7.81 and 12.54 ±  6.44 targets for experiments 
2 and 3 respectively, significantly similar to the ones reached during practice targets (two-tailed paired 
t-test, p =  0.22 and p =  0.90). Figure 5b,c illustrate the optimal policy for one practice and one new target, 
respectively. For Experiments 2 and 3, there were no significant differences in the number of optimal 
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Figure 3. Online classification accuracy. (a) For each subject and experiment, ErrP online classification 
accuracy. The x-axis and y-axis represent the correct and error accuracies, respectively. Each dot corresponds 
to the average online accuracy achieved by each subject. (b) Decoding performance throughout the RL 
execution. For each experiment, decoding performance (mean ±  SEM, thick ±  thin red lines) throughout 
one run, where x-axis represents the actions along the run. The performance is computed as the accuracy 
obtained in a sliding window of 10 actions. The black horizontal line indicates the accuracy for each 
experiment, with the SEM shadowed. Results are averaged across runs (2, 4 and 4 for experiments 1, 2 and 
3 respectively), and across subjects (N =  12). Confidence intervals (α  =  0.05) for the accuracies throughout 
the run were of [71.30, 80.47], [70.93, 77.84], [68.67, 81.52] for experiments 1 to 3, respectively. The results 
showed no substantial differences in the accuracy variability throughout the runs.
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Figure 4. Number of reached targets within a run. Each subfigure corresponds to either practice or new 
targets for each experiment. For each subfigure: (Top) Raster plot, where x-axis represents time within a 
run (from 1 to 100 actions performed by the device), and each row in the y-axis represents one of the 12 
subjects for each of the two targets. Every tick corresponds to the moment a target is reached. (Bottom) 
Histogram (bin size of 10 actions) associated with the upper raster plot. Each bar represents the number 
of times a target was reached for the corresponding bin. Additionally, the trend line is plotted in red. 
(Right) Histogram for each subject and target with the number of times a target was reached. Red dots 
indicate above chance results (confidence 95%). Results show how the time required for reaching the targets 
decreases as the run goes. Behaviour is similar across subjects, experiments and targets.
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Figure 5. Experiment 3, comparing performance between practice targets (Up and Down), and new 
targets (Left and Right). (a) Normalized number of actions required to reach each target as in Fig. 2. (b) 
Optimal actions per state (denoted by arrows) for a practice target (Up), and (c) for a new target (Left). The 
green square marks the target location. The number of subjects for which the action was correctly learned is 
color encoded in gray levels.
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actions learned between practice and new targets (FDR-corrected two-tailed paired t-test, p =  0.47 and 
p =  0.37, respectively).

Similarly to the practice targets, the number of optimal actions learned was significantly above chance 
level after 4 and 14 performed actions for Experiment 2 and 3, respectively (FDR-corrected one-tailed 
unpaired t-tests, p <  0.05); and with a high correlation between the amount of performed actions and 
optimal actions learned (r =  0.80, p <  1 ×  10−8 for both experiments). The final number of actions per 
target for these experiments was 1.81 ±  0.48 and 1.47 ±  1.12. This confirms that the ErrP does not 
depend on targets, as the ErrP classifier maintains its performance without needing to be retrained for 
unseen targets.

Discussion
These experiments illustrate a number of appealing properties associated with the use of error-related 
brain signals to allow a BMI to teach neuroprostheses suitable motor behaviours. First, we exploit a 
brain signal naturally elicited by the user, without requiring the explicit learning and execution of ad-hoc 
mental tasks. Moreover, user’s training time is minimal—a calibration session is enough to model the 
user’s ErrP decoder (25 minutes on average for each subject and experiment). Second, this paradigm 
makes it possible to achieve tasks in a user-specific manner—the learned control policy depends on the 
individual user’s assessment. Third, single-trial decoding of ErrP does not need to be perfect to maneu-
ver a neuroprosthesis—it suffices that the ErrP decoder performs statistically above random to learn 
the motor behaviour. Furthermore, the neuroprosthesis is operational as soon as the accuracy of the 
ErrP decoder is above chance level—which usually takes minutes as reported here—and keeps adapting 
indefinitely, as it is the case of human motor control. Finally, and perhaps more importantly, the ErrP is 
rather independent of the task (e.g., target or action type)—making control of neuroprostheses scalable 
to more complex tasks since the learning burden is on the robot side.

Scalability is indeed a crucial property of the teaching BMI approach since, as the experimental 
results demonstrate, ErrPs reflect a common error processing mechanism in the brain across tasks18, 
and this was confirmed by our latest results, which showed that ErrP decoders can generalize across 
different tasks26,27. Importantly, error processing information from the brain can be observed using dif-
ferent recording signals such as human electroencephalogram (EEG)17–21, electrocorticogram (ECoG)23 
and intracortical recordings28. ErrPs have also been reported and decoded in patients with severe motor 
disabilities29. Noteworthy, the development of adaptive mechanisms for BMIs is gaining increased atten-
tion30–32. ErrPs offer a natural alternative to drive adaptation in the absence of explicit information about 
goals for both invasive and non-invasive conventional control neuroprosthetic approaches.

As a first demonstration of the proposed paradigm, we have made use of one of the most straight-
forward and simple RL algorithms, Q-learning. However, this approach—as many other RL algorithms- 
suffers from two main problems: task generalization and scalability. It is then an open question how the 
proposed BMI paradigm may generalize across tasks or scale to more complex scenarios. Notwithstanding, 
current state of the art on reinforcement learning offers very promising alternatives for the tractability of 
generalization and high-dimensional spaces, such as the use of transfer learning or prior knowledge via 
demonstration among others33.

ErrPs have been exploited to correct and adapt BMIs as well as to improve human-computer inter-
action20,23,24,29. Along this line, a possibility that has been explored in rodents is to extract information 
from the reward-processing brain areas (i.e., nucleus accumbens)22 for RL-based adaptation of the BMI 
decoder34. Here we go beyond this BMI adaptation framework and, extending our previous 1D works21,35, 
demonstrate for the first time in humans how the teaching BMI paradigm enables the acquisition of suit-
able control policies, scales to neuroprostheses with a task complexity similar to state-of-the-art BMIs, 
and generalizes across different targets.

In the experiments reported here, it is assumed that the neuroprosthesis owner wishes to initiate a 
voluntary, goal-directed movement whose low-level execution is delegated to subcortical, spinal cord 
and musculoskeletal structures. In our case, this lower level of motor control is emulated by an intel-
ligent controller able to learn and to reuse control policies via ErrPs. Although a full demonstration 
of this extension to the teaching BMI approach remains to be proven, evidence suggests its feasibility. 
Firstly, cortical cognitive signals indicating goals3,12, self-paced onset of movements13, or anticipation of 
purposeful actions36,37 can be decoded at the single-trial level. Secondly, several control policies can be 
learned as demonstrated here and stored to form a repertoire of motor behaviours (i.e., to reach differ-
ent targets within the environment). Note that, while in the current manuscript one control policy was 
associated with a specific target, one target could have several ways of being reached depending on the 
user’s preferences. Once the control policies are stored, the decoding of the error-related signals can be 
exploited to infer the desired behaviour from this repertoire rather than being used to learn a new con-
trol policy. This possibility has been recently explored in38.

We postulate that the combination of all these sorts of cognitive brain signals would be sufficient for 
chronic operation of neuroprostheses, whose range of tasks may change over time. Such a possibility is 
critical for patients—especially if suffering from neurodegenerative diseases—as they must rely upon 
neuroprostheses for extended periods of time. Despite remaining hurdles such as large clinical studies, 
further research will uncover additional cognitive brain signals that will enrich this initial basic set, thus 
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enlarging the repertoire of decision-making processes available for natural, intuitive control of neuropro-
stheses to perform goal-directed movements and bringing BMI closer to therapeutic reality.

Methods
All experiments were carried out in accordance with the approved guidelines. Experimental protocols 
were approved by the Commission Cantonale (VD) d'éthique de la recherché sur l'être humain (proto-
cole 137/10). Informed written consent was obtained from all participants that volunteered to perform 
the experiments.

Subjects and data recording. Twelve able-bodied volunteers (four females, 23–24 years) partici-
pated in the study. EEG signals were recorded from 16 active electrodes located at Fz, FC3, FC1, FCz, 
FC2, FC4, C3, C1, Cz, C2, C4, CP3, CP1, CPz, CP2, and CP4 (10/10 international system). The ground 
was placed on the forehead (AFz) and the reference on the left earlobe. EEG was digitized at 256 Hz, 
power-line notch filtered at 50 Hz, and band-pass filtered at [1, 10] Hz. To reduce signal contamination, 
participants were also asked to restrict eye movements and blinks to indicated resting periods.

Experimental setup. All participants performed three experiments of different complexity, evaluated 
using the NASA-TLX questionnaire (28.44 ±  14.01, 42.33 ±  23.31 and 46.92 ±  22.19 for Experiments 1 
to 3) in a different age-matched set of nine subjects. Each experiment was carried out on a different day, 
lasting around 2.5 hours. The time elapsed between two consecutive experiments was 17.58 ±  10.09 days. 
In all experiments, subjects were instructed to monitor the device while it tried to reach a target (only 
known by the subject) and to assess whether the device actions were correct or incorrect. Each exper-
iment was divided into two phases: training and online operation of the neuroprosthesis. Each phase 
was composed of several runs, each run consisting of 100 device actions. During each run the target 
location remained fixed and, whenever the device reached that location, its position was randomly reset 
to a location at least two positions away from the target, see Fig. 2a.

The training phase aimed at building a classifier able to detect error potentials. In the initial runs, 
the device performed erroneous actions with a fixed probability (20%). For all experiments, two target 
locations were used in this phase. After each run, all the collected data was used to train the ErrP clas-
sifier26,27. Once the decoding accuracy was above 80%, or four runs were elapsed, an additional run was 
executed where the output of the classifier was used to adapt the device controller using RL (see below). 
Thus, in this RL run the error probability was variable. If the accuracy in this RL run was below random, 
the classifier was retrained with additional RL runs until the criterion (accuracy above random) was 
reached. Subjects needed a median (± mean absolute deviation) of 1.00 ±  0.51 additional RL training 
runs. The mean duration of the entire training phase for all subjects and experiments was 25 minutes. 
The maximum length was 45 minutes.

In the online operation phase, the information decoded from the EEG (indicating whether the sub-
ject considered the action as correct or erroneous) was used as a reward signal to learn the behaviour 
through RL. One run was performed per target location (2 runs in the case of Experiment 1, and 4 
runs for Experiments 2 and 3). In the last two experiments we tested the generalization capabilities of 
the proposed approach by including target locations that were not used in the training phase. In all RL 
runs, the device controller was initialized to a random behaviour where all actions at a given location 
are equiprobable.

Experiment 1: Moving Cursor21 (Fig. 2a, Left). Participants faced a computer screen showing a horizon-
tal grid with nine different positions (states; c.f., squares in Fig. 2a), including one blue moving cursor 
(device) and one red square (target). The cursor could execute two actions: move one position to the 
left or to the right. When the cursor was at the boundaries (i.e., at the left-or right-most states), actions 
that moved it out of the state space were not allowed. The time between two consecutive actions was 
drawn randomly from a uniform distribution within the range [1.7, 3.0] s. Only states at the left-most 
and right-most positions were used as targets.

Experiment 2: Simulated Robotic Arm (Fig. 2a, Center). Subjects faced a computer screen displaying a 
virtual robot (device). We simulated a Barrett whole arm manipulator (WAM) with 7 degrees of freedom 
using the RobotToolkit framework developed by the LASA laboratory at EPFL (http://lasa.epfl.ch). The 
robot could place its end-effector at 13 different positions (states; c.f., orange squares in Fig.  2a), with 
one position in green (target). It could perform four actions: moving one position to the left, right, up, 
or down. As before, when the device was at a boundary state, actions that moved the robot out of the 
state space were not allowed. In contrast to the first experiment, the robot movements between two states 
were continuous, lasting ~500 ms. The time between two consecutive actions was randomly distributed 
within the range [2.5, 4.0] s. During the training phase, the targets were located at up-and down-most 
positions (i.e., practice targets). For the online operation phase, the up-, down-, left-, and right-most 
positions were tested as targets.

http://lasa.epfl.ch
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Experiment 3: Real Robotic Arm (Fig.  2a, Right). This experiment followed the same design as 
Experiment 2 but involving a real robotic arm (Barrett WAM). The robot was two meters away from the 
user and was pointing at states on a Plexiglas transparent panel between the two. The distance between 
two neighbor states was 15 cm.

ErrP classifier. EEG signals were spatially filtered using common average reference and downsampled 
to 64 Hz. Features were extracted as the signal from eight fronto-central channels (Fz, FCz, Cz, CPz, FC1, 
FC2, C1, and C2) within a time window of [200, 800] ms from the device movement onset and con-
catenated to form a vector of 312 features. These vectors were normalized and decorrelated using prin-
cipal component analysis39. The most discriminant features were selected based on the r2 score using a 
five-ten-fold cross-validation on the data of the training phase. On average, 36 ±  13 features were selected 
per subject. ErrPs were decoded using a linear discriminant analysis (LDA) classifier.

To assess the statistical significance of the ErrP classifier accuracies during online operation, we com-
pute the chance levels (α  =  0.05) according to the available number of trials using the binomial cumu-
lative distribution40. The estimated chance levels were 56% for Experiment 1 and 54% for Experiments 
2 and 3.

Reinforcement learning (RL) with ErrPs. The RL strategy25 was modeled by a Markov decision 
process, denoted by the tuple {S, A, r, γ} with S being the state space (the possible positions of the 
device), and A the action space (the possible actions of the device). The reward value r represented the 
goodness of the executed action at a given state and γ is a time discount factor. The goal of RL was to 
obtain a control policy π:S → A mapping the state space into the action space (i.e., which action had to 
be performed at each state) so as to maximize the expected return R =  Σ ∞k=0 γ krk+1 at time k. The RL 
implementation was the Q-learning iterative algorithm25:

α γ( , ) = ( , ) + ( , ) + ( , ′) − ( , ) , ( )+ + ′∈ +Q s a Q s a r s a Q s a Q s a[ max ] 1k 1 k k k k k k 1 k k a k k 1 k k kA

where k is the current step and α  is the learning rate. Parameters γ  and α  were set empirically to 0.4 
and 0.1, respectively. During online operation, at time k, the device executes an action ak that takes it 
from state sk to state sk+1, according to its current policy. The output of the ErrP classifier is then used to 
obtain the reward value rk+1(sk, ak); it takes a value of − 1 if the action is classified as error, otherwise is 
set to + 1. This reward was used to update the RL policy after each action. All Q-values were set to zero 
at the beginning of each run (k =  0), corresponding to a random control policy. At the end of the run, 
the final policy π  was computed as the policy that, at each state s, always followed the action a′ with the 
maximum Q-value, π (s) =  arg maxa′∈A Q(s, a′).

At each step k, an ε -greedy strategy was used to select the next action ak to be executed. This policy 
selected the action with highest Q-value (best action) for (100 −  ε ) % of the times, while a random action 
was selected the remaining times. The experiments started with a completely exploratory behaviour 
(ε  =  100%), and every time an exploratory action was chosen ε  was decreased by a constant factor (5%) 
until reaching a minimum value (20%) to always maintain a small percentage of exploration.

Acquisition of control policies (or behaviours). We evaluated the acquisition of control policies 
using the number of optimal actions (i.e., those leading to the target location, c.f. arrows in Fig. 5b, and 
Fig.  5c) learned by the controller at a given time. Only states already visited were considered in this 
measure. We also compared the number of optimal actions learned to the chance level, computed as the 
number of actions learned with random rewards (i.e., ± 1 with equal probabilities). Statistical tests were 
corrected with the false discovery rate, FDR41.

Learning of the control policies was also assessed in terms of the number of actions required to 
reach the target location within a run. To account for the different initial states, the number of actions 
is divided by the initial distance to the target. For illustration purposes, we fitted the data of each exper-
iment to an exponential curve, y =  a +  be−cx, where y is the normalized number of actions required to 
reach the target for the x-th time (c.f., Figs 2c and 5a and Supplementary Fig. S2).

Analysis of ocular artifacts. We assessed the possibility of EEG signal contamination by 
movement-related ocular artifacts. We computed the grand average ERPs (correct and error) of all 
channels separately for each different action (moving left, right, up, or down). No substantial differ-
ences were found among these ERPs, suggesting little influence of eye movements. This is illustrated in 
Supplementary Fig. S1 that shows the averages of three fronto-central electrodes (FC3, FCz and FC4), 
separated by assessment (correct or error) and movement direction (left, right, up or down). As can be 
seen, the differences among assessments were larger than the differences among directions. This is con-
sistent with previous studies that found no influence of this type for Experiment 120,21.

To evaluate the existence of statistical differences due to both assessments and movement directions, 
we performed 2 (factor assessment: error or correct) ×  4 (factor movement direction: left, right, up or 
down) within-subjects ANOVAs on the values of the most prominent positive and negative peak ampli-
tudes of the grand averages of channel FCz (note that for Experiment 1 the ANOVA was 2 ×  2 since there 
were only two possible movement directions). When needed, the Geisser-Greenhouse correction was 
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applied to ensure sphericity. The assessment and direction main effects and the assessment ×  direction 
interaction were studied.

Regarding the main effects, statistical differences were found for the assessment for all the experi-
ments, for the positive (F1,11 =  17.277, p =  0.002, F1,11 =  15.567, p =  0.002, and F1,11 =  14.202, p =  0.003 for 
Experiments 1 to 3) and negative (F1,11 =  10.087, p =  0.009, F1,11 =  14.658, p =  0.003, and F1,11 =  11.581, 
p =  0.006) peaks. On the contrary, no significant differences were found for the direction main effect 
(p >  0.1). Regarding the assessment ×  direction interaction, significant differences were found during 
Experiment 2 (F3,33 =  3.721, p =  0.02 and F3,33 =  3.903, p =  0.02 for the positive and negative peak); and 
during Experiment 3 for the negative peak (F3,33 =  3.461, p =  0.03) but not for the rest of the cases 
(p >  0.35). These results indicated that the largest differences on the potentials were due to the different 
assessments (error/correct), whereas the movement directions of the device affected less the potentials.
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