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ABSTRACT: The data collected from complex process industries are usually
time series with considerable nonlinearities and dynamics, as well as excessive
redundancy. Moreover, there are temporal and spatial correlations between
input variables and key performance variables. These characteristics bring great
difficulties to data-driven modeling of the key performance variables. To
overcome the problems, a new regularized spatiotemporal attention (STA)-
based long short-term memory (LSTM) was developed. First, a standard
LSTM network with an STA module was trained to capture the dynamic
relationship between input and target variables. Second, the least absolute
shrinkage and selection operator was introduced to optimize the STA module.
Third, the hyperparameter representing the regularization strength of the
algorithm was determined using a moving window cross-validation strategy.
Finally, the proposed algorithm was compared to other state-of-the-art
algorithms using artificial data, and then it was used to predict the nitrogen
oxide emissions of a selective catalytic reduction denitration system. Simulation results showed that the proposed algorithm achieved
more accurate predictions than the other algorithms. Furthermore, the statistics and analysis of the importance of the variables are
consistent with known chemical-reaction mechanisms and observations of field experts. Thus, the proposed method can provide
technical support for the predictive control and optimization of such systems.

1. INTRODUCTION
In modern industrial processes, there are key performance
indicators that affect safety, efficiency, and product quality,
which must be precisely monitored and controlled.1 However, it
is difficult to measure some indicators directly in real time owing
to field conditions, technical constraints, and costs. Data-driven
soft sensor models that infer hard-to-measure indicators from
easy-to-measure indicators using specific algorithms for specific
problems have the potential to solve these challenges.2,3 The
relationship between the indicators may be linear or nonlinear.
Linear relationships are desirable because they reduce
computation times and are easy to apply, and the models are
easy to interpret. In recent years, linear methods, such as partial
least squares,4 principal component analysis,5 and least absolute
shrinkage and selection operator (LASSO),6 have been applied
extensively in data-driven modeling. However, if linear methods
do not provide satisfactory results, nonlinear methods, such as
neural networks (NNs),7 support vector machines (SVM),8 and
Gaussian process regression9 should be considered.
NNs are the most popular method of nonlinear modeling, and

they provide powerful nonlinear mapping capabilities, efficient
parallel computing, and excellent fault tolerance. Many NNs are
available, including multilayer perceptron (MLP),10 a stochastic
configuration network,11,12 a recurrent neural network
(RNN),13 and a long short-term memory (LSTM) network.14

The LSTM network is an enhanced RNN that has three gated
units to control the data flow. Information that is useful for long
periods of time is stored well by the gate control, and the
problems of gradient vanishing and explosion that occur with
RNNs are alleviated.15 Recently, LSTM-based modeling
algorithms for time-series processes have become the subject
of considerable interest. For example, Zhou et al. developed a
novel data-driven modeling algorithm with different LSTMs for
a grinding-classification process.16 Shi et al. trained a data-driven
model using state transition-LSTM and time-dimensional K-
means to predict the quality of dual-sampling periods.17 Xie et al.
developed a variational autoencoder bidirectional LSTM and
applied it to an actual grinding and classification process.18 In
addition, a sampling-interval-aware LSTM was developed to
handle industrial data series with irregular sampling intervals and
was applied to the soft sensor of a hydrocracking process.19
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LSTM is highly effective in handling long-term dependencies;
however, it is difficult to capture the dynamic relationship
between variables at different time steps.20 To overcome this,
Bahdanau et al. proposed an attention-based encoder-decoder
to distinguish target-related hidden states, which has been
widely studied and exploited.21 Moreover, Feng et al. proposed a
dual attention-based encoder-decoder method that utilized
sequence-to-sequence learning.22 Yu et al. developed a cascaded
monitoring network algorithm to analyze the temporal and
spatial information for the monitoring model.23 In addition, a
multihop attention graph convolutional network was proposed
to capture the mutable characteristics of spatial coupling
relations, and the effectiveness of the model was verified on a
coal mill rig.24 Yuan et al. developed a soft sensor using
spatiotemporal attention-based LSTM (STA-LSTM) for
industrial hydrocracking processes.25 The attention mechanism
allows the model to selectively capture important features and
patterns while ignoring irrelevant or noisy information.
Therefore, although the attention mechanism increases the
model complexity, the performance of the deep learning
networks is considerably improved.
However, large-scale industrial processes are usually very

complex, with many input variables. The data collected from
modern process industries are increasing rapidly due to the
development and upgrading of automation technology.
Excessive redundant variables increase the model complexity
and lead to inaccurately estimated STA correlations between
relevant variables and key quality variables.26 Appropriate
variable selection or regularization techniques can reduce
model complexity and improve generalization performance.27

For example, 1-regularization, also called LASSO, is one of the
most efficient regularization techniques for model reduction.28

Sun et al. proposed an input selection approach for an MLP
network with LASSO to predict the quality of kerosene
produced by a crude distillation unit.29 Ou et al.30 proposed a
quality-driven regularization for a stacked auto-encoder to
capture quality-related variables from industrial process data and
achieved desirable results. Moreover, Liu et al. used LASSO to
remove redundant variables from relevant vector machine
models.31 In brief, these studies have demonstrated that the 1
-regularization is very effective for model reduction and
optimization for complex neural network models.
Selective catalytic reduction (SCR) technology is extensively

applied to the denitration system of thermal power plants. In the
system, the amount of nitrogen oxide (NOx) emission is a key
performance indicator related to environmental regulation and

energy consumption. To facilitate the advanced control system
and backup the hardware sensors, the development of a soft
sensor for NOx emission has been widely studied.32 For
example, to precisely estimate NOx emission for optimizing
the amount of injected ammonia, Li et al.33 developed a soft
sensor by combining the moving window partial least squares
with locally weighted regression. Yang et al. proposed a dynamic
model based on the least square SVM andmutual information to
predict the NOx concentration of a coal-fired boiler.34

Furthermore, Wu et al. developed an effective soft sensor by
combing the LASSO with the LSTM network to predict the
NOx emissions from a denitration system.35

To establish an accurate data-driven model of the NOx
emissions from a practical denitration system in a thermal
power plant, a soft-sensing algorithm based on the LSTM
network and regularized STAmechanism is proposed. The main
contributions are summarized as follows:

(1) A new regularized STA-based LSTM (RSTA-LSTM)
algorithm is developed, in which the LSTM is used for
time series modeling, the STA is used to extract the
dynamic correlations between input and target variables,
and the 1-regularization is utilized to simplify and
optimize the STA.

(2) The proposed algorithm is compared with other state-of-
the-art algorithms using an artificial dataset and an
industrial dataset of an SCR denitration system.
Comprehensive simulations and comparisons demon-
strate the effectiveness of the proposed algorithm.

(3) The variable importance statistics and analysis are
consistent with the chemical reactions and field
experiences, which are conducive to the optimization
and control of the system.

The rest of the work is arranged as follows: Section 2 reviews
the preliminary theories related to the proposed algorithm.
Section 3 describes the development of our approach in detail.
Section 4 provides the simulation results of an artificial dataset.
In Section 5, the developed algorithm is utilized to the data-
driven modeling and statistical analysis of the practical industrial
example. Finally, the concluding remarks and future works are
provided in Section 6.

2. PRELIMINARY THEORY
2.1. LSTM. The structure of a typical LSTM unit, which

includes one memory cell and three gates, is shown in Figure 1.
At each time t, they are computed using the equations

Figure 1. Schematic diagram showing the structure of a typical LSTM unit. The LSTM unit includes one memory cell and three gates. The terms are
defined in Section 2.1.
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= [ ] +f W h x b( ; ),t g f t t f( ) ( 1) ( ) (1)

= [ ] +i W h x b( ; ),t g i t t i( ) ( 1) ( ) (2)

= [ ] +o W h x b( ; ),t g o t t o( ) ( 1) ( ) (3)

= + [ ] +c f c i W h x b( ; ), andt t t t c c t t c( ) ( ) ( 1) ( ) ( 1) ( )

(4)

=h o c( ).t t c t( ) ( ) ( ) (5)

Here, f(t), i(t), and o(t) represent the input, forget, and output
gates, respectively; c(t) is the memory cell; and h(t) is the hidden
state. Moreover,Wf,Wi,Wo,Wc ∈ Rm × (m +n) are weight matrices
and bf, bi, bo, bc ∈ Rm are bias parameters, where m denotes the
number of hidden states and n denotes the number of input
variables. The concatenation operation between h(t − 1) and x(t)
is [h(t − 1); x(t)], σg is a sigmoid function, and σc is a hyperbolic
tangent function. Finally, ⊙ denotes the Hadamard product.
2.2. Spatiotemporal Joint Attention. To improve the

performance of the model, spatiotemporal relationships were
obtained by learning the dynamic relationships between
variables and samples. For spatial attention, xk = (x(1)k , x(2)k , ···
x(T)k )tr ∈ RT is the kth input variable within a window of size T
and the operator tr represents the transpose of the matrix. Thus,
the attention weight is given by

= [ ] + +e v W h c Ux b( ; ),t
i

e
tr

c e t t e t
i

e( ) ( 1) ( 1) ( ) (6)

and

= = ···e i n( ); 1, 2, , .t
i

z t
i

( ) ( ) (7)

Here, ve, be ϵ RT, We ϵ RT × 2m, and Ue ϵ RT × T denote the
parameters to be learned and h(t − 1) ϵ Rm and c(t − 1) ϵ Rm denote
the hidden and cell states of the previous LSTM unit,
respectively. At time t, the weights of the input variables are
remapped by spatial attention to give

= ···x x x x( , , , ) .t t t t t t
n

t
n tr

( ) ( )
1

( )
1

( )
2

( )
2

( ) ( ) (8)

For temporal attention, the weighted input variables x(t)̃ ϵ
Rn × T and hidden state hj ϵ Rm × T are combined. The
relationships at time t are learned as

= [ ] + [ ] +

= ···

l v W d c U x h b j

T

( ; ; );

1, 2, , ,

t
j

d
tr

c d t t d t j d( ) ( 1)
0

( 1)
0

( ) ( )

(9)

and

= = ···l j T( ); 1, 2, , ,t
j

z t
j

( ) ( ) (10)

where vd, bd ∈ Rm + n,Wd ∈ R(m + n) × 2q, and Ud ∈ R(m + n) × (m + n)

denote the parameters to be learned; q denotes the number of
hidden states in the attention module; and d(t − 1)

0 ∈ Rq and
c(t − 1)
0 ∈ Rq denote the hidden and cell states of the previous
LSTM unit, respectively. The cell state is given by

ˆ ˆ ˆ ˆ
= ···h h h h( , , , ) ,t t t t

T
T

tr
( ) ( )

1
(1) ( )

2
(2) ( ) ( ) (11)

and

ˆ
=

=
c h .t

j

T

t( )
1

( )
(12)

The STA-LSTM algorithm recognizes significant input
variables related to the output variable at different time steps
and adaptively identifies the relationships between the hidden
states and target variables.
2.3. LASSO. LASSO was used to alleviate overfitting by

shrinking the estimated model coefficients. The ordinary least
squares (OLS) loss was reformulated using 1-regularization to
penalize the absolute size of the weights. Thus, the model
reduction was expressed as

= + | |L L( ) ( ),LASSO OLS 1 (13)

where = [ ··· ], , , n
tr

1 2 denotes the coefficient vector of the
input variables and λ is a hyperparameter tuning the
regularization strength between 0 and λub. When λ = 0,
LASSO is inactive. When λub is sufficiently large, all the
coefficients are forced to zero; hence, all the variables are

Figure 2. Schematic diagram showing the structure of the RSTA-LSTM algorithm. A regularization operator is added after the spatial attention
calculation to reduce the complexity of the model.
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removed. An appropriate value for λ is typically determined
using cross-validation.

3. PROPOSED METHODOLOGIES
This section describes the development of the RSTA-LSTM
algorithm for soft sensing of industrial multivariate dynamic
processes.
3.1. Regularized STA Mechanism for LSTM. In the

proposed algorithm, 1-regularization is added to STA-LSTM as
a penalty term to reduce model complexity. Figure 2 shows the
structure of the proposed RSTA-LSTM algorithm in which a
regularization operator δ = [δ1, δ2, ···, δn]tr is added to x̂ t( ) after
the spatial attention calculation. The hidden state then becomes

ˆ=h f h x( , ),t t t( ) 1 ( 1) ( ) (14)

where f1 is a single-layer LSTM with hidden size m.
The relationships for regularized STA can be expressed as

= ···h h h h( , , , ) ,t t t t
T

T
tr

( ) ( )
1

(1) ( )
2

(2) ( ) ( ) (15)

and

ˆ
=

=
c h .t

j

T

t( )
1

( )
(16)

To capture the relationships between the input and target
variables, the target variable y(t) is concatenated to the feature
vector c t( ) . That is,

= [ ] +y w y c b; ,t
tr

t t( ) ( ) ( ) (17)

where w ∈ Rm + 1 and b ∈ R denote parameters to be learned.
Subsequently, the hidden state d(t)0 is updated to
ˆ ˆ=d f d y( , ),t t t( )

0
2 ( 1)

0
( 1) (18)

where f 2 is another single-layer LSTM with hidden size p.
Similarly, RSTA-LSTM performs the updating operation in

eqs 17 and 18, which is given by

= [ ] +y w y c b; ,t
tr

t t( ) ( ) ( ) (19)

and

where w̃ ∈ Rm + 1 and b̃ ∈ R denote the parameters to be learned
and f 3 is a single-layer LSTM with hidden size q.
The multistep prediction using RSTA-LSTM is given by

where Ŷ = (y(T + 1), y(T + 2), ···, y(T + τ))tr ∈ Rτ represents the
prediction of the target variable in subsequent time steps τ. In
addition,Wy ∈ Rq × (q +m +n) and by1 ∈ Rqmap the concatenation
[d(t)0̂ ; c(t)̃] ∈ Rq + m + n to the number of hidden decoder states.
Predictions were obtained from the RSTA-LSTM algorithm
using a linear function of the weight matrix vy ∈ Rq × τ and the
bias vector by2 ∈ Rτ.
The optimization expression of RSTA-LSTM is given by

{ }= + | |
[ ]

Yargmin (Y ) ,
X Y( , ) ,

2
1

(22)

where | | = | |= ii
n

1 1 and Y are the true value. The nonlinear
quadratic minimization problem in eq 22 can be solved using the
active-set optimization algorithm reported by Hager and
Zhang.36 After that, the optimal δ̂ is added to the RSTA-
LSTM to get the optimized LSTM network. For the active-set
algorithm, it is easy to fall into local optima if the initial point
starts from an inappropriate region. Therefore, the Monte Carlo
method37 is used to generate the initial solution, which is
summarized as follows. First, a set of initial solution of δ are
generated, in which each element is a random real number
between 0 and 1. δi = 0 means that the corresponding variable is
deleted, while δi = 1 means that the input weights of the
corresponding variable remain unchanged. Second, each δ in the
vector is added to the RSTA-LSTM to simulate the performance
on the validation dataset. Finally, the δ with the best validation
mean squared error (MSE) is taken as the initial solution of the
active-set algorithm. To get a trade-off between algorithm
performance and computational time, the number of random
initial solutions is set to 200. Although this method cannot
guarantee the global optimum, it can reduce the possibility of
falling into local optima effectively.
In this study, the MSE was used as the loss function to train

themodels. The adaptivemoment estimation (Adam) algorithm
was adopted as the training method because it is superior to the
root mean square backpropagation and momentum gradient
descent algorithm.38

3.2. Choice of the Regularized Parameter. In the RSTA-
LSTM, the regularized parameter λ controls the degree of
shrinkage; hence, it has a critical effect on the performance of the
model. In this study, an optimal value of λ was obtained through
an enumerative search from parameter vector Λ, which
contained predefined evenly distributed parameters between 0
and λup. In general, λup is a truncation value when the model
performance deteriorates continuously as the number of input

Figure 3. Schematic diagram summarizing the MWCVmethod. The MWCVmethod comprises two loops, the outer and inner loops, and it was used
to determine the optimal λ.
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variables decreases, while the number of the elements in the
vector depends on the scale of the dataset.
Cross-validation is an effective method of evaluating the

model’s performance and selecting the hyperparameters.
Considering the time series characteristics of industrial
processes, a moving window cross-validation (MWCV)
method35 was used to determine the optimal λ. Briefly, this
method comprises two loops. The outer loop enabled every
parameter from vector Λ = [0, λup] to be executed exactly once
until all the parameters were traversed. In the inner loop, the
MWCV was implemented as follows: (1) divide the raw dataset
Z i n to K sub se t s , (2 ) t r a i n STA-LSTM wi th

= { ··· }Z Z Z Z, , ,train 1 2 , (3) calculate the new shrinkage
coefficient δ̂, and (4) replace δ with δ̂ for the STA-LSTM and
compute the MSE with = +Z Zval 1. The stopping criterion for
the MWCVmethod was that all subsets were traversed. Figure 3
shows a schematic of the MWCV method. Finally, the optimal
value λ* with the minimum MSEmeanwas chosen from [0, λup].
The pseudocode for determining the regularized parameter is
provided in Algorithm 1.

3.3. Computational Flow of theOverall Algorithm.The
developed RSTA-LSTM is an iterative optimization over STA-
LSTM with LASSO. A flowchart summarizing the process is
shown in Figure 4. The algorithm begins by training an

elementary STA-LSTM using the Adam optimization and
backpropagation though time. Then, LASSO is introduced into
the trained STA-LSTM to perform model reduction, and the
appropriate regularized parameter λ is determined via the
MWCV method. Subsequently, a new RSTA-LSTM model is
obtained using the active-set optimization algorithm, and a new
training dataset is obtained by the deletion of the input variables,
which have δ̂ = 0 from . The process is repeated until the
termination conditions are met, when there is no improvement
in the RSTA-LSTM model or the maximum number of
iterations is reached, and the current model is considered to
be the final model. The pseudocode of the proposed RSTA-
LSTM is presented in Algorithm 2.

4. APPLICATION TO ARTIFICIAL DATASETS
4.1. Experimental Setting. The proposed RSTA-LSTM

algorithm was tested using an artificial dataset with time-series
characteristics. The split ratio of the dataset was 80:20, that is,
80% of the dataset was used for training and 20% was used for
testing. Five popular algorithms, MLP, RNN, LSTM, STA-
LSTM, and LASSO-LSTM, were used for comparison. All the
algorithms were based on three types of elementary NN
structures: MLP, RNN, and LSTM. The optimal hyper-
parameters of these NNs were selected using the grid search
method. All the algorithms were programmed in MATLAB
2021a on a Windows 10.0 operating system, and they were
executed on a machine learning server with an Intel(R) Core
(TM) i7-10700 CPU and 64 GB of RAM.
The performance of each model was evaluated using the root

mean squared error (RMSE), mean absolute percentage error
(MAPE), and coefficient of determination (R2), which were
calculated using the equations

=
=N

y yRMSE
1

( ) ,
n

N

b b
1 (23)

=
| |

=N

y y

y
MAPE

1
, and

n

N
b b

b1 (24)

Figure 4. Flowchart showing the process of the proposed RSTA-
LSTM. The RSTA-LSTM is an iterative optimization over STA-LSTM
with LASSO.
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= =

=
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y y

y y
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n
N
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2 1
2

1
2

(25)

where yb is the actual value, yb′ is the predicted value,N is the total
number of tested samples, and y̅ = mean(yb).
4.2. Friedman Dataset with Time Series. An artificial

time-series dataset was designed based on the Friedman
dataset,39 which includes 50 input variables and 2000 samples.
Each variable was uniformly distributed in the range [0, 1]. The
response variable was generated using the equation

= + + +

+

x x x x xy 10sin( ) 20( 0.5) 10 5

,

t t t t t t( ) ( )
1

( )
2

( )
3 2

( )
4

( )
5

(26)

where

= + + +

+

x x x x x

x

0.7 0.9 1.2 0.7

0.8 .

t t t t t

t

( )
4

( 1)
4

( 2)
4

( 3)
4

( 4)
4

( 5)
4

Here, ξ is white Gaussian noise and x(t)4 is designed to append a
time series to the input data in which different coefficients
represent different degrees of the time series.
The optimal hyperparameters of different algorithms are

listed in Table 1. The statistical results, including the mean and
best results of 10 runs, are listed in Table 2, which shows that
RSTA-LSTM had better accuracy than the other algorithms.
The combination of regularized methods and the STA
mechanism improved the performance of a single optimization
algorithm for LSTM while increasing the training time. In
addition, LSTM was more suitable for an artificial dataset with
time series of different durations than MLP or RNN.
To demonstrate the influence of λ on the algorithm

performance, the prediction RMSE of the proposed algorithm
with different λ is shown in Figure 5. In the case, the λup is set to
1.6 and there are nine elements evenly distributed in the vector
[0, λup]. It can be seen from the figure that the smallest RMSE
appears at λ = 0.6, meaning that the input variable coefficients

are well shrunk and the model is properly optimized. When λ =
0, there is no any shrinkage on the input variables, and the input
redundancy makes the model performance inadequate. As the λ
increases, more and more relevant variables are removed, which
makes the model performance continue to deteriorate.
The fitting results of the proposed algorithm are presented in

Figure 6, which shows that the proposed algorithm accurately
predicted the target variable. Figure 7 shows the distributions of
the errors between the real and predicted values for the different
algorithms. Among all the algorithms, the box plot for RSTA-
LSTM is the most compact and its median is the closest to zero.
Therefore, the proposed algorithm has superior accuracy for
data-driven modeling of an artificial dataset.

5. APPLICATION TO A DENITRIFICATION PROCESS
5.1. Description and Analysis of the Process. SCR

denitration systems are commonly applied in power plant
boilers and other combustion scenarios to remove NOx from
flue gas emissions. A brief flowchart representing the SCR
denitration system used in this study is shown in Figure 8. The
SCR system was located between the economizer and air
preheater in the thermal power plant. Flue gas from the

Table 1. Optimal Hyperparameters of Different Algorithms for an Artificial Dataset

hyperparameter MLP RNN LSTM STA-LSTM LASSO-LSTM RSTA-LSTM

input dimensions 50 50 50 50 50 50
output dimensions 1 1 1 1 1 1
length of input sequence 6 6 6 6 6
number of hidden neurons 10 10 50 50 50 50
number of fully connected layers 1 1 1 1 1 1
dropout rate 0.0002 0.0002 0.0002 0.0002
initial learning rate 0.001 0.001 0.003 0.003 0.003 0.003
mini batch size 10 10 10 10
max epochs 1000 300 300 300 300 300
λ 0.2 0.6

Table 2. Results of Different Algorithms on the Artificial Dataset

R2 RMSE MAPE

algorithm mean best mean best mean best training time

MLP 0.1192 0.2035 6.7293 6.3480 0.1923 0.1810 0.79 s
RNN 0.1361 0.1935 7.3631 6.5071 0.2083 0.1877 40.12 s
LSTM 0.5995 0.6155 4.5062 4.4094 0.1249 0.1203 16.35 s
STA-LSTM 0.8083 0.8121 3.2912 3.2473 0.0961 0.0873 571.17 s
LASSO-LSTM 0.7909 0.8083 4.1446 3.8493 0.1166 0.1034 325.23 s
RSTA-LSTM 0.8256 0.8326 3.0511 2.9344 0.0801 0.0790 2721.25 s

Figure 5. Prediction RMSE of different λ for the artificial dataset. The
algorithm has the smallest RMSE when λ = 0.6.
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economizer passed through the ammonia spray grid of the
denitrification reactor, wherein a mixture of gaseous ammonia
and air was injected into the flue gas. Then, the mixture was
passed through the catalyst layer and NOx was converted to N2
and H2O. The chemical reactions were

+ + +4NO 4NH O 4N 6H O3 2 2 2 (27)

and

+ +6NO 8NH 7N 12H O.2 3 2 2 (28)

After these reactions, most of the NOx is removed from the
flue gas. Next, the flue gas flows toward the air preheater and the
electrostatic precipitator removes any dust. Finally, the flue gas
enters the desulfurization system, which removes SO2, and it is
discharged into the atmosphere through the chimney.
According to Chinese national ambient air quality standards,

NOx emissions are limited to 50 mg/Nm3 when the O2
concentration at the exit is 6%. An online analyzer was installed
approximately 5m from the chimney inlet. A 50m sampling pipe
was used to connect the analyzer to the continuous emission
monitoring system. After long-term operation, dust accumulated
in the pipe and blocked the flow of gas. Therefore, regular back
blowing and calibrations were required to ensure the stability of
the analyzer. During this period, the analyzer could not operate
normally owing to the sampling interruptions. According to field
statistics, the analyzers on the four denitration units at the plant
malfunction several times per year. Thus, a data-driven soft

sensor model of NOx emissions is a valuable technique that
could guarantee continuous results.
In the SCR process, ammonia injection is controlled to reduce

ammonia slip and ensure NOx reduction. However, the length of
the pipeline means that the sampling time delay of the
measurement system cannot be determined precisely; hence, it
is difficult for the controller to accurately regulate ammonia
injection. To guarantee that the NOx emissions are within
national limits, the field controller usually oversprays ammonia
to increase NOx absorption. However, excessive spraying
increases ammonia slip, which wastes energy and causes
additional pollution.
In summary, there are obvious dynamics and time delays of

unknown durations in the SCR process. Therefore, to achieve
accurate monitoring and optimal process control, it is necessary
to develop a precise data-driven soft sensor. It has been shown
that the proposed algorithm is an effective method of modeling
dynamic processes with time delays of various durations;
therefore, it was applied to the development of a soft sensor for
the SCR process.
5.2. Simulation Results and Comparisons. A dataset

including 3980 samples was obtained from the denitration
system of a thermal power plant in East China. There were a
total of 45 input variables, which included 15 variables from the
boiler and generator, 7 variables from the draft fan, and 23
variables from the reactor and flue gas. The output variable was
the concentration of NOx in the flue gas at the chimney outlet.
All the variables are listed in Table 3.
After some trials, the optimal hyperparameters of different

algorithms are given in Table 4. The statistical performance of
the different algorithms after 10 cycles is shown in Table 5. The
LSTM-based models performed significantly better than the
MLP and RNN models. This is because the SCR process had
explicit dynamics and a large time delay owing to the long
sampling pipeline and complex reaction mechanism, whereas
the LSTM networks had inherent advantages when modeling
processes with long-term time series. Moreover, compared with
STA-LSTM and LASSO-LSTM, the proposed algorithm
achieved better results for all performance indexes. This shows
that -regularization improved the capability of the STA to
capture the complex dynamic correlation between the input and
output variables.
Although our approach has the highest training time, its

accuracy is significantly better than other algorithms. Actually,

Figure 6. Comparison of real and predicted results. Real and predicted
values obtained using RSTA-LSTM.

Figure 7. Prediction errors for different algorithms. Distributions of the errors between the real and predicted values for different algorithms.
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Figure 8. Flow chart representing the SCR denitration system. The SCR system was located between the economizer and air preheater.

Table 3. Input and Output Variables of the SCR Processa

type no. name unit no. name unit

process variables 1 NO2 conc at the left inlet mg/Nm3 24 6 kV SC of induced draft fan A A
2 NO2 conc at the right inlet mg/Nm3 25 6 kV SC of induced draft fan B A
3 ammonia flow at mixer inlet A Nm3/h 26 6 kV SC of forced draft fan A A
4 ammonia flow at mixer inlet B Nm3/h 27 6 kV SC of forced draft fan B A
5 converted NOx conc at the left outlet mg/Nm3 28 SC of primary fan in frequency conversion cabinet A A
6 converted NOx conc at the right outlet mg/Nm3 29 SC of primary fan in frequency conversion cabinet B A
7 total air volume into the boiler ton/h 30 FGT at the outlet of the final superheater side A °C
8 main steam flow rate ton/h 31 FGT at the outlet of the final superheater side B °C
9 converted O2 conc % 32 FGT at the left inlet °C
10 total coal into the boiler ton/h 33 FGT at the right inlet °C
11 active power of the generator kW 34 O2 conc at the left inlet %
12 main steam press. Pa 35 O2 conc at the left outlet %
13 main steam temp. °C 36 O2 conc at the right inlet %
14 reheater press. Pa 37 O2 conc at the right outlet %
15 reheater temp. at the outlet °C 38 ammonia escape rate at the left PPM
16 degree of superheat °C 39 ammonia escape rate at the right PPM
17 total water into the boiler ton/h 40 CO conc at the left inlet %
18 furnace press. Pa 41 CO conc at the right inlet %
19 primary air press. Pa 42 valve opening at mixer inlet A %
20 exhaust gas temp. °C 43 valve opening at mixer inlet B %
21 total spray water flow of superheater ton/h 44 coal quantity of feeder B ton
22 DPOFGI and O at air pre-heater A Pa 45 coal quantity of feeder E ton
23 DPOFGI and O at air pre-heater B Pa

output 1 NOx emissions of the denitration system mg/Nm3

aDPOFGI and O, differential pressure of flue gas at inlet and outlet; FGT, flue gas temperature; SC, side current.

Table 4. Optimal Hyperparameters of Different Algorithms for the SCR Process

hyperparameter MLP RNN LSTM STA-LSTM LASSO-LSTM RSTA-LSTM

input dimensions 45 45 45 45 45 45
output dimensions 1 1 1 1 1 1
length of input sequence 5 5 5 5 5
number of hidden neurons 10 10 50 50 50 50
number of fully connected layers 1 1 1 1 1 1
dropout rate 0.0002 0.0002 0.0002 0.0002
initial learning rate 0.001 0.001 0.002 0.002 0.002 0.002
mini batch size 5 5 5 5
max epochs 1000 300 300 300 300 300
λ 0.1 0.3
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the training time of the soft sensors is not the crucial factor for
the advanced control system. The models are often trained
offline and then are duplicated and executed as subroutines in
the industrial computer. Despite their different training time, the
predicting time of these soft sensors is very close, which can
totally meet the real-time requirements of online predictions.
For the dataset of the SCR process, the λup is set to 0.6 and

there are seven elements in the vector [0, λup]. The prediction
RMSE of the proposed algorithm with different λ for the SCR
process is given in Figure 9. The algorithm has the smallest
RMSE when λ = 0.3.
The measured NOx emissions and those predicted by the

RSTA-LSTM algorithm are shown in Figure 10. This
demonstrates that the proposed algorithm can produce very
accurate predictions.

The distributions of the errors between the real and measured
values for the different algorithms are shown in Figure 11. The
proposed algorithm had the smallest error range and the flattest
box than the existing algorithms. In summary, after compre-
hensive comparisons, the proposed algorithm was superior to
the existing algorithms in the soft sensor modeling of NOx
emissions from the SCR process.
5.3. Statistical Analysis and Discussion on Variable

Importance. To verify the effectiveness of the proposed RSTA
mechanism, an indicator called the permutation variable
importance (PVI)40 was used to measure the importance of
each input variable to the output variable. The PVI of an input
variable is obtained by calculating the ratio between the
prediction errors before and after the variable data are shuffled;
only the data corresponding to the variable are shuffled each
time. The process of computing the PVI of variable v is as

Table 5. Results of Different Algorithms on the NOx Emissions Prediction

R2 RMSE MAPE

algorithm mean best mean best mean best training time

MLP 0.5767 0.6265 4.6451 3.9381 0.1122 0.0890 5.25 s
RNN 0.4935 0.6605 5.1128 3.8832 0.1186 0.0925 52.35 s
LSTM 0.6630 0.6839 3.9363 3.6582 0.0939 0.0912 31.27 s
STA-LSTM 0.7324 0.7545 3.7812 3.6189 0.0961 0.0855 1474.52 s
LASSO-LSTM 0.7325 0.7883 3.7587 3.3997 0.0931 0.0863 565.63 s
RSTA-LSTM 0.7912 0.8069 3.3682 3.1229 0.0701 0.0649 6102.32 s

Figure 9. Prediction RMSE of different λ for the SCR process. The smallest RMSE appears at λ = 0.3.

Figure 10. Comparison of measured and predicted NOx emissions. Measured and predicted values obtained using RSTA-LSTM.
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follows: (1) the original mean absolute error (MAE) of the
original dataset { test , test} is calculated, (2) the data
corresponding to v in the testing set test are randomly shuffled,
(3) the updated MAE of the shuffled dataset

ˆ{ },test test with
the trained model is calculated, and (4) the ratio between the
updated and original MAE is calculated. This process was
repeated for each variable, and their PVIs were obtained.
A larger PVI indicates that the variable is more important. If

the PVI of a variable is very close to one, then the variable is
irrelevant to the output variable. In this study, the shuffling
process was repeated 10 times to obtain statistical results from
which the 5%, median, and 95% quantiles of the PVI were
calculated. In Figure 12, the distributions of the PVIs are
represented by black lines and the median PVIs are denoted by
red circles.
Four variables significantly affected the output variable. The

most significant variable was variable 6, that is, the converted
NOx concentration at the right outlet. This variable describes
the NOx concentration upstream; hence, it is highly relevant to
the output variable. Similarly, the second most significant

variable was variable 5, that is, the converted NOx concentration
at the left outlet.
In the early stage of the SCR process, liquid ammonia is

preheated to produce gaseous ammonia, which is mixed with air
from the dilution fan in the mixer. The NOx in the flue gas
undergoes a denitrification reaction with gaseous ammonia
under the action of the catalyst, as shown in eqs 27 and 28. Two
flow valves control the amount of ammonia available for the
denitrification reaction. In practice, the valve at inlet A is usually
kept at a fixed opening, whereas the valve at inlet B is adjusted to
regulate the flow of ammonia. Consequently, variable 43, which
is the control valve opening at mixer inlet B, and variable 4,
which is the ammonia flow at mixer inlet B, have a significant
effect on the output variable, as shown in Figure 12.
In summary, the PVI statistics are consistent with the process

mechanism and expert experience, which verifies the interpret-
ability of the model using the proposed RSTA-LSTM. The
developed soft sensor and feature importance analysis provide a
solid foundation for the optimization and control of this process.

Figure 11. Prediction errors for different algorithms. Distributions of the errors between the measured and predicted values for different algorithms.

Figure 12. Importance of the candidate input variables withMAE. The distributions of the PVIs are represented by black lines and themedian PVIs are
denoted by red circles.
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6. CONCLUSIONS
In this study, a soft-sensor algorithm that combines LASSOwith
STA-LSTM was proposed for highly complex and dynamic
processes. The proposed algorithm introduces 1-regularization
into the STA-LSTM and performs shrinkage on the input
weights of the STA-LSTM for model reduction. This approach
combines the ability of STA to capture dynamic relationships
with the superior weight shrinkage of 1-regularization. As an
industrial application, the proposed algorithm was applied to an
artificial dataset and used to predict NOx emissions of an SCR
process at a thermal power plant. The simulations and statistical
analysis show that the proposed algorithm has advantages over
other advanced algorithms in terms of accuracy and interpret-
ability. The developed soft sensor provides accurate and
reasonable data-driven models that can be used to upgrade
SCR control systems.
However, the data-driven model with the proposed algorithm

was trained offline using historical measured data. Therefore, if
the field conditions change or there are concept drifts in some
key variables, the performance may deteriorate. Future research
will focus on online learning and updating of the strategies used
by the algorithm.
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