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Abstract

Peste des petits ruminants (PPR) is a deadly viral disease that mainly affects small domestic

ruminants. This disease threaten global food security and rural economy but its control is com-

plicated notably because of extensive, poorly monitored animal movements in infected

regions. Here we combined the largest PPR virus genetic and animal mobility network data

ever collected in a single region to improve our understanding of PPR endemic transmission

dynamics in West African countries. Phylogenetic analyses identified the presence of multiple

PPRV genetic clades that may be considered as part of different transmission networks evolv-

ing in parallel in West Africa. A strong correlation was found between virus genetic distance

and network-related distances. Viruses sampled within the same mobility communities are

significantly more likely to belong to the same genetic clade. These results provide evidence

for the importance of animal mobility in PPR transmission in the region. Some nodes of the

network were associated with PPRV sequences belonging to different clades, representing

potential “hotspots” for PPR circulation. Our results suggest that combining genetic and mobil-

ity network data could help identifying sites that are key for virus entrance and spread in spe-

cific areas. Such information could enhance our capacity to develop locally adapted control

and surveillance strategies, using among other risk factors, information on animal mobility.
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Author summary

As animals move so do viruses. The viral disease peste des petits ruminants (PPR) has a

major impact on the livelihood of sheep and goat farmers across Africa, Middle-East and

Asia. A global PPR eradication campaign is underway, but extensive movements of

infected animals impede control efforts in many regions, such as West Africa. Here we

show for the first time that PPR virus genetic data can be combined with information on

animal mobility to identify routes of PPR circulation in Senegal and neighbouring coun-

tries. Such information can be used to design more efficient disease surveillance and con-

trol strategies adapted to local livestock farming practices.

Introduction

Peste des petits ruminants (PPR) is a highly pathogenic disease that mainly affects small

domestic ruminants (sheep and goats) across Africa, Asia, and the Middle East [1,2]. PPR

spreads rapidly among susceptible animals mostly through direct contact, with mortality rates

sometimes reaching 90% in infected flocks [3]. PPR represents a threat to food security and to

the livelihoods of smallholder farmers, with economic losses estimated at between US$1.5 and

2.1 billion per year [4]. PPR is now the target of a global eradication campaign led by the

World Animal Health Organisation (OIE) and the Food and Agriculture Organisation (FAO)

[5]. Despite the availability of efficient and cheap vaccines against PPR, control of this disease

is complicated, notably because of extensive movement of animals through within- and trans-

boundary trade, and seasonal transhumance, which is often poorly monitored in regions

where PPR is endemic [6,7]. For example, importing infected sheep from abroad for the pur-

pose of fattening was at the origin of the re-emergence of PPR in Morocco in 2015 just a few

years after the disease had been completely eradicated [8].

Mobility plays an important role in the West Africa [9]. In arid and hyper arid areas, ani-

mals are constantly on the move looking for water sources and better grazing areas. Due to cli-

matic harsh conditions every year, several thousand animals move from the arid areas of

Mauritania, Mali, Burkina Faso and Senegal, towards the humid and greener areas of the

coastal countries (Great Transhumance). In parallel to these long international transhumance

movements, animals move away from agricultural production zones to other regions in the

country so that the land can be used for cultivation (Short Transhumance) [10]. Furthermore,

due to the absence of stocking facilities and slaughterhouses, most animals are sold alive and

the majority are moved on foot from one location to another [11]. As the animals move so do

viruses. As observed with other diseases, long range transhumance can re/introduce a patho-

gen in naïve areas, while commercial movements could harmonise the epidemiological situa-

tion in the country [12,13].

Better information on livestock mobility, as recommended by OIE, could help develop PPR

surveillance and control strategies that are better adapted to regional and national risks of dis-

ease spread through livestock movement [11,14]. Such data can be collected using low-budget

and low-technology surveys which are easy to put in place in regions where PPR is endemic

[11]. However, to our knowledge, to date, there is limited direct evidence of the importance of

specific animal routes or livestock markets in PPR spread. Insights into PPR transmission

dynamics have often come from phylogenetic studies based on short genetic portions of its

causative agent, Peste des petits ruminants virus (PPRV; e.g. [6,8,15]). PPRV is an RNA virus

of the genusMorbillivirus (species name Small ruminant morbillivirus) that can be separated
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into four distinct genetic lineages (lineages I-IV). All the lineages are present in Africa whereas

in the Middle East and Asia, animals are mostly infected by Lineage IV PPRV strains [16].

Phylogenetic analyses can be powerful tools to unravel the transmission dynamics of patho-

gens, especially for fast-evolving RNA viruses [17]. However complex spatially-informed or

time-scaled phylodynamic tools have only been developed to study infectious disease epidem-

ics and are not really suitable for endemic situations where circulating strains have multiple

origins and unbiased sampling is difficult to put in place [18].

Animal mobility can be interpreted as networks, with underlying dynamics that favours the

interactions among specific set of nodes thus creating structures, i.e. communities (Fig 1). In the

case of animal trade, communities can be formed because locations belong to same commercial

chain, or are situated along the same axis of movement. In the example represented in Fig 1, col-

oured shades around sets of nodes indicate communities in the network, and coloured links indi-

cates that specific strains are carried by animals moving between locations. Because members in

the same communities tend to interact mostly among themselves, the diffusion of one virus strain

could be facilitated once introduced in the community. Depending on their position in the net-

work, certain nodes could be exposed to multiple strains (“hotspot”). The identification of these

hotspots could be relevant in identifying possible sentinel nodes in the network.

Here, we explore the strength of the relation between PPR virus genetic data from PPR

virus and livestock mobility in Senegal and neighbouring countries. Both Senegal and Maurita-

nia maintain a system of animal mobility certificates. These certificates provide a wealth of

Fig 1. Graphical representation of the relation between network communities and virus transmission. Colored shades

group sets of nodes belonging to the same community in the network. Colored links represent different virus strains in

circulation.

https://doi.org/10.1371/journal.ppat.1009397.g001
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data quite unique in Africa [14] and we used them for the network analyses in this study. Data

on PPR virus circulation, including genetic data, is limited in most African countries, notably

due to budget constraints, confounding symptoms with other diseases (Bluetongue, ORF dis-

ease, Contagious caprine pleuropneumonia etc.), and the limited reporting of active disease by

communities endemically burdened by multiple small ruminant diseases [19,20]. For the pres-

ent study, potential PPR infections were investigated by Senegal National Veterinary Services

between 2010 and 2014 to gather one of the most complete PPRV genetic datasets ever

obtained from one country, which was complemented with genetic data from neighbouring

countries. We used phylogenetic analyses to identify clades of PPRV sequences of common

origin. We searched for correlations between the genetic distances that separate PPRV strains

of the same clade and animal mobility network distances. We also assessed whether variations

in PPRV genetic diversity among sites sampled could be linked with characteristics of the ani-

mal mobility network. The implications of our results for PPR surveillance and control strate-

gies are discussed.

Results

PPR virus genetic diversity and clustering in the study area

PPR virus sampling in Senegal was carried out from 2010 to 2013 across departments based on

local veterinary reports of small ruminants showing clinical signs suggestive of PPR infection,

with a total of 42 sites surveyed (S1 Table). In addition, samples were obtained from veterinary

services in Guinea, Mali and Mauritania. A total of 865 samples were collected between 2010

and 2014, mainly in Senegal (825), but also in Guinea (3), Mali (31), Mauritania (7). Of those,

95 samples (Senegal = 80, Guinea = 3, Mali = 9, Mauritania = 3) were confirmed as PPR infec-

tion by RT-PCR (S1 Table). A partial nucleoprotein (N) gene sequence was obtained from

most Senegal samples (74) and from all the samples from the three other countries (S2 Table).

The phylogenetic analysis based on partial N gene sequences showed that all PPRV samples

obtained belonged to the PPRV genetic lineage II, except for one sample from Sosorona in

Mali, which clustered with lineage I (S1 Fig and S1 Data). The complete nucleoprotein (N) and

hemagglutinin (H) genes were then sequenced in a selection of samples to allow for more

refined phylogenetic analyses. Complete nucleoprotein (N) and hemagglutinin (H) gene

sequences were obtained from 37 PPRV samples from Senegal, all lineage II samples from

Mali, and all samples from Guinea and Mauritania (S2 Table and S2–S4 Data). Bayesian infer-

ence and Maximum Likelihood phylogenetic analyses based on concatenated N and H gene

sequences showed that most sequences obtained during this study clustered in a discrete num-

ber of well-defined clades (posterior probability/bootstrap values> 80%; Figs 2 and S2). Six

clades grouped between three and ten sequences from different regions and were of particular

interest for this study (Figs 2 and 3). Four of these clades included PPRV sequences obtained

in different countries. Clade 2 grouped three samples from Mauritania and the Matam region

in Senegal. All PPRV sequences from Guinea clustered in clade 3 with six samples from Sene-

gal. Clades 5 and 6 contained three to four sequences from Senegal and Mali (Figs 2 and 3).

Pairwise genetic distance between samples belonging to the same clade (mean distance = 0.30%)

was significantly lower than the distance between samples placed in different clades (mean dis-

tance = 0.52%; Wilcoxon test, W = 10823, p< 0.0001). Clades grouped samples from the same

collection year more often than expected by chance (Fisher’s exact test; p-value < 0.001).

Animal mobility network in the study area

We used data on animal mobility collected through two ad-hoc activities in Senegal and Mau-

ritania and described in previous studies [11,14,21]. For both countries, we considered data

PLOS PATHOGENS Genetic and mobility data unravel PPR transmission

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009397 March 18, 2021 4 / 23

https://doi.org/10.1371/journal.ppat.1009397


collected in 2014 on small ruminant movements. We used a complex network approach where

villages corresponded to nodes and movements between nodes were represented by links

weighted either by the number of animals exchanged (volume) or by the number of exchanges

between the nodes (frequency). The network obtained consisted of 270 nodes and 507 links.

Nodes were mostly concentrated in Senegal, but their geographical extent ranged from

Guinea-Bissau and Guinea (in the south) to Mauritania (in the north) and Mali (in the east).

Fig 2. Phylogenetic analysis based on concatenated PPRV N and H complete coding regions. Phylogenetic tree

constructed using a maximum likelihood inference method showing the relationship based on N and H gene sequences of

peste des petits ruminants virus (PPRV) samples collected in Guinea, Mali, Mauritania and Senegal (see S1 Table for details).

Genetic clusters of interest to this study are indicated by coloured branches. The numbers at the nodes indicate support from

posterior probability/bootstrap values (> 50%) obtained with Bayesian inference and maximum likelihood methods,

respectively.

https://doi.org/10.1371/journal.ppat.1009397.g002

PLOS PATHOGENS Genetic and mobility data unravel PPR transmission

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009397 March 18, 2021 5 / 23

https://doi.org/10.1371/journal.ppat.1009397.g002
https://doi.org/10.1371/journal.ppat.1009397


On average, movements between locations were not frequent, i.e., they occurred only four

times per year with 6,852 animals transported. However, the network showed a high degree of

heterogeneity in both frequency and volume. The network contained five weakly-connected

components, including one very large one, formed by 262 nodes, and four made of only pairs

of nodes. Both the diameter and the mean distance of the network, measured on the largest

connected component, were low (respectively 9 and 3.8), indicating the presence of hubs that

could facilitate the diffusion of the disease. Both the indegree (kin) and outdegree (kout) distri-

butions (P(kin), P(kout), respectively) followed a power law

PðkinÞ � k
� ain
in ; ain ¼ 1:188 ðp value < 0:01Þ; R2 ¼ 0:808;

PðkoutÞ � k
� aout
out ; aout ¼ 1:309 ðp value < 0:01Þ; R2 ¼ 0:842

indicating the presence of a few highly connected nodes (hubs) and many poorly connected

nodes (S3 Fig). The network also exhibited a high degree of heterogeneity for the (annual)

Fig 3. Geographical locations of collected peste des petits ruminants virus (PPRV) samples (main figure) and network nodes distribution (inset). The colours

correspond to genetic clades identified in this study. Labels in the main figure correspond to names of regions in Senegal and neighbouring countries. Labels in the inset

indicate network (SN) data used in combination with genetic data in the study. The base layer for the map used in the figure was obtained at http://www.gadm.org.

https://doi.org/10.1371/journal.ppat.1009397.g003
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weight distribution with almost 50% of links used to transport at most 102 animals, while less

than 10% concentrated most transport, corresponding to at least 9 800 animals annually. Half

the links were active just once in 2014, while only 10% were active more than 10 times over the

year and mostly concentrated on the Adel Bagrou-Nara axes (S3 Fig).

We investigated if the network contained communities (i.e. subsets of nodes with denser

connections than the rest of the network [22]).The presence of this type of structure indicates

the preference of interactions among locations that could explain the spatial distribution of

virus strains. Different community structures were obtained depending on the algorithm used,

the Infomap algorithm [23], or the Edge_Betweenness algorithm [24], and the type of weight

considered for the links (Table 1 and S5 Fig). The Infomap algorithm mainly detected small

communities, i.e. with less than 15 nodes (S5 Fig). On the other hand, with the Edge_Between-

ness algorithm, community sizes were homogeneously distributed between two and 80, except

when the annual volume was used as weighting (S5 Fig). In this case, the size distribution

revealed many communities made of 20 nodes. For both the algorithms used, the similarity

between community partition was high as shown by the high value of the Rand Index

Table 1. Summary statistics of the association between the PPRV genetic clade and animal network communities

defined using two different algorithms and different link weights.

InfoMap Edge_betweenness

No weight (basic)

Number of communities 28 11

Corr. community size-number of strains 0.59�� 0.70��

Likelihood same community-same clade 3.08 [1.74;5.32]��� 2.03 [1.28;3.16]��

Corr. community-clade 0.76 ��� 0.59���

Movement Frequency

Number of communities 31 8

Corr. community size-number of strains -0.05 0.93���

Likelihood same community-same clade 2.51 [1.41;4.35]�� 2.03 [1.28;3.16]���

Corr. community-clade 0.70��� 0.52��

Cumulative Volume

Number of communities 31 16

Corr. community size-number of strains 0.57� 0.54�

Likelihood same community-same clade 1.83 [1.11;2.96] � 2.98 [1.59;5.45]���

Corr. community-clade 0.64 �� 0.66��

Brockmann

Number of communities 29 10

Corr. community size-number of strains 0.46� 0.81���

Likelihood same community-same clade 2.95 [1.68;5.09]��� 1.57 [0.98;2.48]�

Corr. community-clade 0.71��� 0.46�

InfoMap/Edge_betweeness, type of algorithm used to calculate communities; Links between nodes of the network

were weighted by the number of animal exchanged using either no weight, frequency of movement, cumulative

volume, or the Brockmann distance (see main text); Number of communities detected; Corr. community size-

number of strains, Pearson’s correlation coefficient among community sizes and number of strains of different clades

in community; Likelihood same community-same clade, Odds Ratio test for strains to be in the same community and

same genetic clade with 95% confidence interval between brackets; Corr. community-clade, Fisher’s exact test for

correlation among communities and clades

� p< 0.05

�� p< 0.01

��� p< 0.001.

https://doi.org/10.1371/journal.ppat.1009397.t001
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(Infomap = 0.92–0.96; Edge_Betweenness = 0.87–0.91). Independently of the algorithm and

the weights used, the modularity for the community partition was high (above 0.3) indicating

a good communities repartition. The community detection algorithms detected several com-

munities, among which only a few contained nodes where the virus was sampled. We use the

term PPRV-community to indicate these communities containing at least one node where

PPRV was sampled, and subsequent analyses concentrated on those communities.

Correlation analyses of genetic and animal mobility data

We tested for correlations between PPRV genetic distances and multiple other distances, some

geo-related (euclidean distance, least cost distance, road distance, resistance distance) as in

[25], and other network-related (netdist = number of links between two nodes, Brockmann

distance = a log-distance measure using the annual average volume [26], conductance based

on volume, and conductance based on frequency of movements; S5 Data). Only genetic dis-

tances between pairs of sequences within well-defined phylogenetic clades (total = 118 pairs)

were used for these analyses, as they represented groups of viruses originating from a common

chain of transmission events. Comparing the results provided some information on the impor-

tance of human activity (animal mobility) in comparison to environmental factors. Correla-

tions between genetic and spatial or network-related distances taken singularly were

significant (Mantel test, r = 0.53–0.79; p< 0.001; S3 Table). We performed partial Mantel tests

to explore for potential interactions between network-related and spatial related distances

[27]. Correlations between genetic and network related distances remained high after control-

ling for interaction with spatial distances (Mantel test, r = 0.34–0.59; p< 0.001; S4 Table). We

separated the data in different classes according to euclidean distance, from short distance (0–

78 km) to large distance (778–858 km) separating pairs of samples, to produce Mantel correlo-

grams [28]. The analyses showed that correlation coefficients changed abruptly from highly

positive (r = 0.76; p< 0.001) for short distances to the lowest negative value (r = -0.45;

p< 0.001) and then remains negative for larger distances (r = -0.36 –-0.06; p = 0.1–0.001; Fig

4) hinting to the presence of an exponential decrease due to the presence of patches. Correla-

tion coefficient values oscillated around zero when controlling for network-related distance

Netdist (r = -0.05–0.09 p = 0.1–0.001; Fig 4). Similar patterns were observed with other geo-

graphical and network-related measures (S4 Fig). As these results indicated spatial structuring

in the data, we performed Multiple Regression on distance matrices (MRM) analyses [29] to

assess the relative importance of each explanatory distances (geographical vs network-related),

separating the data in two subsets: short distances (containing the first 2 distances classes of

the correlogram analyses, i.e. for distances� 158 km) and long distances (all other classes, i.e.

distances >158 km). The results showed that, in the majority of the comparisons, geographical

distances had a higher effect than network-related distances on genetic distances for sites sepa-

rated by small distances (cgeo = -0.0027 –-0.0019, p< 0.001; cnet = -0.0015–0.0006, p< 0.05),

but network-related distances was most important at larger distances (cgeo = -0.0006–0.0018,

p< 0.001; cnet = 0.0003–0.0032, p< 0.0001; S5 Table).

We tested the hypothesis that the presence of communities could lead to some level of

homogeneity in the virus strains circulating among members of the same communities, i.e.
locations in the same community could be infected by the same or closely related PPRV strains

of the same clade. For all the community partition, the modularity is in the range 0.47–0.6,

well above 0.3, thus indicating a good “partition” in communities. PPRV-communities con-

sisted of nodes located a few hundred kilometres apart (< 500 km). Clark Evans tests [30]

showed that almost all communities were spatially clustered (Clark Evans test, R<1,

p< 0.001). However, the largest community detected by the Edge_Betweenness algorithm,
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was not spatially clustered regardless of weighting (S6 Fig). Communities were plotted on the

map of Senegal. We built a Voronoi tessellation around network nodes, and coloured each

polygon according to the PPRV-community index (Figs 5 and 6). The area covered by these

communities depended on the algorithm and measures used. Independently of the algorithm

and criteria used for detecting communities, results of join count analyses were always positive

and significant, indicating that nodes in the same communities tended to share borders and

form patterns. Some patterns could be observed across the study area, notably for the south of

Senegal, in the Ferlo region and in the area around Dakar in the case of the InfoMap algorithm

with volume and frequency weight criteria (Fig 5). With the Edge_Betweenness algorithm,

communities appeared to be less fragmented spatially with the Brockmann and frequency

weight criteria (Fig 6).

Fig 4. Mantel Correlogram for genetic and geographic (euclidean) distance. The value of Mantel correlation coefficient is

shown for each distance class. Circles (M) correspond to result of Mantel correlogram without controlling for interaction

with network distance. Triangles (P) indicate correlation analyses taking into account potential interaction with the network

distance Netdist (see main text). Colors indicate significance of the Mantel tests. Results of other correlograms based on

different geographical and network-related distances are shown in S4 Fig.

https://doi.org/10.1371/journal.ppat.1009397.g004
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In most cases, there was a strong and significant correlation between the size of the commu-

nity and the number of clades in the community (Spearman correlation test, r = 0.46–0.93;

p� 0.05), except when using the InfoMap algorithm weighted with the frequency of move-

ments (r = -0.05; p> 0.05; Table 1 and S7 Fig). The Odds Ratios for two sequences to be in the

same clade if they were in the same community were always higher than 1 (OR = 1.83–3.08;

p< 0.001; Table 1), except for the communities found using the Edge_Betwenness algorithm

and the Brockmann distance (OR = 1.57, 95% C.I. = 0.98–2.48; Table 1). The correlation

between communities and clade distribution was highly significant in all cases (Fisher’s exact

test, Cramer V = 0.522–0.765; p� 0.002; Table 1), except for the Edge_Betweenness algorithm

weighted by the Brockmann scale (Cramer V = 0.461; p = 0.03).

Association between virus genetic hotspots and animal mobility

We identified four villages in Senegal linked with PPRV sequences belonging to more than

one clade (“hotspots”, Fig 7): Mbam (Fatick Region), Meouane (Thies region), Pikine (Dakar

Region) and Thiara (Tambacounda Region). Mbam and Thiara are located close to the border

with Gambia, and despite the fact they are not big towns, they are important centers for resi-

dents in the nearby villages and a passage point for those going to Gambia. Pikine is at the

entrance of Dakar and the disembarkment point for livestock convoys before the animals can

be sold in Dakar.

The presence of at least one livestock market around sampling sites was not a good predic-

tor of virus genetic hotspots (risk ratio < 1; p> 0.05), since markets are present in the proxim-

ity of all nodes. Considering two group of nodes (“hotspot” and “monoclade”, i.e. only one

Fig 5. Tessellation of Senegal based on the position of mobility network nodes using the InfoMap algorithm. Each

polygon, centred around nodes of the network, is coloured based on the community it has been associated with (also labelled

with an id number in the legend). Only communities where at least one PPRV strain has been detected are shown in colours.

Icons indicate different PPRV genetic clades based on results of the phylogenetic analyses. This figure visualizes if spatial

structure is present in our network, using the community algorithm InfoMap, with different weights for the links: Basic, no

weight; Frequency, the number of times the link was active; Volume, cumulative volume of animals exchanged in a year;

Brockmann, using the effective Brockmann distance (see main text). The base layer for the map used in the figure was

obtained at http://www.gadm.org.

https://doi.org/10.1371/journal.ppat.1009397.g005
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genetic clade found in the village concerned), we noticed that hotspots were characterised by

having, on average, more in-connections, large in-volume, higher betweenness and centrality

than monoclade ones (S7 Table). Moreover, the hotspots were not the origin of animal move-

ments (outdegree = 0 for all the hotspots), and they appeared less often as a destination of

movement than monoclades (S7 Table). In terms of homophily (i.e. the fraction of links

exchanged with other nodes of the same community), hotspots had a higher tendency to create

links and to exchange more links with members of the same community than monoclade

nodes (S7 Table).

Discriminant analysis showed that the homophily was the variable with the highest probabil-

ity of classifying a node as a hotspot (S8 Table) while high centrality (eigenvector centrality) had

a considerable negative effect. The small sampling size (22 nodes among which only four are

hotspots, all with a small number of animals sampled, S6 Table) had a significant effect on iden-

tifying hotspots (Wilcoxon test p-value<0.05), suggesting that hotspots were more likely to be

identified in nodes containing more sequences, but its effect, in most of the cases, was smaller

(in magnitude) when compared to abovementioned measures (S8 Table). However, these con-

clusions were not statistically significant (Kruskal -Wallis test, p-values> 0.05). Due to the

reduced sample size, the results of this last analysis should be regarded as very preliminary.

Discussion

Combining pathogen genetic data with epidemiological or mobility network data can provide

important insights into infectious disease dynamics [31–33]. Here we showed that genetic data

Fig 6. Tessellation of Senegal based on the position of mobility network nodes using the Edge_Betweenness algorithm.

Each polygon, centred around nodes of the network, is coloured based on the community it has been associated with (also

labelled with an id number in the legend). Only communities where at least one PPRV strain has been detected are shown in

colours. Icons indicate different PPRV genetic clades based on results of the phylogenetic analyses. This figure visualizes if

spatial structure is present in our network, using the community algorithm Edge Betweenness, with different weights for the

links: Basic, no weight; Frequency, the number of times the link was active; Volume, cumulative volume of animals

exchanged in a year; Brockmann, using the effective Brockmann distance (see main text). The base layer for the map used in

the figure was obtained at http://www.gadm.org.

https://doi.org/10.1371/journal.ppat.1009397.g006
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on the peste des petits ruminants virus (PPRV) combined with network analysis of animal

mobility data improved our understanding of PPRV transmission dynamics in complex

endemic settings. The results of the phylogenetic analyses provide evidence for this complexity

in Senegal, and West Africa in general. We obtained 50 different complete PPRV N and H

gene sequences, from field investigations of suspected cases of PPR in 2010–2014, mostly in

Senegal. PPRV lineage II appears to be dominant in the region, with only limited presence of

lineage I strains, as previously reported [6,34]. The length of sequences generated (combined

length of N and H genes = 3402bp) provided enough statistical power to detect distinct clades

Fig 7. Geographical locations of hotspots and monoclade. Hotspots and monoclade are geolocalised and the wards (Administrative Unit of level 3) to which they belong

are colored according to the type of node (hotspot or monoclade). Nodes are scaled based on their incoming volume of animals. Labels in uppercase letters indicate node

names. Labels in lowercase letters correspond to the names of regions in Senegal. The base layer for the map used in the figure was obtained at http://www.gadm.org.

https://doi.org/10.1371/journal.ppat.1009397.g007
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within lineage II circulating concurrently in the region. Some of these clades included samples

from different countries, providing further support for extensive transboundary PPR circula-

tion in West Africa [6]. Phylogenetic relationships between clades were unclear. It is possible

that they would have been better resolved with full genome data, but 47/50 of the sequences

obtained in this study differed in their nucleotide composition, suggesting that our level of res-

olution was already sufficient. Our results suggest that each clade can be considered as part of

different transmission networks evolving in parallel, and this hypothesis was used as the basis

to explore correlations with mobility network data.

The different correlation analyses performed showed that there was a strong correlation

between virus genetic distance and both geographical and network-related distances. However,

results of Mantel correlograms and Multiple regression analyses suggest that the correlation

between genetic and geographical distance is strong among sites separated by relatively short

distances (<100-150km), but that network connectivity best explained genetic distance pat-

terns for larger distances. Such pattern supports the importance of animal mobility in PPRV

transmission, as connections between markets separated by long distances depend on fast

commercial transport that can rapidly move PPRV across the region. For shorter distances,

mainly local movement of small ruminants would result in slower diffusion the virus.

When the components of the network were grouped in the shape of communities, these

were presenting some pattern in rural areas and spatially fragmented in the more densely

inhabited area whatever the algorithm and weighting criteria used, with a slight improvement

when we used the Edge_betweenness algorithm weighted with the frequency of movements

between nodes. This fragmentation of communities may be explained by the extent of long-

distance animal trade and transhumance within Senegal and across countries. Notably, those

patterns could depend on the production chain structure, with traders in different areas having

their network of markets where they collect and sell animals before being sent to the largest

consumption markets in Dakar, Kaolack or abroad [35]. Existence of such long-distance

movements was further supported by our PPRV genetic data, notably the presence of identical

PPRV sequences in samples from the Dakar and Matam regions (> 500 km apart), or in Tam-

bacounda and Kolda regions (> 250 km apart), collected at an interval of only a few days (Figs

1 and 2 and S1 Table). Furthermore, the correlation between the distribution of communities

and clades was strong in most scenarios when tested with Fisher’s exact tests. Our results

showed that viruses sampled within the same community of the network were significantly

more likely to belong to the same genetic clade, providing further support for a close link

between virus transmission and animal mobility.

Some nodes (villages) in the network were associated with PPRV sequences belonging to

different clades (Fig 7). Such sites were tentatively considered as potential “hotspots”, where

multiple animal movement routes meet, increasing the risk of virus circulation and hence the

infection of flocks by multiple PPRV strains of different origin at the same time. Our mobility

dataset contained information on both commercial and transhumant movements without any

distinction. The introduction of PPRV in an area could be related either to the purchase of ani-

mals at the market, or to the interaction between local and transhumant herders at the water-

ing points and in grazing areas. Surprisingly, the presence of a market within the community

or the administrative area did not increase the chance of a node being a hotspot. However, lin-

ear discriminant analyses showed that hotspots tended to appear at nodes with certain charac-

teristics associated with their connectivity (frequency, betweenness, homophily). However,

these trends were not significant, possibly because our dataset only included four such hot-

spots and our sampling effort only provides a biased snapshot of the diversity of PPRV strains

circulating in the region. Further sampling to increase PPRV genetic data and possibly more

targeted to network nodes with high connectivity characteristics, are needed to assess whether
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such data can really help identifying nodes with a central role for PPR circulation. Another

limitation in our capacity to test this hotspot hypothesis is related to the way strains were

linked to mobility network nodes. Mobility data used in our analysis were mainly for intra-

departmental movements, for whom health certificates are needed. Few or no information

were available for small herd and local movements. To better associate strain and mobility net-

work node, more information about livestock owner mobility and market choices should be

collected through ad-hoc activities. In our case, we only considered geographical distance as

association rule. However, in the analysis of hotspots, small villages appeared as hotspots.

Some of these villages are located close to more renowned marketplaces (like Thiara close to

Tambacounda) but they could also be resting places on the transhumance routes. Future sam-

pling campaigns should consider collecting information on the most recent animal transaction

in the farms and nearby villages, to get a clearer idea of the animals’ provenance, but also of

possible interactions with transhumant herds.

Based on combined virus genetic and mobility network data, this study presents the first

evidence for a role for animal mobility in PPR transmission dynamics in West Africa. Correla-

tions between PPRV genetic and mobility network data were multiple and strong. Up to now,

PPR virus sampling in the field has mostly been opportunistic, based on reports of suspected

disease outbreaks, leaving big gaps in our knowledge of the distribution and diversity of PPRV

across the globe [6,36]. In West Africa, due to the lack of resources, there is no active surveil-

lance system that could enable timely information about diffusion of the virus to be collected

and provide a detailed description of the situation. To improve this situation, resources should

be optimally allocated to areas where the risk of virus circulation is higher. Collection of ani-

mal mobility data using low-cost and easy-to-implement methodologies may provide guidance

for targeted sampling in sites with higher probability of PPRV circulation, and therefore

improve our evaluation of PPRV diversity and distribution in a specific region. Furthermore,

combining genetic and mobility network data could help identify sites or areas that are key

locations for virus entrance and spread in a region or a country. Such information would dra-

matically enhance our capacity to develop risk-based control and surveillance strategies that

are more efficient and better adapted to local context.

Material and methods

Ethics statement

Veterinarians from the national veterinary services in Senegal, Guinea, Mauritania and Mali

conducted the field studies as part of their routine surveillance activities, in accordance with

local legislation, with no specific ethical approval required. Still, all the tissues used in the

study were sourced ethically. The study was conducted in animals in contact with outdoor

environments with natural exposure to diseases (PPR is endemic in the region). Ocular or

nasal swabs were collected on live animals by aseptic means and/or by non-invasive methods,

and tissues (lung, lymph node and/or spleen) were sampled from animals that had died of the

infection.

PPR virus sampling and analysis

The samples were kept at 4˚C during transport to the national veterinary laboratories. All sam-

ples collected were sent to CIRAD, Montpellier, France. Once there, the samples were pro-

cessed in a biosafety level 3 containment laboratory.

At CIRAD, the tissue samples were cut into pieces and ground in 3 ml of Minimum Essen-

tial Media (MEM) by vortexing with 0.2 μm glass beads. The swabs were placed in 1 ml MEM

and vortexed. In all cases, the sample suspensions were centrifuged for 3 min at 1000 g to
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collect the supernatant. Total RNA was extracted from the supernatant using the NucleoSpin

RNA virus extraction Kit (Macherey-Nagel, France), according to the manufacturer’s

instructions.

A RT-PCR was performed using the qScript XLT One-Step RT-PCR Kit (Quantabio, VWR,

France) to amplify a 351 base pair (bp) segment of the PPRV Nucleoprotein (N) gene with the

NP3/NP4 primer pair modified from Couacy-Hymman et al. [37] (Forward NP3: 5’-GTC-

TCG-GAA-ATC-GCC-TCA-CAG-ACT-3’ and Reverse NP4: 5’-CCT-CCT-CCT-GGT-CCT-

CCA-GAA-TCT-3’) at a final concentration of 0.6 μM. PCR was set up under the following

programme: 50˚C for 30 min; 95˚C for 15 min and 40 amplification cycles (10 sec at 95˚C, 30

sec at 60˚C and 30 sec at 72˚C) and a final extension step at 72˚C for 5 min. The PCR products

were resolved on 1.5% agarose gel to confirm presence of bands of expected size.

The PCR products obtained were sequenced for a preliminary phylogenetic analysis to

determine the genetic lineage of the PPRV strains sampled during this study. The clean-up

and sequencing of all positive PCR products in both forward and reverse directions were car-

ried out by Cogenics (France) or Genewiz (United Kingdom). Forward and reverse DNA

sequences were assembled using Geneious v. 8.1.6 and trimmed to remove poor quality por-

tions of the sequences (final size = 255 bp). Corrected sequences were aligned with 27 PPRV N

gene sequences, representative of the four PPRV genetic lineages and publicly available in

GenBank (S1 Data), using Geneious v. 8.1.6. A phylogenetic tree was constructed using the

maximum likelihood method as implemented in MEGA 6 [38], with node supports evaluated

by bootstrap analyses (1 000 replicates).

The complete nucleoprotein (N) and hemagglutinin (H) genes were then sequenced in a

selection of samples to enable more refined phylogenetic analyses. When several samples from

the same location shared an identical partial N gene sequence, only one sample was used to

sequence the complete N and H genes. First, custom primers were designed to amplify over-

lapping fragments of both genes (S9 Table). All RT-PCR were performed using the qScript

XLT One-Step RT-PCR Kit (Quantabio, VWR, France), with pairs of primers at a final con-

centration of 0.6 μM, and the following programme: 50˚C for 30 min; 95˚C for 15 min and 40

amplification cycles (30 sec at 95˚C, 30 sec at 57˚C and 60 sec at 72˚C) and a final extension

step at 72˚C for 5 min. The PCR products were resolved on 1.5% agarose gel. Complete N and

H gene sequences were assembled using Geneious v. 8.1.6. N and H gene sequences were com-

bined for each sample and aligned to thirteen sequences representatives of the four PPRV

genetic lineages publicly available in GenBank, including five sequences belonging to lineage

II (S2–S4 Data). The alignment was performed using ClustalW and manually curated on BioE-

dit v.7.2. [39]. The most suitable nucleotide substitution model for our dataset was the Kimura

2-parameter model with a discrete gamma distribution of evolutionary rates, according to

Bayesian Information Criteria scores calculated in MEGA 6 [38]. This model was used to cal-

culate genetic distance between pairs of concatenated sequences and to infer phylogenetic rela-

tionships. Phylogeny was inferred using two different methods to improve clade confidence:

(1) a maximum likelihood (ML) method as implemented in MEGA 6, with node supports eval-

uated by bootstrap analyses (1 000 replicates), and (2) a Bayesian MCMC inference (BI)

method that was performed in MRBAYES [40], with multiple runs of 10 million generations

with a 20% burn-in, sampling every 100 generations, and using the default heating parameters.

Based on the results of the phylogenetic analyses, sequences were clustered by “clade” accord-

ing to the most ancestral tree nodes linking multiple sequences with bootstrap support >50%

(ML) and posterior probability >50% (BI). Identification of these clusters was further con-

firmed using ClusterPicker v.1.2. [41], with node support set at 80% [42] and genetic distance

at 0.07% [43]. All sequences obtained during this study have been submitted to GenBank (S2

Table).
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Animal mobility data collection and network analyses

Senegal and Mauritania have a system of certificates for livestock mobility. By law, every time

a herd moves, the herders are obliged to declare the following information to the closest veteri-

nary office: origin and destination of the movement at village level, the composition of the

herd (species and number of heads), and means of transport (on foot or by vehicle). A certifi-

cate is issued to the herder, and a copy is kept by Veterinarian Officer. The copies are regularly

centralised to extract information about movements in the countries concerned. For Maurita-

nia, a national mobility survey was implemented in 2014 [11]. The survey covered 13 over 14

Wilayas (administrative units). In Senegal, data were collected in 2013, 2014 and 2015. How-

ever, only data from 2014 was considered in this study, as it was the most reliable available in

terms of geographical and temporal coverage [14].

For both countries, we used data collected in 2014 [11,14] and only data concerning the

movements of small ruminants. The villages were geo-referenced. When geo-referencing of a

village was not possible, the coordinates of the centroid of the smallest administrative unit were

used. The original dataset contains information on the mode of transport used, as well as the

date of the movement. We removed the distinction between modes of transport and averaged

and summed information over the year to estimate the average and the cumulative number of

animals exchanged. We used a complex network approach, where villages corresponded to

nodes and movements between nodes were represented by links weighted by the number of ani-

mals exchanged. For all the nodes we estimated some centrality measures. More specifically, we

estimated for each node the number of incoming links (indegree kin) and outgoing connections

(outdegree kout) and the distributions of these measures all over the network. For both distribu-

tions, we performed a log-log fit to check whether the distribution was following power law.

We used different types of weights to characterize a link: (i) Frequency—the number of

times, over a period of a year, a movement took place independently of the quantity trans-

ported and means of transport; (ii) Volume—the total number of heads passing through the

link in a year; and (iii) the Brockmann Distance—a measure using the annual average volume

and introduced by Brockmann and Helbing [26]

dij ¼ 1 � logðPijÞ

where Pij is the fraction of outgoing animals from location i to j.
Nine network indicators were estimated to characterise the network nodes: degree, inde-

gree, outdegree, incoming volume, outgoing volume, frequency as a destination (InFre-

quency), closeness, betweenness and eigenvalue centrality. Pairwise correlation analyses

confirmed that these variables were uncorrelated. Community detection was done using two

community detection methods: the Infomap algorithm [23], maximising information, and the

Edge_Betweenness algorithm [24] to find links between communities. For each algorithm, we

considered the network either unweighted (basic) or weighted using the different types of

weights defined above, for a total of eight community partitions. We used a Voronoi tessella-

tion, with centres corresponding to locations in the mobility network and with colours accord-

ing to the communities detected, to identify possible spatial patterns. Two types of analysis

were used to test if communities were spatially organised. The Clark Evans test [30] was used

to test if communities were clustered spatially, while Join Count analysis [44] was used to

check if the Voronoi cells of members of the same communities shared borders. In most

cases, network nodes and virus sampling sites did not coincide. We therefore associated

each PPRV sequence with the geographically closest network node, based on the assumption

that most herders usually go to the closest market for their exchanges [45]. We calculated

that the median distance between any virus strain sampling site and village appointed using
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Voronoi diagrams was< 50 km, corresponding to 1–2 days walking distance. For samples

collected in Guinea and Mali, where few or no data on mobility were available, we associated a

fictitious centroid for the country as coordinates for the network nodes. Nodes found to include

PPRV sequences of different clades were identified as potential “hotspots” for PPRV circulation,

while nodes with only sequences from one clade were identified as “monoclade” (S6 Table).

Correlation analyses of genetic and animal mobility data

Resistance distance, conductance variables, and Brockmann distance were estimated using

CircuitScape [46]. An accessibility raster produced with the accessibility data available from

http://forobs.jrc.ec.europa.eu/products/gam/ and representing the travel time from the point

to a city with more than 50 000 inhabitants was used to calculate the resistance distance. Conduc-

tance calculations were based on a network circuit approach using the frequency of movements

and the total number of heads as variables. The Brockman distance was considered as a resistance

variable, with higher distance values corresponding to lower the probability of a passage.

We used Mantel test to determine if there was any correlation between genetic distances

and the different geographical and network distance measures (S5 Data). Partial Mantel tests

[27] were performed to assess whether the correlations identified were affected by interactions

between network-related and geographical distances. Mantel correlograms [28] were used to

detect spatial structure in the correlation patterns. The Mantel correlogram analysis is a lagged
version of the Mantel test, where geographical distances are divided in classes (lags) defined in

a way to favour homogenous repartition of samples among classes, and then correlation is

evaluated within each class. The number of classes was determined using the Sturge’s law, pro-

ducing 7 small classes (each containing less than 8 pairs) and 4 large ones (containing between

10 and 31 pairs). Half of the pairs were contained in the first 2 classes. For all correlation analy-

ses, significance was evaluate using permutation tests (1000 permutations). Multiple Regres-

sion on distance matrices (MRM) analysis was performed to assess the relative importance of

each explanatory distances (geographical vs network-related) [28,29]. MRM is a generalisation

of the multiple regression approach and partial Mantel test: distance matrices are permuted in

a similar way as for the mantel test, and regression coefficients for each explaining matrix are

estimated at each permutation [47].

We looked for factors that could explain the spatial distribution of clades. Networks are

characterised by the presence of structures, like communities. These correspond to tightly con-

nected set of nodes whose elements interact more within (i.e. with other members of the same

community) that with other nodes of the network [22]. The presence of communities in the

network could indicate the existence of underlying dynamics in network formation that favour

the creation of links among set of nodes. In this work we used two algorithms to detect com-

munities: (i) The information-based InfoMap algorithm that finds modules in the network

exploiting its regularities [48] and reduces the amount of information needed characterize it,

and (ii) the edge-betweenness algorithm that removes links with higher betweenness and esti-

mates modularity iteratively based on the assumptions that links with high betweenness are

those connecting communities [49].

The modularity of the network, i.e. the number of links existing among members of the

same community in comparison with those with nodes of other communities, is defined as

Q ¼
1

2m

X

ij

Aij �
kikj
2m

� �

d ci; cj
� �

where the sum is extended over all nodes (ij) [50]. Aij is the adjacency matrix element between

the nodes whose values are 0 or 1,
kikj
2m is the expected number of edges between nodes if links
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were disposed randomly, and δ(ci, cj) is 1 if two nodes belong to same community, 0 otherwise.

The higher is the modularity, the better is the partition. When the network is weighted, the

intensity of the connections among members of the same community can also be considered.

Here, the two algorithms have been used considering both for the unweighted and weighted

cases, resulting in several partitions. To assess the goodness of each partition and the similarity

between community partition, we use the modularity and the Rand Index respectively [51].

For each possible pair of nodes in the network, the Rand index evaluates how many pairs

belong to the same community in the two partitions. The higher the value of the Rand Index,

the higher the similarity between partitions. The community detection algorithms detected

several communities, of which only a few contained nodes where the virus sampled, here

termed “PPRV-community”. Our analysis focused only on the set of these communities. We

checked for a correlation between being in the same PPRV community and in the same clade.

For each community partition, we used a Fisher’s exact test to check for a relation between

community partition and clade distribution, i.e. if the presence of communities could factor

the dominance on a clade in a set of nodes. We tested the hypothesis that two sequences were

more likely to be in the same clade if they were in the same community by introducing some

binary variables whose prefix same indicates if two nodes include PPRV sequences of the same

clade (1) or not (0) and if they are (1) or not (0) in the same community. The odds ratio was

computed for the two groups and the Fisher Exact test used to check whether the OR was dif-

ferent from 1 and to estimate its p-value and 95% Confidence Interval.

Characterisation of hotspots

We used the terms hotspot to indicate nodes where PPRV sequences of different clades were

found, while we used the term monoclade to indicate nodes where all the sequences available

belonged to the same clade (S6 Table). We used linear discriminant analysis, using the nodes’

network characteristics, to identify the factors that characterise hotspots. In a preliminary anal-

ysis we found that more sequences were collected in hotspot nodes compared to monoclade

ones, and the limitedness of the sampling procedure could result in misclassification of nodes.

To take this into account, we considered the number of sequences available as a possible factor

that could characterise hotspot. Then, we included other possible factors, related to livestock

trades and mobility, which could help identifying possible hotspot locations. First, we assessed

if the presence of a market explained the presence of “hotspots” of virus genetic diversity. Data

on the location of markets were kindly provided by the Senegalese Veterinary Services. We

first checked at administrative Units of Commune (Administrative level 3) and Department

(administrative level 2) if markets were present, and second, if markets were present within a

radius of 50 and 100 km from the virus sampling location. We used a relative risk approach

considering the presence or not of markets (at a certain level) as risk factor. The analysis was

restricted only to those nodes in whose vicinity strains were collected. In this context, we also

tested if homophily, i.e. the tendency of a node to create links with nodes in the same commu-

nity, was a relevant factor characterising hotspots. For each of those nodes we estimated the

“bare” homophily, estimating only the number of connections shared with other nodes in the

same communities, but also the strength of the homophily, weighting the connections by the

frequency and the volume exchanged.

All analyses were performed using R v.3.4.0.
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Transboundary Animal Diseases. In: Kardjadj M, Diallo A, Lancelot R, editors. Transboundary Animal

PLOS PATHOGENS Genetic and mobility data unravel PPR transmission

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009397 March 18, 2021 22 / 23

https://doi.org/10.1038/s41598-020-65132-8
http://www.ncbi.nlm.nih.gov/pubmed/32433590
https://doi.org/10.3201/eid2408.170334
http://www.ncbi.nlm.nih.gov/pubmed/30016239
https://doi.org/10.1038/nrg2583
http://www.ncbi.nlm.nih.gov/pubmed/19564871
https://doi.org/10.1016/j.epidem.2014.09.001
http://www.ncbi.nlm.nih.gov/pubmed/25843391
https://doi.org/10.3389/fvets.2019.00417
https://doi.org/10.3389/fvets.2019.00417
http://www.ncbi.nlm.nih.gov/pubmed/32039243
https://doi.org/10.1016/j.prevetmed.2019.104808
http://www.ncbi.nlm.nih.gov/pubmed/31710946
https://doi.org/10.1371/journal.pone.0199547
http://www.ncbi.nlm.nih.gov/pubmed/30020968
https://doi.org/10.1073/pnas.0400054101
http://www.ncbi.nlm.nih.gov/pubmed/14981240
https://doi.org/10.1073/pnas.0706851105
http://www.ncbi.nlm.nih.gov/pubmed/18216267
https://doi.org/10.1371/journal.ppat.1001166
https://doi.org/10.1371/journal.ppat.1001166
http://www.ncbi.nlm.nih.gov/pubmed/21060816
https://doi.org/10.1126/science.1245200
http://www.ncbi.nlm.nih.gov/pubmed/24337289
https://doi.org/10.1371/journal.ppat.1004898
https://doi.org/10.1371/journal.ppat.1004898
http://www.ncbi.nlm.nih.gov/pubmed/26086273
https://doi.org/10.1590/S1415-47572013000400002
https://doi.org/10.1590/S1415-47572013000400002
http://www.ncbi.nlm.nih.gov/pubmed/24385847
https://doi.org/10.1093/sysbio/syw054
http://www.ncbi.nlm.nih.gov/pubmed/28173504
https://doi.org/10.1163/1568539X-00003471
http://www.ncbi.nlm.nih.gov/pubmed/31680698
https://doi.org/10.1098/rspb.2011.0913
https://doi.org/10.1098/rspb.2011.0913
http://www.ncbi.nlm.nih.gov/pubmed/21733899
https://doi.org/10.1111/tbed.12901
http://www.ncbi.nlm.nih.gov/pubmed/30043436
https://doi.org/10.1371/journal.ppat.1009397


Diseases in Sahelian Africa and Connected Regions. Cham: Springer International Publishing; 2019.

p. 31–52.

36. Baron MD, Diop B, Njeumi F, Willett BJ, Bailey D. Future research to underpin successful peste des

petits ruminants virus (PPRV) eradication. J Gen Virol. 2017; 98:2635–44. https://doi.org/10.1099/jgv.0.

000944 PMID: 29022862

37. Couacy-Hymann E, Roger F, Hurard C, Guillou JP, Libeau G, Diallo A. Rapid and sensitive detection of

peste des petits ruminants virus by a polymerase chain reaction assay. Journal of Virology Methods.

2002; 100(1):17–25. https://doi.org/10.1016/s0166-0934(01)00386-x PMID: 11742649

38. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Anal-

ysis Version 6.0. Molecular Biology and Evolution. 2013; 30(12):2725–9. https://doi.org/10.1093/

molbev/mst197 PMID: 24132122

39. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows

95/98/NT. Nucl Acids Symp Ser 1999; 41:95–8.

40. Huelsenbeck J, Ronquist F. MrBayes: bayesian inference of phylogeny. Bioinformatics. 2001; 17:754–

5. https://doi.org/10.1093/bioinformatics/17.8.754 PMID: 11524383
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