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Parsing interindividual drug
variability: an emerging role for
systems pharmacology
Richard M. Turner,1 B. Kevin Park2 and Munir Pirmohamed1∗

There is notable interindividual heterogeneity in drug response, affecting both
drug efficacy and toxicity, resulting in patient harm and the inefficient utiliza-
tion of limited healthcare resources. Pharmacogenomics is at the forefront of
research to understand interindividual drug response variability, but although
many genotype-drug response associations have been identified, translation of
pharmacogenomic associations into clinical practice has been hampered by incon-
sistent findings and inadequate predictive values. These limitations are in part
due to the complex interplay between drug-specific, human body and environ-
mental factors influencing drug response and therefore pharmacogenomics, whilst
intrinsically necessary, is by itself unlikely to adequately parse drug variability. The
emergent, interdisciplinary and rapidly developing field of systems pharmacology,
which incorporates but goes beyond pharmacogenomics, holds significant poten-
tial to further parse interindividual drug variability. Systems pharmacology broadly
encompasses two distinct research efforts, pharmacologically-orientated systems
biology and pharmacometrics. Pharmacologically-orientated systems biology uti-
lizes high throughput omics technologies, including next-generation sequencing,
transcriptomics and proteomics, to identify factors associated with differential drug
response within the different levels of biological organization in the hierarchical
human body. Increasingly complex pharmacometric models are being developed
that quantitatively integrate factors associated with drug response. Although dis-
tinct, these research areas complement one another and continual development
can be facilitated by iterating between dynamic experimental and computational
findings. Ultimately, quantitative data-derived models of sufficient detail will be
required to help realize the goal of precision medicine. © 2015 The Authors. WIREs Sys-
tems Biology and Medicine published by Wiley Periodicals, Inc.
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INTRODUCTION

Drug treatment is the most common thera-
peutic intervention advocated for patients by
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physicians, and its prevalence is increasing. By 2018,
it is forecast that global annual spending on prescrip-
tion medications will reach $1.3 trillion.1 However,
there exists notable interindividual heterogeneity in
drug response, affecting both efficacy and toxicity. It
is has been reported that the proportion of patients
who respond beneficially to the first drug offered in
the treatment of a wide range of diseases is typically
just 50–75%.2 Approximately 6.5% of admissions
to hospitals are related to adverse drug reactions
(ADRs)3 and about 15% of inpatients experience an

Volume 7, Ju ly/August 2015 221
© 2015 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.



Advanced Review wires.wiley.com/sysbio

ADR.4 Therefore collectively, interindividual drug
variability leads to patient harm and the excessive and
inefficient use of limited healthcare resources.

Pharmacogenomics is the study of genetic deter-
minants of interindividual variation in response to
a given drug and was developed to optimize drug
use through the stratification of pharmacological ther-
apy by patient subgroup, via genotype-informed drug
and dose selection. Currently, 138 US Food and Drug
Administration (FDA)-approved drugs have at least
one pharmacogenomic association in their product
labelling.5 Pharmacogenomics has been successfully
translated into clinical practice, notably:

1. reducing the hypersensitivity syndrome associ-
ated with the antiretroviral abacavir, through
genotyping for HLA-B*57:01, and

2. the development of oncogenotype-specific
drugs, such as the V600E-specific BRAF
inhibitor vemurafenib.

However, the hype following completion of the
Human Genome Project of a paradigm shift into an era
of pharmacogenomics-mediated precision medicine
has not occurred. There are many reasons for this (cov-
ered in other review articles6,7), but it is also impor-
tant to appreciate that most forms of drug response
are, in effect, complex phenotypes (like complex dis-
eases). Thus, pharmacogenomics combined with tradi-
tional clinical phenotypic variables (e.g., sex and age)
alone are unlikely sufficient to adequately describe the
net effect of the multitude of factors influencing drug
response. Therefore, there is growing interest in the
novel, diverse, and rapid developing field of systems
pharmacology, which incorporates but goes beyond
pharmacogenomics, to help realize the goal of pre-
cision medicine. This review is subdivided into three
sections: an overview of systems pharmacology, a nec-
essary step back to systematically consider the fac-
tors affecting drug response and finally an overview of
systems pharmacology approaches in practice to help
parse interindividual drug response variability.

AN OVERVIEW OF SYSTEMS
PHARMACOLOGY

The conventional reductionist approach to under-
standing drug action and drug design has been the
one disease, one gene, one drug paradigm, attributing
drug effectiveness to its action on a single on-target
protein within the target tissue. This analogy has
been extended to account for the plethora of ADRs
caused by a drug by dividing them into excessive

on-target effects, on-target effects in nontargeted
tissues, and off-target drug activity. However, for the
pharmaceutical industry it has become increasingly
clear that business as usual is not an option.8 It costs
approximately one billion USD to bring a single drug
to market and despite the considerably increased
pharmaceutical R&D investment this century, the
number of new molecular entities approved annu-
ally by the FDA has remained constant at ∼20–30
compounds.9 The highest attrition rate during the
clinical phases of drug development now occurs in
phase II trials where the development of 75% of
investigational medicinal products is terminated,
largely due to poor drug effectiveness and unan-
ticipated and/or unacceptable toxicity.9 There is a
growing appreciation that the reductionist approach
to molecular-based drug design is failing because
it insufficiently considers both the complexity of
the interactions between a drug and the human
body and the complexity of the body’s response to
drug perturbation. This lack of understanding man-
ifests as unexpected ineffectiveness and ADRs. This
also contrasts with drug–drug interactions that have a
pharmacokinetic (PK) basis, where knowledge of drug
metabolizing enzymes (DMEs) and xenobiotic trans-
porters (XTs) has led to the development of in vitro, in
silico, and in vivo methods that can be used to predict
the possibility of drug interactions in clinical practice.

Systems pharmacology is an emergent field of
interdisciplinary translational science,10 and therefore
has no single consensus definition, instilling divergent
connotative meanings between researchers. Over-
all, systems pharmacology is a holistic approach to
pharmacology that aims to systematically and com-
prehensively parse all of a drug’s clinically relevant
activities in the human body to explain, simulate
and predict the resultant clinical drug response. It
is hoped that systems pharmacology will accelerate
drug discovery and development through identifying
and validating new targets, understanding target net-
work responses to drug perturbation and uncovering
drug-response biomarkers.10 However, the appli-
cation of systems pharmacology holds additional
transformative potential for a deeper parsing of
interindividual drug variability of existing and new
drugs, facilitating drug stratification.

It is evident that the human body is greater than
the sum of its parts; clinical drug response is one emer-
gent property of this synergy, which plausibly stems
from the body’s hierarchical, network-based design.
Humans are composed of different scales (i.e., levels)
of biological organization acting in different times and
spaces: molecular, genomic, epigenomic, transcrip-
tomic, proteomic, metabolomic, cell, gut microbiome,
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FIGURE 1 | The rationale for a multiscale network-based understanding of drug action. The human body can be parsed into a hierarchy of
biological levels; interactions within and between levels form networks that are interconnected to other networks, resulting in the complex human
body system. The founder constituents of this dynamic complex system are the genome and exposome; the latter represents environmental exposures
(e.g., smoking) that interact with and influence all biological levels of the human body. Many drugs have more than one protein target and therefore
a network-based understanding is more informative than a single target perspective. In this figure, the genomic, proteomic and tissue/organ levels
have been expanded, although all levels can inform an individual’s response to drug therapy. Genetic polymorphisms can, e.g., alter the structure
and/or abundance of a drug target and important proteins mediating the drug-induced proteomic network response. This network response
influences other levels in different times and spaces, for example altering gene transcription and tissue function. Intra- and inter-level interactions
ultimately lead to the emergence of an individual patient’s clinical drug response. Through investigating and modelling these interactions using
empirical and pharmacometric methods, illustrated further in Figure 2, the aim is to develop multiscale models to facilitate dose- and drug-adjusted
precision medicine. ADR: adverse drug reaction

tissue, organ, and whole body. Within and between
levels, molecules are interlinked to form biologi-
cal networks (e.g., macromolecular protein–protein
structures and gene regulatory networks).9 There-
fore understanding drug action is intrinsically a
multiscale,10 network-based problem (Figure 1) and
so rather than seeking to understand the effects of
drugs through the ad hoc study of individual bio-
logical components, systems pharmacology aims to
understand drug-induced network perturbations as a
whole through the investigation and integration of:

1. the effects of a given drug within different
biological levels (horizontal integration) and

2. drug-induced interactions between different bio-
logical levels (vertical integration).

From this multiscale context incorporating bio-
logical network properties, such as robustness and

redundancy,9 it is clear why, for example, in vitro drug
binding to a single target molecule cannot readily be
extrapolated to beneficial clinical response with no
unexpected harm.

Systems pharmacology is composed of, and
the interface between, two broad-based but comple-
mentary research themes: the application of systems
biology knowledge and skills to study system-wide
drug effects, and pharmacometrics.11 Interest in sys-
tems biology has grown dramatically in recent years
for several reasons including increasing experimental
omics technology and network analysis capabilities,
and the growing involvement of systems engineers,
mathematicians, computer scientists, and physicists
in addressing biological problems.10 Pharmacology
is fundamentally a quantitative science and pharma-
cometrics aims to develop quantitative mathematical
models to describe a drug’s PK and pharmacodynamic
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FIGURE 2 | The interrelated processes for systems pharmacology multiscale model development. This figure provides a nonexhaustive overview
of the processes and interconnections relevant to multiscale modelling. First, from a clinical observation and/or new research finding, a new research
question is generated. Three major empirical resources can be harnessed to address the question: clinical, in vitro/animal and publically available
empirically derived databases. Multi-omics approaches coupled with bioinformatics can uncover new associations. Network description and analysis
can glean further information from existing databases (e.g., of high throughput data), predicting new targets and defining molecular sub-networks
associated with drug response phenotypes of interest (e.g., adverse drug reactions). Conventional biological investigations can validate these new
associations and predictions, derive mechanistic insight, and perform detailed biochemical kinetics analyses. This empirical data can be incorporated
into quantitative pharmacometric models. Population pharmacokinetics (POP PK) top down modelling is tightly fitted to empirical data. However
physiologically based PK (PBPK) coupled with in vitro–in vivo extrapolation (IVIVE) and enhanced pharmacodynamics (ePD) modelling are more
bottom up, using empirical data where available and assumptions when necessary. Model simulations and assumptions will drive further empirical
experimentation, leading to an iterative process of model development and refinement. Through combining detailed PBPK-IVIVE and ePD models that
are adequately fitted to empirical data, systems pharmacology multiscale models with adequate predictive power to facilitate precision medicine will
hopefully be developed.

(PD) properties, quantify uncertainty and rationalize
data-driven decision making in drug development
and pharmacotherapy.12 Given the two extremes of
firstly, the indiscernible complexity resulting from
summation of all potential biological interactions in
the human body to secondly, the reductionist overly
simplistic target-level only understanding of drug
action, systems pharmacology aspires to compromise
and develop contemporary models in the short to
medium term that are both achievable and sufficiently
informative to adequately describe drug variability
for clinical utility. It is envisaged that high through-
put omics technologies and network-based analyses,
alongside conventional experimental techniques,
will identify novel factors from multiple different

biological levels associated with different clinical drug
response phenotypes. Mechanistic and kinetics anal-
yses of these factors will facilitate their quantitative
integration, leading to the construction of multiscale
systems pharmacology models. The model develop-
ment process is iterative as new empirical knowledge
refines the model and model simulations drive new
empirical studies10 (Figure 2).

FACTORS ASSOCIATED WITH
INTERINDIVIDUAL DRUG RESPONSE

Before considering systems pharmacology approaches
for parsing interindividual drug response variability
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in more detail, it is informative to first take a step
back and review the categories of factors shaping
drug response. Classically, pharmacology is delineated
into PK (‘what the body does to the drug’) and PD
(‘what the drug does to the body’) and PK is further
subdivided into ADME constituents: absorption, dis-
tribution, metabolism, and excretion. As drug avail-
ability (PK) at its target site(s) is a prerequisite for
drug action (PD), both PK and PD contribute to drug
response. For any given drug, both PK and PD are
the products of the characteristics and interactions
between the drug and the overall human body sys-
tem. The major system inputs are the genome and
myriad environmental exposures (past and present),
which shape each other and shape the dynamic biolog-
ical levels (e.g., epigenome, transcriptome, proteome,
metabolome, and tissues/organs); in turn these lev-
els interact with one another through complex pro-
cesses. Therefore, within each biological level of the
human body, factors associated with drug response
exist. Drug-specific, human body and environmental
factors are now each sequentially reviewed (summa-
rized in Table 113–45). Given the interconnectedness
between human body constituents and environmental
factors, their separation represents a pragmatic sim-
plification. Nevertheless, this framework is inclusive
and conceptually useful. The role of analytical varia-
tion in determining PK/PD, although important, is not
considered further here.

Drug-Specific Factors
Two categories of drug-specific factors affect drug
response:

1. the physicochemical properties of the drug and

2. the drug regimen.

Different drugs have different physicochem-
ical properties, such as solubility, permeability,
and propensity for interaction with a given
available biological molecule (based on both
three-dimensional shape and chemical/electrostatic
forces complementarity15); these properties are the
foundation of the distinct action of different drugs.
However, drug-delivery modification (e.g., by varying
the formulation or delivery system) is an important
method to manipulate the properties of a given drug,
alter its absorption profile and influence response. For
example, using the same 240 mg once daily oral dose
of the calcium channel antagonist, diltiazem, a single
microbead delivery system has been shown to increase
the area under the plasma concentration–time curve
(AUC), increase the maximum plasma concentration

(Cmax), and significantly lower ambulatory blood
pressure in hypertensive patients, compared to a dual
bead system.13

Secondly, drug regimen (dose, administration
frequency, timing, and route) shapes PK. For example,
patients with diabetes mellitus requiring insulin can
personalize the dose, frequency, and timing of insulin
therapy based on blood glucose readings, in con-
junction with selection of the appropriate insulin
formulation(s) for their insulin regimen. This is impor-
tant as intensive blood glucose control is associated
with a decreased risk of microvascular complications
(nephropathy, neuropathy, and retinopathy).46

Importantly patient nonadherence is a substan-
tial contributor to the variability in drug response
observed in clinical practice. For example, in a study
of asthma medication adherence, 35 and 45% of
patients filled just ≤50 and 51–100% of inhaled
medication prescriptions, respectively.47 However,
the factors (including behavioral) underlying variable
adherence are poorly understood. Interestingly, a
recent U.S. internet survey that investigated statin
use reported that the most frequent reason for statin
discontinuation was statin-associated muscle adverse
symptoms48 and current statin users who reported
muscle symptoms were less likely to be adherent with
statin theapy.48 This illustrates the potential contribu-
tion of even mild ADRs to variable patient adherence
and importantly, statin nonadherence is associated
with an increased risk of cardiovascular events.14

Human Body Factors
At each level of biological organization within the
human body, factors influence drug PK and PD.
Heuristically these factors affect either the intrinsic
quality (e.g., affinity and catalytic capacity) of the
drug-biological molecule (predominantly protein)
interaction or the quantity of molecule available for a
drug to interact with (e.g., via synthesis and degrada-
tion). Quality and quantity considerations can also be
extended to biological molecule–biological molecule
interactions (e.g., protein–DNA, protein–protein, and
microRNA–mRNA) that shape the network-level
response to drug perturbation.

In the following sections, factors at the genomic,
epigenomic, proteomic, and tissue/organ levels that
affect a drug’s PK or PD are considered, although other
biological levels including the metabolome and gut
microbiome are also of emerging importance.

Pharmacogenomics of Drug Response
The following drug-centric examples collectively illus-
trate the effects of pharmacogenomics variants on:
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drug PK and on/off-target PD, interaction quality and
protein quantity, and the variable translational success
of pharmacogenomics.

Warfarin-Dose Requirements
The vitamin K antagonist warfarin is a coumarin-
derived racemic anticoagulant that has a narrow
therapeutic index: the risks of haemorrhage and
thromboembolism depend on the international
normalized ratio (INR). The genetic variants
rs9923231 (−1639G>A; G3673A) in VKORC1,
CYP2C9*2 (rs1799853, R144C), CYP2C9*3
(rs1057910, I359L), and rs2108622 (1297G>A,
V433M) in CYP4F2 are established pharmacoge-
nomic factors associated with warfarin stable dose
(WSD) requirements,16,17 although their impact is
ethnicity-dependent.7

rs9923231 is a noncoding single nucleotide poly-
morphism (SNP) that perturbs a transcription binding
site in the promoter region of VKORC1, which
encodes for the warfarin target, vitamin K epoxide
reductase complex subunit 149; rs9923231 decreases
VKORC1 expression and is associated with decreased
WSD requirements.16 Cytochrome P450 2C9
(CYP2C9) metabolically inactivates the more potent
S-warfarin enantiomer. CYP2C9*2 and CYP2C9*3
are missense reduction-of-function variants that
decrease enzymatic activity by ∼30–40 and ∼80–90%,
respectively,50 are associated with prolonged war-
farin half-life and reduced WSD requirements.16

Genome-wide studies identified that rs2108622 in
CYP4F2 is associated with increased WSD require-
ments in Caucasian17 and Asian populations,18 but
not in African-Americans.51 CYP4F2 depletes the
vitamin K cycle of active vitamin K; rs2108622 is
associated with lower hepatic CYP4F2 concentra-
tions, greater vitamin K availability52 and illustrates
the functional relevance of variation beyond proteins
that directly interact with a drug.

Two recent large prospective warfarin pharma-
cogenomics randomized controlled trials (RCTs) that
tailored warfarin therapy based on genotype infor-
mation, COAG53 and EU-PACT,54 have produced
contrasting results on the utility of empirically derived
pharmacogenomic-based (VKORC1 −1639G>A,
CYP2C9*2 and *3) warfarin dosing algorithms, illus-
trating the difficulties encountered when seeking to
translate even robust pharmacogenomic associations.
Whilst EU-PACT reported a significantly improved
time within INR therapeutic range (TTR) over 12
weeks from starting warfarin in the pharmacogenomic
arm,54 COAG found no difference in TTR over the ini-
tial four weeks, compared to their respective control
arms.53 There are various potential reasons for the

contrasting results between these two trials, including
differences in algorithmic strategy, the differences in
ethnic heterogeneity between the two trials, and how
the genotypes were utilized prior to the initiation of
warfarin dosing.55 Other trials such as the ongoing
GIFT RCT may provide further clarity in the future,
but will also critically be dependent on the algorithms
used and how non-Caucasian populations are dosed.

Importantly, a large prespecified genetic analy-
sis of a multicentre RCT, which compared warfarin
to the direct factor Xa inhibitor edoxaban in patients
with nonvalvular atrial fibrillation, has highlighted
the impact of genetic factors in contributing to clin-
ical outcomes from warfarin therapy.21 Patients who
were sensitive or highly sensitive to warfarin, based on
combined VKORC1 rs9923231 and CYP2C9*2/*3
genotype status, spent greater proportions of time
over-anticoagulated and had an increased risk of overt
bleeding in the first 90 days of treatment, compared to
genotype-predicted normal responders. Furthermore,
there was minimal difference in bleeding risk between
edoxoban and warfarin in those patients classified
as normal responders to warfarin,21 indicating that
preprescription genotyping may help stratify antico-
agulant therapy.

Although there have been significant advances
in the understanding of interindividual variability in
response to warfarin, it is important to note that at
least 40% of the variance in daily dose requirements
remains unexplained, and is therefore a limitation
of the reductionist approach. Other factors that
may influence the response to warfarin such as
microRNA56 and proteomics57 have been investi-
gated, but further more global approaches that are
integrated with the pharmacogenomic determinants
are required.

Abacavir Hypersensitivity Syndrome
Up to 9% of patients that take abacavir can develop
abacavir hypersensitivity syndrome (AHS)58; although
the initial reaction is unpleasant, significant morbidity
and mortality occurs particularly upon re-challenge,59

consistent with an immune-mediated delayed-type
hypersensitivity ADR. In 2002, AHS was associated
with HLA-B*57:01.19 The multicentre PREDICT-1
RCT demonstrated that pretherapy HLA-B*57:01
screening and avoidance of abacavir in patients car-
rying HLA-B*57:01 completely eliminated abacavir
hypersensitivity reactions which had been immunolog-
ically confirmed by skin patch testing.20 This 100%
negative predictive value was complemented with a
positive predictive value of 47.9% and a number
needed to screen to prevent one AHS case, given a
6% prevalence of HLA-B*57:01, of ∼25.20 As 84% of
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the PREDICT-1 participants were Caucasian, the ret-
rospective case–control SHAPE study addressed this
limitation and demonstrated that HLA-B*57:01 has
100% sensitivity for immunologically confirmed AHS
in both US Black and White patients.60 The asso-
ciation between HLA-B*57:01 and the AHS repre-
sents the epitome of translational pharmacogenomics
and widespread clinical implementation has occurred,
improving abacavir’s safety profile. Mechanistically,
abacavir has been shown in vitro to bind noncova-
lently and specifically to HLA-B*57:01, altering its
peptide-binding groove structure to create a HLA
neo-allotype with a novel peptide binding portfolio61;
the other system factors which determine whether or
not abacavir binding to HLA-B*57:01 results in clin-
ical AHS are less clear.

Tacrolimus Dose Requirements
The immunosuppressive drug, tacrolimus, shows
high interindividual variability in its bioavailability,
ranging from 5–90% with an average of ∼25%.62

Tacrolimus is a CYP3A substrate; CYP3A5 seems to
play a more dominant role in tacrolimus metabolism
than CYP3A4.62 The intronic CYP3A5 SNP, rs776746
(6986A>G), that defines CYP3A5*3 is associated
with alternative splicing, resulting in protein trun-
cation and a substantial decrease in functional
CYP3A5.63 Meta-analyses have reported that patients
expressing CYP3A5 (*1 carriers) require signifi-
cantly higher mean daily tacrolimus doses compared
to CYP3A5 nonexpressors (*3/*3 patients) as deter-
mined by target tacrolimus therapeutic trough levels,22

and CYP3A5*3 may reduce acute rejection risk in
the first month post transplantation.22 In a notable
pharmacogenomic RCT involving 280 renal trans-
plant recipients, prospective CYP3A5 genotype-based
tacrolimus dosing compared to the standard daily reg-
imen significantly increased the proportion of patients
reaching a therapeutic trough concentration (by day
3 of tacrolimus) and reduced dose modifications.64

However, there was no association between CYP3A5
genotype and clinical endpoints, including acute
rejection.64 This may relate to the small sample size,
the use of therapeutic drug monitoring, concomitant
medications (e.g., the use of high dose mycopheno-
late mofetil in all patients) and/or the incompletely
understood relationship between tacrolimus PK and
ADRs.62

CYP3A4*22 (rs35599367, 15389C>T) is asso-
ciated with decreased human liver CYP3A4 mRNA.
In renal transplant recipients, CYP3A4*22 car-
riage has been associated with increased tacrolimus
dose-adjusted trough blood concentrations and
reduced mean daily tacrolimus dose requirements

to reach target levels independent of CYP3A5 sta-
tus, compared to homozygous CYP3A4 wild-type
patients.65,23 Both CYP3A5*3 and CYP3A4*22
SNPs considered together explain >60% of observed
dose-adjusted tacrolimus trough blood levels.65

Beyond CYP3A5*3/CYP3A4*22, both POR*28
(rs1057868, A503V) within P450 oxidoreductase,
which is the obligate electron donor for micro-
somal (including xenobiotic-metabolizing) CYPs,
and SNPs in the nuclear receptor (NR) peroxisome
proliferator-activated receptor 𝛼 (PPARA), have
also been associated with altered tacrolimus PK,24,28

albeit inconsistently. Collectively, although phar-
macogenomics has accounted for a proportion of
interindividual tacrolimus PK variability, there is
limited understanding at present of the mechanisms
underlying the differential susceptibility to tacrolimus
ADRs (at similar whole blood concentrations) and so
tacrolimus PK pharmacogenomics alone is unlikely to
improve patient outcomes.62

Overall, even for the growing list of pharma-
cogenomic variants for prescribed drugs that are
directly associated with ADRs, although they often
have clinically acceptable negative predictive values,
their clinical utility is severely limited because their
typical positive predictive values range between just
<1% to ∼20%.66 This occurs because risk allele fre-
quencies are higher than the prevalence of their asso-
ciated ADR. Therefore, the integration of other sys-
tem factors alongside pharmacogenomics is required
to improve risk prediction accuracy.

Epigenomic Factors of Drug
Response Variability
Classically, epigenomics represents the study of gene
expression alterations that are heritable between
somatic cell mitotic divisions but are not attributable
to the DNA sequence. Prototypical epigenomic mech-
anisms are DNA methylation and post-translational
histone modifications, although regulation by non-
coding RNAs, including microRNAs, are increasingly
classed as epigenomic phenomena. The epigenome is
dynamic and influenced by many factors including
the genome (e.g., DNA-methylation related SNPs),
disease status, pharmacotherapy (e.g., valproic acid
and hydralazine), and smoking (see later). There is
also interest in the role of in utero and early life expe-
riences influencing later life and epigenomics may be
integral to such processes. For example, individuals
exposed to war-time famine in 1944–45 had different
methylation profiles in loci implicated in growth
and metabolic disease (e.g., within the cholesterol
efflux regulatory transporter, ABCA1) compared to
same-sex unexposed siblings, in whole blood sam-
ples taken six decades after the famine.67 Therefore
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although epigenomics is reversible, previous life
experiences likely influence drug response.

Several genes relevant to drug response, includ-
ing genes encoding DMEs, XTs, NRs, and drug targets
are under epigenetic control. For example, CYP3A4
exhibits high interindividual variation in hepatic
expression and the 5′ region upstream of CYP3A4
has highly variable CpG methylation sites in adult
livers.29 Importantly, the methylation status of single
CpG positions near the proximal promoter is associ-
ated with CYP3A4 expression.29 Furthermore, many
cancers exhibit varied and aberrant epigenetic pro-
files, affecting chemotherapy response. For example,
hypermethylation of the gene encoding transcription
factor AP-2 epsilon (TFAP2E) in colorectal cancers,
compared to hypomethylation, is significantly asso-
ciated with clinical nonresponse to 5-fluorouracil
(5-FU)-based chemotherapy regimens.30 A recent
genome-wide methylation study using DNA tumour
samples from a randomized phase III clinical study
investigating the effect of adjuvant chemotherapy
(procarbazine, CCNU, and vincristine [PCV]) in
patients with anaplastic oligodendroglial tumours
or oligoastrocytomas showed that predicted MGMT
(encoding O6-methylguanine DNA methyltrans-
ferase) promoter methylation was associated with
increased overall survival with PCV, whereas those
with unmethlyated MGMT promoter status did not
benefit from PCV.31

MicroRNAs are noncoding RNAs, 18–25
nucleotides long,68 that lead to post-transcriptional
mRNA regulation. Of the >2500 mature human
miRNAs currently identified, the expression lev-
els of a growing number are becoming associated
with differential chemotherapy response, includ-
ing miR-21, miR-141, and miR-205.68 Recently,
miR-519a has been identified as a novel breast can-
cer oncomir, which co-suppresses several tumour
suppressor genes, is associated with in vitro resis-
tance to tamoxifen-induced apoptosis and higher
miR-519a expression has been associated with poorer
disease-free survival in oestrogen receptor positive
breast cancer patients.32

Proteomic Factors of Drug Response Variability
Proteomics is the large-scale study of proteins, partic-
ularly their expression, functions, and structures, and
is shaped by interactions between genomic, environ-
mental, and other biological levels. The quantity of
protein available for interaction with a drug or other
biological molecules is determined principally by its
rates of synthesis, protein processing, and degradation
and these influence drug response. For example, dur-
ing inflammation, down-regulation of many CYPs and

XTs occurs and one mechanism is cytokine-mediated
CYP/XT transcriptional suppression to reduce their
protein synthesis.33

There is growing interest in the complex
proteome phenotype, particularly in oncology, to
understand drug effects and stratify chemotherapeutic
regimes. For example, quantitative proteomics has
been applied to characterize drug response and detect
potential therapeutic escape mechanisms in melanoma
cell lines treated with novel inhibitors to heat shock
protein 90 (HSP90) and mitogen-activated protein
kinase kinase (MEK).69 Clinically, a multivariate
serum protein test that assesses the intensity of eight
serum mass spectra regions has been developed that
can stratify patients according to whether they are
likely to have a good or poor outcome with epider-
mal growth factor receptor (EGFR) tyrosine-kinase
inhibitors, such as erlotinib. In a recent RCT of
patients with nonsmall cell lung cancer randomized
to either erlotinib or conventional chemotherapy, a
pretherapy proteomic test classification of poor was
associated with worse overall survival on erlotinib
compared to chemotherapy, whereas there was no
survival difference by treatment in patients with a
proteomic test classification of good.34

Tissue and Organ Level Factors of Drug
Response Variability
Both anatomical and (patho)physiological factors at
the tissue/organ levels perturb drug response. Anatom-
ically, tissue size variation affects parenchymal cell
numbers and blood volume. For example for a
given dose, increased adiposity increases the absolute
amount of lipophilic drug distribution into fatty tissue.
Both anatomically smaller kidneys and livers (e.g., in
infants) and pathologically reduced nephron (e.g., in
chronic kidney disease) and hepatocyte (e.g., in cirrho-
sis) abundance decreases absolute drug metabolism
and excretion, with the net effect of increasing drug
residence time.

Physiologically, interindividual variability in
intestinal transit time is predicted to affect fractional
absorption of poorly soluble, slow release, and/or low
permeability drugs.36 Interestingly, after total gastrec-
tomy, AUC and Cmax of 5-FU following ingestion of
the S-1 composite (composed of 5-FU, tegafur, and
two 5-FU modulatory compounds) was significantly
higher than presurgery,38 indicating increased 5-FU
bioavailability. It has also been observed that hepatic
microvasculature damage and hepatic blood con-
gestion precede hepatocellular injury in paracetamol
hepatotoxicity. This suggests that altered blood flow
is involved in the pathogenesis, although its exact role
remains unknown.37
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Environmental Factors
Exposure to exogenous substances including con-
comitant drugs, food, alcohol, and tobacco modify
drug response. For example, environment-specific fac-
tors can perturb PD through drug–drug interactions
(DDIs), which can have additive, synergistic or antag-
onistic effects. Classically, concurrent verapamil and
beta blocker administration is known to predispose to
severe bradycardia and hypotension, due to excessive
inotropic and chronotropic effects.

Secondly, environmental factors modify PK. For
example, the fractional absorption of levothyroxine
in the gut lumen is reduced through chelation by
concurrent iron, calcium or chromium supplementa-
tion or sevelamer administration.39 Concurrent food
intake (especially fatty food) reduces gastric-emptying
and slows intestinal drug absorption. Additionally,
food may decrease the extent of absorption of drugs
degraded in the stomach (e.g., penicillin G) and
increase absorption of poorly soluble drugs (e.g.,
griseofulvin).70

Inhibition and induction of DMEs or XTs,
through food- and DDIs, constitute major environ-
mental mechanisms of target-drug PK modification.
For example, grapefruit juice inhibits intestinal
CYP3A4 and the antiretroviral combination of
ritonavir and saquinavir is associated with a sev-
eral fold increase in simvastatin acid AUC and
Cmax,

40 attributable to inhibition of both the
hepatocyte-specific sinusoidal XT, OATP1B1,41 and
CYP3A4,40 which are required for hepatic uptake
and intestinal/hepatic metabolism of simvastatin acid,
respectively.

DME and transporter expression is regulated
by a complex interplay of gene regulatory pathways
influenced by NRs, and NRs can mediate drug- and
food-induced induction. For example, rifampicin
binds the pregnane X receptor (PXR) leading to
heterodimerization with retinoic acid receptor and
induction of phase I and II DMEs and transporters
including CYP3A4, uridine diphosphate glucurono-
syltransferase 1A1 and P-glycoprotein, respectively.42

Another example is activated vitamin D (originating
from food, supplementation, or UV-mediated synthe-
sis), which binds the vitamin D receptor (VDR) and
is a strong intestinal CYP3A4 inducer. Interestingly,
significant seasonal variation in duodenal CYP3A4
mRNA alongside an inversely related trend in midazo-
lam AUC has been reported, likely reflecting seasonal
variation in UV sunlight exposure.45 Interestingly,
CYP1A1 and to a lesser extent CYP1A2 are induced
by tobacco smoking and smoking is associated with
reduced pulmonary CYP1A1 promoter region methy-
lation indicating smoking-associated epigenomic

modifications.43 Furthermore, the AUC following
single-dose erlotinib is significantly lower in smokers
compared to nonsmokers, and although erlotinib is
primarily metabolized by CYP3A4, both CYP1A1 and
CYP1A2 also contribute.71 Finally, the antiepileptic
drug carbamazepine causes CYP3A4 autoinduc-
tion through inhibition of histone deacetylase 1
binding to the CYP3A4 promoter, independent of
PXR, suggesting carbamazepine-induced epigenomic
perturbation.44

SYSTEMS PHARMACOLOGY FOR
PARSING INTERINDIVIDUAL
DRUG VARIABILITY

Given the range and complex interplay between fac-
tors that modify drug action, conventional approaches
are usually unlikely to describe the variation ade-
quately to achieve clinical translation. Systems phar-
macology holds potential for a deeper parsing of
interindividual drug response variability, through har-
nessing both rapidly advancing drug-centred systems
biology and pharmacometrics in an integrated and
iterative manner. In doing so, systems pharmacology
offers a holistic approach for further identification,
characterization and quantitative integration of fac-
tors associated with drug perturbation.

Pharmacologically-orientated
Systems Biology
Pharmacologically-orientated systems approaches are
developing along four main interconnected fronts: col-
lation of increasingly large well-characterized patient
samples, implementation of novel omics technologies,
amassment of Big Data from multiple sources into
publically available databases in conjunction with
network-based analysis, and development toward
structural systems biology and pharmacology. Firstly
collaborations, such as the international Serious
Adverse Event Consortium (iSAEC), alongside phe-
notype standardization initiatives,72 are facilitating
international patient recruitment to increase sample
sizes and collect blood samples for biobank storage
whilst concomitantly ensuring high quality pheno-
typic data is captured using consistent definitions
to reduce intra- and inter-study heterogeneity. For
ADRs that occur along a spectrum, such as carba-
mazepine drug-induced skin injury and statin-induced
myotoxicity, phenotype standardization is especially
important.

Secondly, besides traditional GWAS, novel omics
technologies and bioinformatics methods are being
increasingly implemented in clinical pharmacology
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studies. For example, next-generation sequencing
facilitates investigation of rare as well as common
variation. In a study of drug-associated torsades de
pointes, 23% Caucasian patients carried a highly
conserved rare nonsynonymous variant compared
to 1.7% of population controls (p= 0.0027) within
22 congenital arrhythmia genes.73 High-throughput
omics technologies are increasingly being used to
measure the dynamic intermediate biological levels
to further characterize drug exposure phenotype
and facilitate identification of novel drug response
associations. For example, pharmacometabolomics
identified higher postaspirin levels of inosine and
adenosine in individuals classified as poor responders
to aspirin compared to good responders, deter-
mined by ex vivo aspirin-induced platelet reactivity,
and pharmacometabolomics-informed pharmacoge-
nomics identified rs16931294 (14820A>G) in
adenosine kinase to be strongly associated with dif-
ferential aspirin response.35 Similarly, metabolomics
determined that elevated pretreatment plasma glycine
levels may be a risk marker for decreased response
to escitalopram in patients with major depressive dis-
order; subsequent genotyping identified rs10975641
in glycine dehydrogenase to be associated with treat-
ment outcome phenotypes.74 Multi-omics in vitro
approaches also facilitate novel insight into ADR
pathogenicity. For example, single and integrative
transcriptomic, proteomic and metabolomics analyses
of mouse hepatocytes, following exposure to the
prototypical hepatotoxicant cyclosporin A, revealed
mechanisms underlying cyclosporin A cholestasis
including endoplasmic reticulum stress.75

Thirdly, a transition into an era of Big Data is
rapidly occurring with data storage in large, often
publically available online repositories. These data
are being amassed from multiple sources including
the increasing use of omics technologies to analyze
patient-derived biological samples, systematic cell
line transcriptomic profiling after genetic or pharma-
cological perturbation, systematic investigations of
biological molecule interactions (e.g., gene-regulatory
and protein–protein interactions) and increasing
drug-centric data (e.g., phenotype and physiochem-
ical data). Table 2 provides examples of publically
available databases relevant to studying drug variabil-
ity. Network description and analysis has emerged as
a powerful tool to intelligently combine, visualize, and
interrogate heterogeneous Big Data.9 One function
of network analysis is prediction of new drug tar-
gets. For example, construction of a single node type
drug–drug relation network based on phenotypic side
effect similarity of 746 marketed drugs uncovered 261
unexpected drug-drug relations formed of chemically

dissimilar drugs from different therapeutic indications
that share a common side effect.76 Complementary
in vitro experimentation confirmed binding activity
to at least one predicted target for 13 of 20 tested
unexpected but network-predicted drug pairs. For
example, the proton pump inhibitor rabeprazole was
newly confirmed to bind the DRD3 and HTR1D
receptors, which are known targets of pergolide.76

Distinguishing real signals from noise within
empirical (especially omics) data using conventional
statistics is challenging. However, network-based
analyses can filter empirically derived data to gain
nonintuitive insight, uncover novel associations and
prioritize further research by defining the biologi-
cal context of targets involved in therapeutic and
adverse actions.77 One method is creating a seed list
from existing knowledge and using it as an input
for network-building computational algorithms. For
example, recently, 167 rhabdomyolysis-inducing
drugs (RIDs) served as the seed list for construction
of a bipartite pharmacological network with edges to
272 known protein targets.78 The drug–protein target
interaction data was sourced from DrugBank, Thera-
peutic Targets Database, and PharmGKB databases.78

This network was extended through inclusion of
‘intermediate’ proteins that interact with any of the
known drug targets by either protein-protein or
genetic interactions according to the Biological Gen-
eral Repository for Interaction Datasets (BioGRID)
database. Subsequent enrichment analysis identified
78 novel intermediate proteins significantly associated
with the rhabdomyolysis network compared to ran-
dom drug sets.78 However, the target space of existing
drug–target and protein–protein interaction databases
is incomplete. Therefore, a complementary analysis
of Connectivity Map empirical gene expression drug
perturbation data, for 75 RIDs where this data was
available, was undertaken. Of the 9899 genes whose
expression was altered by at least 1 RID, CPT2
(carnitine palmitoyltransferase II) was in the top 1%
of most commonly perturbed genes by this group
of drugs.78 CPT2 mutations have previously been
associated with lipid lowering therapy-associated
myopathy,79 but this finding highlights its potential
importance, prioritizing it for further study.

As generic in silico-based networks are not
tissue-specific, a recent cardiac-specific long QT
syndrome (LQTS) proteomics network was devel-
oped experimentally via immunoprecipitation of five
known LQTS proteins from cardiac mouse tissue;
the proteomics network was constructed from these
five seed proteins and interacting proteins identified
in the precipitates.80 This network was integrated
with results from a large recent GWAS that had
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associated common variant loci with QT interval
duration. Importantly, after excluding the congen-
ital LQTS proteins, 12 proteins from the network
were encoded by genes within these loci, prioritizing
candidate genes for further functional assessment
to elucidate causal mechanisms underlying these
unexplained loci. Secondly, the network was used to
filter SNPs modestly associated (p< 10−3) with QT
duration according to whether the SNPs were located
near genes of network proteins. Selected SNPs were
genotyped in a replication cohort and three reached
genome-wide significance when meta-analyzed with
the initial GWAS: rs10824026 (VCL), rs889807
(SRL), and rs7498491 (TUFM/EIF3C/EIF3CL).80

As QT-prolongation is frequently multifactorial,
these common variants plausibly contribute to an
individual’s risk of drug-induced Torsades de Pointes.
Therefore collectively, these examples illustrate the
potential of network-based analysis to integrate
with, filter and augment complex empirical data.
Furthermore, such networks (consisting of seed
and interacting nodes associated with clinical drug
response phenotypes) are neither overly simplistic
nor prohibitively complex. Importantly, this com-
promise makes network construction and analysis
a rational means of defining the suitable ‘molecular
space’ for targeted in-depth biochemical kinetics
analyses, facilitating quantitative pharmacometric
modelling.77

Lastly, it is increasingly recognized that a
physiochemical molecular level understanding of
protein–protein interactions and protein–drug inter-
actions is essential for a deeper understanding of
interindividual differences in system responses to
drug perturbation. To illustrate, approximately
20% of clinically apparent drug resistance to ima-
tinib develops through acquisition of the T315I
Abl gatekeeper mutation in the imatinib oncopro-
tein on-target, Bcr-Abl, and the substitution from
wild-type threonine to isoleucine sterically blocks
imatinib binding. This structural insight is facilitat-
ing development of new Bcr-Abl inhibitors, such as
ponatinib, which are capable of inhibiting T315I
Bcr-Abl.15 Furthermore ligand-induced, specific pro-
tein conformational states can result in selective
signalling (biased agonism), which is thought to
modulate, for example, the downstream signalling
selectivity of G-protein coupled receptors, a major
drug-target class.81 Therefore, structural systems
biology is developing from the systematic integration
of structural data into biological networks (e.g.,
networks derived from experimentally identified
protein–protein interactions), which when inte-
grated with pharmacometric modelling approaches,

is leading to the emergence of ‘structural systems
pharmacology’. For example, antibacterial mecha-
nisms of compounds in Escherichia coli K12 have been
predicted using a structural-based algorithm to predict
antibacterial protein targets from a genome-scale
model of metabolism integrated with protein
structures (GEM-PRO) and expanded to incor-
porate multimeric metabolic enzyme structures.82

Although a comprehensive interactome-wide struc-
turally annotated resource does not yet exist,
recent breakthroughs in membrane protein crys-
tallography and the rapidly increasing number of
protein-protein, protein-ligand and protein-nucleic
acid three-dimensional complexes being deposited in
the Protein Data Bank (PDB) are advancing structural
systems pharmacology,83 with potential for advancing
our understanding of structure-based differential drug
response.

Pharmacometrics
The intrinsic quantitative properties of pharmacol-
ogy advocate that quantitative integration of fac-
tors associated with variable drug response is the
ideal. PK models predominate and can be subdivided
into three major types of increasing complexity: non-
compartmental, compartmental, and physiologically
based PK (PBPK) models (Figure 3).86 Briefly, non-
compartmental analysis is useful for determining over-
all drug exposure (i.e., AUC), using the trapezoidal
rule, and other PK parameters (e.g., Cmax, clearance,
etc.).84 Compartmental models are based on one or
more descriptive, nonphysical compartments, whereas
PBPK models include multiple biologically representa-
tive compartments; both are constructed using differ-
ential equations that describe rates of change in drug
between model constituents. Similarly, an increasingly
sophisticated range of PD models are emerging from
basic models to enhanced PD (ePD) and small PD sys-
tems models.86 Basic PD models include simple direct
effect models, based on the Hill equation, and indirect
response, signal transduction, and irreversible effect
models constructed from small numbers of differen-
tial equations; in contrast ePD/small PD systems mod-
els are composed from multiple differential equations.
PK models are frequently integrated with basic PD
models to generate mechanistic PK/PD models, and
theoretically PK models could be combined with ePD
and systems models to generate enhanced physiologic
and PK/PD systems pharmacology multiscale models,
although to the best of the authors’ knowledge such
steps have yet to be published. Traditional noncom-
partmental/compartmental PK and basic PD models
are ‘top–down’ models, tightly fitted to experimen-
tal data, seek parsimony and model parameters are

234 © 2015 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc. Volume 7, Ju ly/August 2015
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FIGURE 3 | Overview of the main pharmacokinetic modelling methods. (a) Noncompartmental analysis is the preferred method to determine
overall drug exposure (i.e., AUC), using the trapezoidal rule, and other pharmacokinetic parameters (e.g., Cmax, clearance, elimination half-life, etc.)
as it involves few assumptions.84 (b) Compartmental and (c) physiologically based pharmacokinetic models (PBPK) are constructed from
compartments that are interconnected using differential equations that describe drug flow between model constituents. Conventional compartmental
models are constructed from one or more compartments that are descriptive, rather than mechanistically representative; the final model is
parsimonious and compartments are only included if they noticeably improve the final model fit to the empirical data. PBPK models include multiple
compartments that represent actual physiology (i.e., organs and blood), incorporate data from more diverse sources, and if properly validated can be
used to make PK predictions and extrapolations for circumstances (e.g., different doses or routes of administration) beyond those used to construct
the model.85 (Reprinted with permission from Ref. 86; Copyright 2013.

expected to have strong statistical reliability. However,
the increasingly complex PBPK and PD models are
‘bottom up’ constructions less robustly data-driven,
utilize diverse data sources to assign parameters when
possible (including omics data), estimate parameters
when necessary and are principally used for simulation
and exploration.86

Population PK (POP PK) modelling is an
example of a rigorous data-driven PK modelling
approach, integral to model-based drug development
and can identify and confirm candidate factors associ-
ated with interindividual drug plasma concentration
variability. For example, a compartmental POP PK
model of human plasma simvastatin/simvastatin acid
levels was recently constructed from three studies and
three clinical factors plus seven SNPs in the genes
encoding the XTs OATP1B1, ABCG2 and OATP2B1,
the DMEs CYP3A4 and CYP3A5 and the NR
PPARA were identified as covariates that significantly
affect model parameters.25 rs4149056 (V174A) in
SLCO1B1 (encoding OATP1B1) is an established risk
factor for simvastatin-induced myopathy26; therefore

it will be interesting to determine whether, in addition
to rs4149056, the other identified pharmacogenomic
PK variants collectively modify the risk of this ADR.
However, like all human studies, the ability of POP
PK to detect factors is limited by their effect size,
prevalence, the sample size, and access to pharmaco-
logically relevant tissues (e.g., blood, gut, and liver).
Nevertheless, POP PK modelling with incorporation
of ADME pharmacogenomic variants is a useful
approach and can run alongside the development of
new drugs through integration of the early (rich PK)
and late (sparse PK) phase clinical trial data. However,
for drugs already in clinical practice, either interlinked
rich/sparse PK de novo studies or collaboration with
industry and genotyping of samples from old PK
studies are required, and these represent barriers to
the more general uptake of this methodology.

PBPK models are organ level systems models
and, although not a new concept, a rapid expan-
sion of PBPK utilization has occurred over the last
few years attributable to several reasons includ-
ing increased computing power and the greater

Volume 7, Ju ly/August 2015 © 2015 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc. 235
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connectivity between in vitro–in vivo extrapolation
(IVIVE) and PBPK modelling.87 The extrapolation
of in vivo intrinsic organ clearance from in vitro
systems, such as recombinantly expressed enzymes,
human liver microsomes or hepatocytes, using appro-
priate scaling factors, can facilitate the quantitative
modelling of human system factors such as geneti-
cally perturbed DME function.87 Although rigorously
data-driven models (e.g., POP PK) are more reliable,
PBPK-IVIVE simulations help rationally prioritize
the most appropriate factors for targeted empirical
investigation, predict PK profiles of patient groups
with altered physiology (e.g., infants and children86)
and provide a framework for construction of models
to integrate multiple factors associated with interindi-
vidual PK variability, enabling investigations into their
variously combined quantitative effects.87 Although
empirical knowledge of the interindividual variable
size of scaling factors is increasing, further investiga-
tions (e.g., quantitative proteomics) are required to
refine the scaling up of in vitro data into PBPK-IVIVE
models.87

PBPK(−IVIVE) modelling can be combined with
basic PD models to integrate the three potential
rate-limiting steps of PK, drug–target interaction
and turnover processes reflecting physiological home-
ostasis or disease mechanisms.86 For example, the
integration of in vitro kinetics data for rosuvas-
tatin and the XTs OATP1B1, OATP1B3, OATP2B1,
NTCP, and ABCG2, with clinical data and a modi-
fied indirect response model resulted in a whole-body
PBPK-IVIVE/PD model that innovatively used pre-
dicted hepatic unbound intracellular concentration of
rosuvastatin for the PD input, rather than total plasma
rosuvastatin concentration. Importantly, the known
association between large increases in rosuvastatin
plasma concentration in the presence of rs4149056,
the deleterious SNP in OATP1B1, and just minor
reductions in cholesterol lowering efficacy, could be
modelled.27

A greater understanding of molecular pathways
downstream of drug targets has led to the concept of
ePD models. For example, simulations using an ePD
model formed from 34 nonlinear ordinary differential
equations predicted the effect of EGFR inhibition
(e.g., by gefitinib) on tumour growth after adjusting
for the effects of DNA methylation status to the
RASAL1 promoter, a coding SNP in RKIP/PEBP
and altered miR-221 expression, which all differ-
entially perturb downstream EGFR signalling.88

Drug-induced inhibition of 80% of EGFR activ-
ity was assumed. Interestingly, although tumour size
response varied between simulated patients depending
on parameter combinations, it could be classed into

three main treatment outcome groups, illustrating the
potential for pharmacometrics to facilitate precision
medicine.88

Similarly, complex modelling of multiple molec-
ular interactions generated a quantitative multiscale
systems model of integrated calcium homeostasis and
bone remodelling. This model was extended using
RCT data on the antiresorptive agent denosumab
to facilitate the prediction of nonlinear longitudinal
changes in the clinical surrogate endpoint of lum-
bar spine bone mineral density during and follow-
ing discontinuation and reinstitution of denosumab.89

In general, although few such systems pharmacol-
ogy models yet exist, they should facilitate systematic
simulation-driven predictions of the effect of differ-
ing combinations of factors on drug response within
a systems context. Targeted empirical corroboration
may validate and iteratively refine models and provide
a route for translating model-derived predictions into
clinical drug stratification.

CONCLUSION

Although RCT evidence has unequivocally demon-
strated the overall clinical benefit of multiple marketed
drugs, interindividual variability in drug response
creates inequality in the benefit derived. For a con-
siderable proportion of patients, a given drug may
be clinically ineffective or harmful carrying dele-
terious repercussions for the patient’s health and
the efficient use of limited healthcare resources.
Pharmacogenomics continues to advance our under-
standing of the effects of genetic variation on drug
response, although the lack of consistency between
studies and inadequate predictive values is hampering
widespread clinical uptake. Notwithstanding the
necessity of continual methodological improvements,
the limited translational success of pharmacoge-
nomics may reflect its one-dimensional approach
to the complexities of the multiscale network-based
human body system and its interactions with drugs;
therefore it is probable that more complex answers
are required to adequately parse drug variability.
As well as enabling new target identification for
drug development, the interdisciplinary field of sys-
tems pharmacology holds significant potential for
identifying and characterizing the constituents of
variability and their interconnections in an integrated
systems context to provide a deeper understand-
ing of the mechanisms underlying interindividual
drug variability. Several barriers exist including,
the intelligent and easy integration of the rapidly
accruing Big Data that spans different biological
domains and databases, the complexities of multiscale
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modelling, the determination of optimal model detail
to sufficiently parse drug variability without being
cumbersome and universally acceptable evidential
standards to permit clinical translation from this novel

field. Nevertheless, systems pharmacology is rapidly
developing to meet these challenges and help realize
the goal of precision medicine, although much work
remains.
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