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Abstract

Background: As the cost of RNA-sequencing decreases, complex study designs, including paired, longitudinal, and
other correlated designs, become increasingly feasible. These studies often include multiple hypotheses and thus
multiple degree of freedom tests, or tests that evaluate multiple hypotheses jointly, are often useful for filtering the
gene list to a set of interesting features for further exploration while controlling the false discovery rate. Though there
are several methods which have been proposed for analyzing correlated RNA-sequencing data, there has been little
research evaluating and comparing the performance of multiple degree of freedom tests across methods.

Methods: We evaluated 11 different methods for modelling correlated RNA-sequencing data by performing a
simulation study to compare the false discovery rate, power, and model convergence rate across several hypothesis
tests and sample size scenarios. We also applied each method to a real longitudinal RNA-sequencing dataset.

Results: Linear mixed modelling using transformed data had the best false discovery rate control while maintaining
relatively high power. However, this method had high model non-convergence, particularly at small sample sizes. No
method had high power at the lowest sample size. We found a mix of conservative and anti-conservative behavior
across the other methods, which was influenced by the sample size and the hypothesis being evaluated. The patterns
observed in the simulation study were largely replicated in the analysis of a longitudinal study including data from
intensive care unit patients experiencing cardiogenic or septic shock.

Conclusions: Multiple degree of freedom testing is a valuable tool in longitudinal and other correlated
RNA-sequencing experiments. Of the methods that we investigated, linear mixed modelling had the best overall
combination of power and false discovery rate control. Other methods may also be appropriate in some scenarios.
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Background
RNA-sequencing (RNA-seq) technology has revolution-
ized how we study and understand the underlying patho-
biology of disease. Recently, declining sequencing costs
have allowed for more complex investigations, including
correlated and longitudinal study designs. In particular,
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longitudinal designs have become increasingly popular,
as they allow researchers to understand the dynamics of
gene expression across time and how these dynamics dif-
fer between groups of subjects. However, complex study
designs demand more sophisticated analysis methods.
As with single timepoint designs, careful pre-processing
of longitudinal RNA-seq data is still necessary prior to
analysis to remove artifacts produced during sequencing
[1, 2]. Following pre-processing, distributional and com-
putational considerations are necessary to model overdis-
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persed count data on 10,000-20,000 genes. Additionally,
analysis methods for longitudinal study designs must also
account for the correlation induced by repeated measures,
which is often achieved with random effects or modeling
of the error covariance structure. To be most applicable to
these complex study designs, analysis approaches should
allow for flexible modeling, including the ability to adjust
for potential confounders and subject demographics.
In longitudinal RNA-seq studies, researchers are often

interested in multiple hypotheses. For example, many
longitudinal RNA-seq studies include repeated measures
from each subject over time, with subjects coming from
multiple treatment groups. This allows for the investiga-
tion of between-subject comparisons, such as a test for
differences in gene expression between treatment groups
at a particular timepoint; within-subject comparisons,
such as a test for differences in gene expression across
two timepoints in a single treatment group; or inter-
action effects to compare changes over time between
groups. Furthermore, studies with more than two time-
points per subject might involve multiple comparisons
across different timepoints in order to characterize how
gene expression changes across time.
In the situation where there are multiple hypotheses to

be tested for each gene, the ability to perform an omnibus
test, or a test where multiple hypotheses are evaluated, is
valuable for controlling false discovery rates. For example,
in a study with multiple timepoints per subject in which
time is treated categorically, a researcher might wish to
compile a list of genes that change over time for fur-
ther investigation. In such a situation, one could perform
a series of hypothesis tests to identify the differentially
expressed genes (DEGs) between each pair of timepoints
and perform a multiple testing correction to each hypoth-
esis test individually to control the false discovery rate to
5%, for example. However, because each hypothesis test
may produce different false positive genes, when lists of
significant genes are aggregated across multiple hypothe-
ses, the percentage of false positives in the aggregated list
will be greater than 5% without additional adjustment [3].
Thus, performing an omnibus test for multiple hypothe-
ses is useful in false discovery rate control. These types
of tests are often referred to as multiple degree of free-
dom (DF) tests because the hypothesis for these tests
involve multiple degrees of freedom as opposed to the sin-
gle degree of freedom required for hypothesis testing of a
single covariate or effect.
Several different methods have been proposed for the

analysis of longitudinal RNA-seq data. Popular analysis
packages such as edgeR [4, 5] and DESeq2 [6] are often
appealing to researchers because they allow for flexible
modelling in a generalized linear modelling (GLM) frame-
work. However, these packages do not allow for random
effects or covariance structures to properly accommodate

correlated data. Despite this limitation, these packages
are sometimes used to analyze correlated data, either by
treating each subject/cluster as a fixed effect under a
regression framework, or by ignoring the correlation alto-
gether and treating correlated samples as independent.
It is well established that ignoring correlation can lead
to bias in standard error estimation which can influence
the results of statistical tests [7]. Alternatively, treating
each subject/cluster as a fixed effect may result in inflated
false positive rates due to over-fitting [8]. Additionally,
when coefficients for each subject/cluster are included
in the model, other subject-level effects, such as group
differences, are not estimable.
The limma [9] package, another popular analysis tool

for RNA-seq data, includes the capability to account
for correlation between related samples using a method
in which a common correlation value estimated across
all genes is incorporated into the model for each gene
[10]. However, this method assumes that the correlation
between samples is the same for all genes. This is a strong
assumption that may not be true in practice.
Recently, several methods have been proposed for lon-

gitudinal and other correlated RNA-seq studies. These
methods generally use random effects or covariance struc-
tures to account for the correlation in the data while also
considering the unique characteristics of RNA-seq data
such as overdispersion. Many methods developed for cor-
related RNA-seq data are limited by the fact that they
do not allow for multiple treatment groups or additional
covariates (e.g. PLNseq [11], multiDE [12]), can only be
used for paired data (e.g. baySeq [13, 14], PairedFB [15]),
or can only perform single DF tests (e.g. MCMSeq [16],
ShrinkBayes [17]).
Some researchers have proposed employing standard

statistical models typically used for longitudinal and cor-
related data outside of the context of RNA-seq data, as
these well-developed modeling frameworks allow for flex-
ible modeling and hypothesis testing [18–20]. In applying
these methods to RNA-seq data, considerations still must
be made to account for the non-normality of the data, for
example, by choosing a repeated measures model with an
underlying distribution for overdispersed counts.
Tsonaka & Spitali [20] investigated the use of nega-

tive binomial mixed models (NBMM) for RNA-seq data
using an adaptive Gaussian quadrature method to esti-
mate parameters and found that this method was rel-
atively unbiased and exhibited type 1 error (T1E) and
false discovery rate (FDR) control. Similarly, Zhang et al.
[21] used NBMM to analyze correlated microbiome data,
which are also overdispersed counts, but used an itera-
tive weighted least squares (pseudo-likelihood) approach
for parameter estimation. They demonstrated the utility
of the method through both simulation study and applica-
tion to mouse gut microbiome data. Rather than using the
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negative binomial distribution, Park et al. [19] investigated
the use of generalized estimating equation (GEE) models
using a Poisson distribution with an extra scale parameter
to account for overdispersion. They found that thesemod-
els identified more DEGs than edgeR, DESeq or limma,
though they did not explore whether this was driven by
high false positive rates.
Instead of directly modeling counts, another approach is

to normalize the data and then utilize models that assume
a normal distribution. The package rmRNAseq [18] uti-
lizes the voom normalization method on log-transformed
counts and then models the transformed data using a
linear model with a continuous auto-regressive struc-
ture to account for the correlation in the data. Vestal
et al. [16] tested a similar method by using a vari-
ance stabilizing transformation (VST) on raw RNA-seq
counts and then fitting linear mixed models (LMMs)
to the transformed data. They found that this method
performed similarly to their hierarchical Bayesian MCM-
Seq method in terms of T1E and FDR control, but
many models failed to converge in small sample size
situations.
All of the methods outlined above allow for multiple DF

hypothesis testing. However, there has been little research
evaluating and comparing the performance of multiple DF
tests across these methods. Some studies have evaluated
the use of multiple DF tests for a single method or in com-
parison to DESeq2 and edgeR, which do not account for
correlation, rather than methods that account for corre-
lation [18, 20]. Others have compared multiple correlated
data approaches but only for single DF hypothesis tests
[16]. As complex study designs become more common
in correlated RNA-seq designs, multiple DF hypothesis
testing is important for identifying interesting genes for
downstream analysis without increasing the FDR.
In this paper, we compare the performance of several

methods for analyzing correlated RNA-seq count data
with particular emphasis onmultiple DF test performance
within each method. First, we investigate model perfor-
mance through a simulation study. Each method is also
applied to RNA-seq data collected from septic shock and
cardiogenic shock patients over multiple timepoints fol-
lowing admission to the intensive care unit (ICU). Finally,
we provide recommendations as to which models are
most appropriate under various circumstances.

Methods
Analysis methods compared
We comparedmethods which have been proposed for cor-
related RNA-seq experiments and that allow for multiple
treatment groups, covariates and/or timepoints, and can
be used to perform multiple DF tests. We describe the
selected methods below. Additional information on each
method is available in Supplementary Materials Section 1.

Standard RNA-seq analysis tools
Standard RNA-seq analysis tools generally use a linear
modelling framework with transformed data, or a general-
ized linear model (GLM) framework, assuming a negative
binomial distribution. In studies with correlated designs,
these methods can be implemented with the caveat that
the model assumptions, such as the independence of
observations, will not be met, or adjustments can be made
to attempt to account for the correlation of the data. In
this study, we tested three of the methods from the most
popular RNA-seq analysis packages: limma, edgeR, and
DESeq2.
The R package limma was originally created for the

analysis of microarray expression data, which are approx-
imately normally distributed [9]. limma employs lin-
ear models to test for differential expression using an
empirical Bayes approach to share information across
genes. This methodology has been extended to RNA-seq
data by applying the “voom” transformation to RNA-seq
counts [22, 23]. First, RNA-seq counts are normalized
using the log counts per million (log-CPM) transfor-
mation. A mean-variance relationship is then estimated,
and from this relationship, a predicted variance is cal-
culated for each log-CPM value, which is then incor-
porated into a linear model as an inverse weight. The
duplicateCorrelation function within the package
can be used to estimate correlation values for each subject
which are then incorporated in the linearmodel. However,
only one correlation is computed for all genes.
The edgeR and DESeq2 packages both employ a neg-

ative binomial GLM framework to address overdisper-
sion [4–6]. Both methods use empirical Bayes procedures
to estimate variability, effectively borrowing information
across genes to inform the estimation. Both methods also
include offset terms in their models to account for differ-
ences in library size between samples, though edgeR uses
the trimmed mean of M-values (TMM) method [4], while
DESeq2 uses the median ratio method [24]. These pack-
ages do not include methods to account for correlation
between samples.

Generalized estimating equations
Generalized estimating equations (GEE) are a semi-
parametric extension of GLM that can account for cor-
relation between observations [25]. This method uses a
working correlation structure to model the association
between measurements within a subject. The covariance
matrix of the estimated regression coefficients is typi-
cally estimated using robust (sandwich) estimators so that
the estimates are robust to misspecification of the work-
ing correlation structure. In this analysis, we modelled
the data using a Poisson distribution with an extra scale
parameter in the variance to account for overdispersion,
and an exchangeable working correlation structure.
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One drawback to GEE models is that sandwich esti-
mators have poor performance at small sample sizes. To
address this issue, we used the small sample size adjust-
ment proposed by Wang and Long [26], which utilizes
information from all subjects to calculate the covariance
for each individual subject and also uses an additional
adjustment to correct for bias.

Negative binomial mixedmodels
Generalized linear mixed models (GLMM) are an exten-
sion of GLMs that use random effects to account for cor-
relation. Similar to the methods implemented in edgeR
and DESeq2, in using the GLMM framework, the gene
expression for each gene can be modeled using a negative
binomial distribution, which accounts for the overdisper-
sion.
When using negative binomial mixed modelling

(NBMM), parameter estimation can be analytically
complex and there are multiple approaches that can
be used. We consider two maximum likelihood esti-
mation approaches, Laplace (NBMM-LP) and adaptive
Gaussian quadrature (NBMM-AGQ) as well as the
pseudolikelihood approach (NBMM-PL).

rmRNAseq and linearmixedmodels
The rmRNAseq package employs a method similar to the
limma+voom method in which the data are first trans-
formed using the voom approach and then a linear model
is fit for each gene using the transformed data. How-
ever, within the rmRNAseq framework, models are fit
using a continuous autoregressive correlation structure to
account for correlation in the data.
A similar approach is to use linear mixed modelling

(LMM) with random effects to account for correlated
data after applying a normalizing transformation. We test
this approach using a variance stabilizing transformation
(VST), as demonstrated in Vestal et al. [16].

Implementation
We implemented each method using R (version 4.0.2).
All analysis was carried out on a Linux high perfor-
mance computing (HPC) cluster and parallel processing
with 8 cores was used for all methods besides limma,
DESeq2, and edgeR. Table 1 contains the specific pack-
ages used for each method and implementation details.
Where possible, we used previously implemented R pack-
ages. In some cases, available R packages were missing
important functionality, such as the capacity to account
for offsets (geesvm for GEE small sample estimators).
In these cases, custom R functions were built using the
source code from the previously implemented R pack-
ages as a framework. Functions for implementing and
summarizing results for methods in which no wrap-
per/summarization functions were available can be found

in the corrRNASeq package, which is available at https://
github.com/ewynn610/corrRNASeq.
Offsets to adjust for differences in library size were

included in models for all except three methods (Table 1).
The transformations used in limma, rmRNAseq and the
LMMmethod accounted for differences in library size, so
no additional adjustment was used.
The models using the edgeR and DESeq2 packages

were fit in two ways. First, correlation was ignored and
a model was fit with an intercept, time and group main
effects, and an interaction term. Second, a fixed effect for
subject was included in the model (edgeR∗ and DESeq2∗).
When including this extra fixed effect, the group termwas
not included in the model as it is inestimable.
Models were designated as non-converged if a maxi-

mum number of iterations were run without convergence
during model fitting, models were found to be singular,
or other errors prevented the model from fitting properly.
All models that did not converge were discarded before
further analysis.

Hypothesis testing
The packages used to implement each method in this
analysis utilize different types of multiple DF tests. Table 1
shows the class of tests used for each method.
We used likelihood ratio tests (LRT) for the edgeR,

DESeq2, NBMM-LP and NBMM-AGQ analyses. For all of
these methods excluding edgeR, this required fitting two
models for each test, a full model as well as a reduced
model. The GLMMadaptive package used for fitting
NBMM-LP models offers the option of using a multivari-
ate Wald test instead of an LRT test. However Tsonaka &
Spitali [20] found that in the context of correlated RNA-
seq data, using LRTs resulted in lower T1E rate and FDR
and thus we chose to use LRTs rather than multivari-
ate Wald tests for these models. Additionally, Tsonaka &
Spitali [20] proposed a bootstrap procedure for calculat-
ing p-values, particularly in small sample size situations.
However, in running the example code provided with their
publication, we found that it took about 2 hours to fit
models and perform hypothesis testing for 10 genes with
1,000 bootstrap samples each. Because RNA-seq studies
typically include 10,000-20,000 genes, this bootstrapping
approach is likely not computationally feasible for most
studies and we did not include it in our analysis.
Hypothesis testing for GEE was done using a Wald

χ2 test as implemented by the esticon function in
the doBy package [32]. F-tests were used for LMM and
NBMM-PL and the Satterthwaite method was used to
calculate denominator degrees of freedom [33, 34]. The
limma and rmRNAseq packages both utilize the mod-
erated F-statistic outlined by Smyth [35] for hypothesis
testing. Under the limma framework, p-values are com-
puted using an F-test with augmented degrees of freedom.

https://github.com/ewynn610/corrRNASeq
https://github.com/ewynn610/corrRNASeq
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Table 1 Analysis methods with their associated R packages and details concerning their implementation

Method R-Package(s) Multiple DF Test Library Adjustment Offset Details

DESeq2 DESeq2 [6] LRT DESeq2 size factors Default settings used, correlation ignored.

DESeq2∗ DESeq2 [6] LRT DESeq2 size factors Default settings used, subjects treated as
fixed effects to account for correlation.

edgeR edgeR [4] LRT TMM offset Default settings used, correlation ignored.

edgeR∗ edgeR [4] LRT TMM offset Default settings used, subjects treated as
fixed effects to account for correlation.

limma limma [9, 23] Moderated F-test NA Count data transformed using the voom
function. The duplicateCorrelation
function was used with subject id as a
blocking factor to account for correlation.

GEE Custom R Functions,
geepack [27]

Wald χ2 Test DESeq2 size factors Models fit using exchangeable working
correlation structure. For small sample
estimators, custom functions were created
by modifying code from the geesmv
package [28] to make it compatible with
geepack and enable the use of offsets.

LMM lmerTest [29] F-test NA Data transformed using the variance
stabilizing transformation from the DESeq2
package.

NBMM-AGQ GLMMadaptive [30] LRT DESeq2 size factors Model fit using the mixed_model
function with a negative binomial
distribution. Default settings used for all
other parameters.

NBMM-LP glmmADMB [31] LRT DESeq2 size factors Model fit using the glmmadmb function
with a negative binomial distribution.
Default settings used for all other
parameters.

NBMM-PL Custom R Function LRT DESeq2 size factors Custom function was created drawing from
the glmm.nb function in the NBZIMM
package [21] . Function was created to be
compatible with the lmerTest package
[29] in order for Satterthwaite degrees of
freedom to be calculated.

rmRNAseq rmRNAseq [18] Moderated
F-statistic with
bootstrapped
p-values

NA Model fit using the TC_CAR1 function with
the default parameters.

The rmRNASeq package calculates p-values by building a
distribution of null test statistics from data generated by a
parametric bootstrap procedure and then computing the
proportion of null statistics greater than or equal to the
observed F-statistic.

Simulation
Data generation
In order to evaluate and compare the testing characteris-
tics of the previously described methods, we performed a
simulation study. We used a two group design (e.g. treat-
ment and control) with four observations per subject.
A negative binomial distribution was used to simulate a
matrix of counts Y. Let Ygij be the expression level of gene
g for the ith subject and jth observation, with E(Ygij) =
μgij. Further, let αg be a dispersion parameter for gene g
with Var(Ygij) = μgij + αgμ

2
gij. Then

Ygij ∼ NB(μgij ,αg ) (1)

log(μgij) = βg0 + βg1X1i + βg2X2ij + βg3X3ij + βg4X4ij (2)

+βg5X1iX2ij + βg6X1iX3ij + βg7X1iX4ij + bgi
bgi ∼ N (0, σ 2

g ) (3)

where X1i is an indicator variable signifying whether the
ith subject is in the treatment group or not, and X2ij,
X3ij and X4ij are indicator variables representing whether
observation j was taken at the 2nd, 3rd, or 4th time-
point respectively. Each βgk , k ∈ 0, ..., 7 is a fixed effect
regression coefficient specific to gene g. Finally, bgi is the
random intercept for gene g and subject i which is nor-
mally distributed with a mean of 0 and a variance of
σ 2
g .
Table 2 shows a summary of the simulation settings and

multiple DF tests performed.We simulated 10 datasets for
each simulation scenario. For each dataset we simulated
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15,000 genes and then genes were filtered out if N sam-
ples had less than 1 count per million (CPM), where N
was equal to the number of samples collected for a single
group and timepoint. We simulated datasets to contain a
mix of null and differentially expressed genes by changing
the interaction coefficients for 20% of genes. In order to
mimic real data, βg0, αg and σ 2

g , were drawn from an empir-
ical distribution for triplets of mean CPM, dispersion,
and random intercept variance observed across human
samples in several real RNA-seq data sets with repeated
measures [36, 37]. The fixed effect intercept parameter, βg0
was derived by scaling the randomly drawn CPM values
to add up to one million and then multiplying each scaled
value by a total library size of 25 million. Then, βg0 was set
to the log of this value.

Simulation analysis
We analyzed simulated data using each method as
described in the implementation section. Models for each
gene were fit using fixed effects for group and time vari-
ables, which were both treated as categorical, as well as the
interaction between group and time. A random intercept

for each subject was included in models for methods in
which random effects are possible. After the models were
fit, the percentage of models that successfully converged
for each method was calculated, and non-converged mod-
els were removed. Then the false discovery rate (FDR) and
power were calculated for four different multiple DF tests:
a between-subject test, a within-subject test, an interac-
tion test, and a global test (Table 2). Power and FDR were
calculated using Benjamini Hochberg adjusted p-values
[38] and a significance threshold of 0.05 was used. For
each simulation scenario, we averaged the statistics across
10 simulated datasets.

Real data analysis
We applied the analysis methods previously outlined to
a publicly available, longitudinal RNA-seq dataset of 96
whole blood samples from 32 patients experiencing cir-
culatory shock who were admitted into the ICU (GEO
Dataset: GSE131411). For each patient, three blood sam-
ples were collected: one within 16 hours after ICU admis-
sion, one 48 hours after admission, and one seven days
after admission or at discharge. Subjects were categorized

Table 2 Summary of simulated datasets

Number of datasets 10

Number of genes per dataset ∼ 15,000

Sample sizes 3, 5, and 10 per group

Number of observation per subject 4

Model Parameters

βg1: Difference in log(expression) between treatment
and control at baseline

0 (all genes)

βg2,βg3,βg4: Change in log(expression) over time in
the control group

0 (all genes)

βg5,βg6,βg7: Difference in change in log(expression)
over time between the treatment and control groups

0 (80% of genes), βg5 = ±1/3, βg6 = ±2/3,
βg7 = ±1 (20% of genes)

βg0, αg , σ 2
gb Drawn from an empirical distribution based on

human samples in real RNA-seq data sets with
repeated measures [36, 37]

Significance tests

Between-subject Are there differences in expression between the
treatment and control at any of the time points?
H0 : βg1 = βg1 + βg5 = βg1 + βg6 = βg1 + βg7 = 0

Within-subject Is there a change in gene expression between any
timepoints for the treatment group?
H0 : βg2 + βg5 = βg3 + βg6 = βg4 + βg7 =
(βg2 + βg5) − (βg3 + βg6) =
(βg2 + βg5) − (βg4 + βg7) =
(βg3 + βg6) − (βg4 + βg7) = 0

Interaction Are there any significant interaction effects?
βg5 = βg6 = βg7 = 0

Global Are there any significant model coefficients?
H0 : βg1 = βg2 = βg3 = βg4 = βg5 = βg6 = βg7 = 0
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by whether they experienced septic shock (SS, N = 21) or
cardiogenic shock (CS, N = 11). Further information on
the study design and methods is available in Braga et al.
[39].

Data pre-processing andmodel information
We downloaded the count table and study meta data
from the GEODataSets website. The data included 58,096
genes. We filtered out lowly expressed genes by removing
genes that did not have greater than 1 CPM in at least 11
of the 96 samples (11 was the sample size in the smallest
experimental group of interest), which reduced the total
number of genes analyzed to 14,340.
The goal of our analysis was to investigate how the gene

expression of shock patients changed over time and how
these changes differed between patients with SS versus
CS. To accomplish this, for each method we fit a model
with fixed effects for the type of shock and timepoint
(treated categorically) as well as the interaction between
the two variables. A random intercept for each subject
was included in models for methods in which random
effects are possible. All models were fit as described in
the implementation section. As with the simulation study,
the percentage of models that failed to converge for each
method was calculated and non-converged models were
removed.
For each model, we ran four different multiple DF

hypothesis tests: a between-subject test to assess if there
was a difference in gene expression between the SS and
CS groups at any timepoint, two within-subject tests to
assess if there was a change in gene expression over time
in the SS group or the CS group, and a test to assess if any
of the interaction coefficients were significant. The Ben-
jamini Hochberg method was used to adjust p-values for
multiple comparisons and the DEGs for each method and
test were identified using a 0.05 FDR threshold.

Hierarchical clustering and functional enrichment analysis
Because LMM exhibited comparatively good behavior in
the simulation study, we used the results from this method
to explore the patterns in the changes in gene expres-
sion over time in the SS and CS groups. All analysis was
done for each group separately. First, we subset the data to
include only genes that were significant in the multiple DF
test for difference in gene expression at any timepoint in
the SS group or CS group. For these genes, we computed
the predicted gene expression (log scale) for each gene at
each of the three timepoints for the group in question.
We then constructed heatmaps for these genes, with genes
clustered hierarchically using a correlation distance met-
ric and a complete linkage clustering method. We visually
inspected the heatmaps to decide where to cut each clus-
tering tree to identify clusters that represented distinct
profiles of change over time.

After clustering, we ran functional enrichment analy-
sis on the genes in each cluster to better understand the
functional role of genes with different expression profiles
over time. Analysis was executed using the topGO package
in R [40] using biological process biological process gene
ontology (GO) annotations. The significance of the GO
terms was assessed using a Fisher’s exact test with an FDR
level of 0.05 as the threshold for significance. We further
filtered the results to include only GO terms with at least
10 genes and >10% overlap of the genes associated with
each GO term and the genes in the cluster.

Results
Simulation results
Convergence
Of the 11 methods evaluated, only 3 methods (NBMM-
LP, NBMM-PL, and LMM) had average non-convergence
rates above 0.1% for any of the sample sizes tested. Figure 1
shows the average percentage of models which did not
converge across sample sizes for these methods. Because
we used LRTs for NBMM-LP, for every gene a reduced
model was fit for each of the four hypothesis tests. In
some cases the full model converged but one or more of
the reduced models failed to converge and thus the p-
value for the corresponding hypothesis tests could not be
calculated. The transparent portion of the bars in Fig. 1
represent cases in which the full model converged but one
or more of the reduced models failed to converge.
NBMM-LP had the highest non-convergence rates at

all sample sizes, even when only considering cases in
which only the full model did not converge. At N = 3
per group, about 21% of the full models did not con-
verge and the reduced model(s) for an additional 10%
of genes did not converge. Comparatively, at N = 3 per
group around 16% and 15% of models did not converge for
NBMM-PL and LMM respectively. For all three methods,
non-convergence rates decreased with increasing sample
size, though the magnitude of the decrease was larger for
NBMM-PL and LMM than for NBMM-LP. At N = 10 per
group, NBMM-PL and LMM both had non-convergence
rates around 4% while NBMM-LP had a non-convergence
rate of 11% with at least one reduced model failing to
converge for an additional 15% of genes.
For all three methods and at all sample sizes, at least

90% of convergence failures were due to model singu-
larities, with remaining non-converged models reaching
model iteration limits or experiencing other errors which
prevented the model from fitting properly. On average,
the random intercept variance used to simulate the data
was lower for genes that did not converge while the
dispersion was generally higher (Supplementary Fig. 1).
These results indicate that in some cases, model con-
vergence issues may be due in part to low between-
subject variation or high dispersion. However, there was
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Fig. 1 Percentage of non-converged models from selected methods. Methods in which less than 1% of models failed to converge are not included
in the figure. For NBMM-LP, which uses a likelihood ratio test, the solid portion of the bar represents the proportion of models in which the full
model did not converge and the transparent portion represents genes for which the reduced model for one or more tests failed to converge in
which case results for those tests could not be obtained

substantial overlap in the random intercept and disper-
sion distributions between genes that did and did not
converge, and many genes with high random intercept
variance and low dispersion still failed to converge. In
addition, the proportion of non-converged genes gen-
erally decreased only slightly (0.75%-1%) when using a
higher expression filtering threshold of 5 CPM instead of
1 CPM, indicating that small expression values are also
not completely responsible for model non-convergence
(Supplementary Table 1).

Hypothesis testing
Figure 2 shows the relationship between FDR and power
across different sample sizes for the four multiple DF tests
of interest using a 0.05 FDR level. More detailed results
are available in Supplementary Tables 2-4. The FDR for
GEE, NBMM-AGQ, and NBMM-LP was higher than the
nominal 0.05 level across all sample sizes for all tests.
Other methods showed a mix of conservative and anti-
conservative behavior. Across all tests, limma had an FDR
close to the nominal rate for the smallest sample size (N =
3 per group), but the FDR was increasingly inflated for
the larger sample sizes. Conversely, DESeq2* and edgeR*
had an inflated FDR at N = 3 and N = 5 per group, but
at N = 10 per group the rate was close to the nominal
value. DESeq2 and edgeR (ignoring correlation) both had
conservative FDR for the interaction and within-subject
test, but showed inflated rates for the between-subject
test and test for any significant coefficient. Across all of
the tests, LMMwas slightly conservative while NBMM-PL

was slightly inflated except for the between-subject test,
in which it was conservative. Finally, rmRNASeq had very
conservative FDR values across all tests. For the majority
of methods and tests, FDR approached the nominal rate
(dashed line) and had increasing power with increasing
sample size.
Of the methods that had FDR values which were con-

servative or close to the nominal rate across all sample
sizes and conditions, LMM and NBMM-PL generally had
the highest power. rmRNASeq, which showed conserva-
tive FDR values, had low power, particularly at the smaller
sample sizes. For the within-subject test and the test for
significant interaction effects in which edgeR and DESeq2
(ignoring correlation) exhibited conservative FDR values,
both methods were less powered than LMM and NBMM-
PL at all sample sizes. DESeq2* and edgeR*, which had
close to nominal FDR values at N = 10 per group, showed
similar power to LMM and NBMM-PL at this sample
size. Similarly, limma, which had close to nominal FDR
at N = 3 per group, had comparable power to LMM and
NBMM-PL for most tests at this sample size and had
more power than either method for the between-subject
test.
At the smallest sample size, N = 3 per group, no method

that had conservative or close to nominal FDR had high
power. For the within-subject test, LMM, NBMM-PL and
limma had power values near 60% at N = 3 per group, but
no other tests showed power values this high for methods
without severely inflated FDR. The power values at N = 5
and N = 10 per group were much stronger with LMM and
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Fig. 2 FDR versus power across different sample sizes for four tests of interest. FDR and power were calculated using a 0.05 FDR significance level
and were averaged across 10 simulations for each method and sample size. Points that lie to the left of the dashed vertical line represent methods
that have an observed FDR less than the nominal rate of 5%, while points to the right represent methods with FDR inflation. Points located in the
bottom left-hand corner with an FDR and power of 0 represent instances in which no genes were found significant. A log scale is used on the x-axis
to better differentiate between methods with close to nominal FDR

NBMM-PL having power values near or above 80% for all
tests at N = 10 per group.
The distributions of the raw p-values from the null

features in each simulated dataset are shown for
each combination of method, test, and sample size in
Supplementary Figs. 2-4. In general, we would expect
these distributions to look fairly uniform. However,
only LMM displays this behavior consistently. Some
other methods, like NBMM-PL, limma at the smaller
sample sizes, and DESeq2* and edgeR* at the larger
sample sizes, are not too far off. Conversely, DESeq2,
edgeR, GEE, and rmRNAseq show substantial skew.
This suggests that the assumed distributions for
the test statistics used in these methods is incor-
rect, and thus inference from these methods is likely
compromised [41].

Real data results
Run time
Table 3 shows the run time for each of the methods. The
time to fit the full model and the total time (model fitting
and hypothesis testing) are both shown for all methods

except rmRNAseq, for which the model fitting and testing
are carried out within one function and thus the run times
cannot be uncoupled. NBMM-AGQ, NBMM-LP and both
DESeq2 methods use an LRT which requires a full and
reduced model to be fit for each hypothesis test, so for
these methods hypothesis testing took a relatively large
amount of time compared to the time to fit the full model.
NBMM-LP had the longest total run time by far, taking
over 24 hours to complete. The second highest run time
was for rmRNAseq which took around 7 hours. Aside
from these two methods, NBMM-AGQ (102 minutes),
and NBMM-PL (65 minutes), all other methods ran in less
than 30 minutes.

Model convergence
NBMM-LP had the largest percentage of non-converged
models with 4.33% of the full model fits not converging
(Table 3). An additional 9.07% of models did not converge
for one or more reduced models used for LRTs, making
the corresponding hypothesis test(s) incomputable. The
non-convergence rate for the rest of the methods was
less than 1%. This differed from the simulation results in
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which NBMM-PL and LMM had a non-convergence rate
of around 4% at the largest sample size. The percentage of
non-convergence for NBMM-LP was also smaller than for
the largest sample size simulation scenario. This discrep-
ancy is likely due in part to the large number of subjects in
the shock dataset (32 total subjects; SS group: 21 subjects,
CS group: 11 subjects). The largest sample size in the sim-
ulation scenarios only had 20 total subjects (10 per group,
2 groups).
In order to assess the effect of sample size in our real

dataset, we sampled 10 subjects from both the SS and
CS groups and reran the analysis on this reduced dataset.
The non-convergence rates for NBMM-PL and LMM
increased to around 1% for both methods (Table 4). Sur-
prisingly, the non-convergence rate for the NBMM-LP
models changed very little even after reducing the number
of subjects.

Number of DEGs
Table 3 shows the number of DEGs identified by each
method for various hypothesis tests using a 0.05 sig-
nificance threshold for Benjamini Hochberg adjusted p-
values. Though there was a range in the number of
DEGs found across the different methods and tests, every
method found the most DEGs for the test for the differ-
ence across time in the SS group. This is perhaps due
in part to the fact that the SS group has more subjects
than the CS group (N = 21 vs. N = 11). However, in the
analysis of the reduced dataset in which each group was
filtered to ten random subjects, this test still had the most
DEGs across methods, while the test for differences across
time in the CS group had the least amount of DEGs. This
may indicate that the changes in gene expression over the
course of treatment are more prevalent in SS patients than
CS patients.
The differences in the number of DEGs for each method

was generally what would be expected based on the results
of the simulation study. NBMM-AGQ showed relatively
inflated FDR values in the simulation study, and in this
analysis this method found more DEGs than most other
methods, particularly for the within-subject and interac-
tion tests. DESeq2 and edgeR (ignoring correlation) had
high DEG counts for the between-subject test and low
DEG counts for the within-subject and interaction tests,
which is also in line with the simulation results. limma
also showed a mix of conservative and anti-conservative
behavior in terms of the number of DEGs for each
test. Finally, DESeq2*,edgeR*, NBMM-PL, NBMM-LP and
LMM all had relatively moderate numbers of DEGs across
all tests, with DESeq2*, edgeR*, NBMM-LP and NBMM-
PL generally finding slightly more DEGs than LMM. This
also corresponds to the simulation results in which in the
largest sample size scenario (N = 10 per group) all three
methods exhibited FDR values close to the nominal rate

with LMM showing conservative rates compared to the
other three methods.
There were some discrepancies between this analysis

and the simulation study. These discrepancies appear to
be partially due to the difference in the number of sub-
jects in the real data and the simulations and may point
to the continuation of patterns related to sample size that
were observed in the simulation study. For example, rmR-
NAseq displayed conservative FDR values and low power
in the simulation study, though the power for the method
increased with increasing numbers of subjects. In this
analysis, the number of DEGs for rmRNAseq was com-
parable to other, less conservative methods, particularly
for the between-subject test and the within-subject test
for differences across time in the SS group. However, in
the analysis of the reduced dataset, rmRNAseq found less
DEGs than the majority of other methods (Table 4). Simi-
larly, GEE generally had themost inflated FDR and highest
power in the simulation study with FDR decreasing as the
number of subjects increased. In this analysis the number
of DEGs was moderate compared to the other methods,
while in the analysis on the reduced data, GEE had more
DEGs than most other methods, though NBMM-AGQ
still found more DEGs for all tests except the between-
subject test.

Hierarchical clustering and functional enrichment analysis
results
For brevity, we will focus on results from our post-hoc
analysis of genes with significant differential expression
between at least two timepoints in the CS group. Sim-
ilar results for the SS group can be found in Supple-
mentary Fig. 5 and Supplementary Table 5. Using the
LMM method, there were 1,003 genes that were sig-
nificant for the test for differential expression between
any two timepoints in the CS group. Figure 3 shows a
heatmap of predicted expression (row scaled) for these
genes along with the hierarchical clustering. Based on a
visual inspection of the heatmap, a cutpoint was chosen
such that the genes were split into seven clusters repre-
senting seven different patterns of change over time. For
example, cluster 3 was the largest cluster with 328 genes.
The expression of genes in this cluster stayed somewhat
steady across the first two timepoints, but then steeply
dropped between the second and third timepoint. Clus-
ter 5 (309 genes) and cluster 2 (228 genes) were also
relatively large. The genes in cluster 5 had expression
levels that remained relatively unchanged between the
first two timepoints, but then steeply climbed between
the final two timepoints; cluster 2 contained genes that
dropped in expression somewhat linearly across the three
timepoints.
For three clusters (cluster 3, cluster 5, and cluster 6)

at least one GO term was significantly enriched. Table 5
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Fig. 3 Heatmap of predicted gene expression (row scaled) across the three study timepoints for genes that were significant in a test for differential
expression between any two timepoints in the CS group. Predicted values and significance results came from the LMM analysis. Genes are clustered
using a correlation distance metric and complete linkage clustering methods and are split into seven clusters indicated by the color bars along the
rows

shows an abbreviated list of the significant terms. For clus-
ter 3, several significantly enriched terms were related to
an innate immune response including terms related to
inflammation as well as neutrophil migration. For cluster
5, the GO terms were related to complement activation
and phagocytosis. There were also terms related to adap-
tive immunity such as immunoglobulin production and
positive regulation B-cell activation. Because genes from
cluster 3 are relatively highly expressed at timepoints 1
and 2, but have lower expression at time 3, while cluster
5 shows the opposite behavior, these results may point to
a heightened innate immune system response early in the
ICU stay of CS patients, with a delayed adaptive immune
response. Similar to cluster 5, genes in cluster 6 were
involved in complement activation and phagocytosis. This
cluster has a similar pattern across time to that of cluster
5, but genes in this category drop in expression between
timepoints 1 and 2 before showing heightened expression
at time 3.

Discussion
In RNA-seq studies with longitudinal and other corre-
lated designs, researchers are often interested in multiple
hypotheses. Multiple DF tests allow researchers to assess
multiple hypotheses at once, which is a useful method
for selecting lists of genes for further exploration and
can also be valuable in FDR control. Recently, several
researchers have developed and compared analysis meth-

ods for analyzing longitudinal RNA-seq data. However,
there has been little research evaluating and compar-
ing these methods in the context of multiple DF test-
ing. Understanding the comparative performance of vari-
ous multiple DF hypothesis testing methods is becoming
increasingly important as complex study designs become
more common in correlated RNA-seq designs.
Of the methods compared in this study, LMM using

data transformed using VST generally exhibited FDR clos-
est to the nominal rate across the different sample sizes
and multiple DF tests. NBMM-PL generally resulted in
FDR values close to nominal as well, though slightly more
inflated than LMM. GEE, NBMM-AGQ, and NBMM-
LP had high FDR values across all simulation scenarios.
DESeq2* and edgeR* had inflated FDR values at small
sample sizes, but were relatively close to the nominal value
for the highest sample size (N = 10 per group). Conversely,
limma had optimal FDR values at the smallest sample size,
but these increased for the larger sample sizes. DESeq2
and edgeR (ignoring correlation) showed a mix of con-
servative and anti-conservative behavior. rmRNAseq had
conservative FDR values, but was also extremely under-
powered, particularly at the lower sample sizes. LMM and
NBMM-PL generally had the highest power of the meth-
ods that had FDR values which were conservative or close
to the nominal rate across all sample sizes and conditions.
Unsurprisingly, for the majority of methods, FDR val-

ues approached nominal rates and power increased as
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Table 5 Functional enrichment analysis results. The 25 GO terms with the smallest Benjamini Hochberg (BH) adjusted p-values were
selected for each cluster. The lists were then reduced to include only the most specific subclass for each ontology. All GO terms had a
BH adjusted p-value <0.01

GO Term Description # Genes in Set # Genes in Cluster # Expected Fold Enrichment

Cluster 3

GO:0002523 leukocyte migration involved in
inflammatory response

12 6 0.30 20.00

GO:0050729 positive regulation of inflammatory
response

86 13 2.15 6.05

GO:0051092 positive regulation of NF-kappaB
transcription factor activity

136 16 3.40 4.71

GO:1990266 neutrophil migration 79 12 1.98 6.06

GO:0002755 MyD88-dependent toll-like recep-
tor signaling pathway

33 7 0.83 8.43

GO:0045623 negative regulation of T-helper cell
differentiation

14 5 0.35 14.29

GO:0060142 regulation of syncytium formation
by plasma membrane fusion

14 5 0.35 14.29

GO:0071260 cellular response to mechanical
stimulus

61 9 1.53 5.88

GO:0060396 growth hormone receptor signal-
ing pathway

16 5 0.40 12.50

GO:0032651 regulation of interleukin-1 beta pro-
duction

68 9 1.70 5.29

GO:0032695 negative regulation of interleukin-
12 production

17 5 0.43 11.63

GO:0071354 cellular response to interleukin-6 28 6 0.70 8.57

Cluster 5

GO:0006958 complement activation, classical
pathway

83 40 2.11 18.96

GO:0030449 regulation of complement activa-
tion

71 29 1.80 16.11

GO:0002377 immunoglobulin production 128 34 3.25 10.46

GO:0038096 Fc-gamma receptor signaling path-
way involved in phagocytosis

117 29 2.97 9.76

GO:0006910 phagocytosis, recognition 54 21 1.37 15.33

GO:0050871 positive regulation of B cell activa-
tion

111 25 2.82 8.87

Cluster 6

GO:0006910 phagocytosis, recognition 54 9 0.22 40.91

GO:0006958 complement activation, classical
pathway

83 9 0.34 26.47

GO:0006911 phagocytosis, engulfment 87 9 0.35 25.71

GO:0016584 nucleosome positioning 11 4 0.04 100.00

GO:0030261 chromosome condensation 35 5 0.14 35.71

GO:0045910 negative regulation of DNA recom-
bination

37 4 0.15 26.67

the sample size increased. We chose to use three small
sample size scenarios in our simulation study because
researchers often do not have the resources for large-scale
studies, particularly in longitudinal studies where multi-
ple samples are collected for each subject. However, we

also analyzed data from a study involving shock patients
and this study had 11 and 21 subjects in its two groups. In
this analysis, methods such as GEE showed similar num-
bers of DEGs as LMM.Whenwe reduced the dataset to 10
subjects per group, the difference in the number of DEGs
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for LMM compared to methods like GEE was wider. This
implies that the FDR for methods that performed poorly,
particularly at low sample sizes, may converge to that of
LMM as the sample size increases past N = 10 per group.
Another problem that occurred at low sample sizes

was model non-convergence for LMM, NBMM-LP
and NBMM-PL. Though LMM had the lowest non-
convergence rate of these three methods, around 15% of
models did not converge for this method at N = 3 per
group. We identified low between-subject variance, high
dispersion, and small gene expression values as potential
causes of non-convergence, though these data characteris-
tics were not universal in non-converged models. Because
LMM had otherwise good performance, future research
regarding the cause of the high non-convergence rates
and alternative ways of fitting singular and other non-
converged models would be valuable. In small sample size
cases in which many models do not converge, limma may
be a good alternative because it demonstrated near nom-
inal FDR at small sample sizes. However, no method was
highly powered at the smallest sample size; choosing a
sample size of at least 5 subjects per group is preferable.
One limitation of this study is that we only simu-

lated data from one relatively simple correlation structure.
This choice may have particularly affected the rmRNAseq
simulation results since rmRNAseq utilizes a continu-
ous autoregressive correlation structure and we simulated
using a single random effect (equivalent to a compound
symmetric structure). In analysis of the shock dataset,
which may have a correlation structure that is not strictly
compound symmetric, rmRNAseq did behave more sim-
ilarly to other methods than in the simulation study,
though we found that this was driven partially by sample
size. Still, because complex RNA-seq studies are becoming
more common, future research concerning the perfor-
mance of multiple DF tests on data with different corre-
lation structures and models with more complex random
effects structures would be beneficial.
We did not explore the use of multiple DF tests in

the context of single cell RNA-sequencing (scRNA-seq).
Because gene expression of cells from the same sample or
subject is more similar than cells from different samples
[42], multi-sample scRNA-seq studies result in a hierar-
chical or correlated data structure, similar to longitudinal
bulk RNA-seq studies. While the methods described in
this work could theoretically be applied to scRNA-seq
data, there are unique features of scRNA-seq data that
could influence method performance and that should
be further investigated. For example, scRNA-seq experi-
ments typically collect data on thousands of cells from a
relatively small number of samples or subjects, resulting in
a large number of repeated observations per sample. This
is in contrast to a longitudinal bulk RNA-seq study, where
a relatively smaller number of repeated measurements (as

few as two) is collected per subject. The library size per
cell is also much smaller in scRNA-seq resulting in smaller
numbers of counts per gene and more genes with zero
counts. The data volume and sparsity could affect both
the computation time and performance of the multiple DF
testing methods. This would be a valuable area for future
research.

Conclusion
As the cost of RNA-seq experiments decreases, it
becomes increasingly feasible to perform experiments
using correlated designs, including longitudinal studies.
Because these studies often involve multiple hypotheses
and also require initial filtration to a set of genes for fur-
ther exploration, multiple DF tests are a valuable tool for
correlated RNA-seq data. In this work, we tested several
modelling methods for longitudinal RNA-seq data with
an emphasis on multiple DF hypotheses tests. Through
a simulation study, we found that overall, LMM exhib-
ited the best performance in terms of controlling FDR
at nominal levels while maintaining the power to detect
differential expression, though there were convergence
issues at low sample sizes. limma offers a good alternative
for small studies since it did not have convergence issues
and had adequate FDR control at the smallest sample size.
However, all methods were underpowered at N = 3 per
group, so we suggest that at least five subjects be included
per group when possible.
Multiple DF testing is a valuable tool for selecting inter-

esting genes for downstream analysis while also control-
ling the FDR. However, as we show in this study, there are
many methods that allow for multiple DF testing all with
different levels of efficacy. Making an informed decision
when choosing a method based on the study goals as well
as design elements such as sample size is key in producing
useful, meaningful findings.
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