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Abstract

Mutation signatures in cancer genomes reflect endogenous and exogenous mutational pro-

cesses, offering insights into tumour etiology, features for prognostic and biologic stratifica-

tion and vulnerabilities to be exploited therapeutically. We present a novel machine learning

formalism for improved signature inference, based on multi-modal correlated topic models

(MMCTM) which can at once infer signatures from both single nucleotide and structural vari-

ation counts derived from cancer genome sequencing data. We exemplify the utility of our

approach on two hormone driven, DNA repair deficient cancers: breast and ovary (n = 755

samples total). We show how introducing correlated structure both within and between

modes of mutation can increase accuracy of signature discovery, particularly in the context

of sparse data. Our study emphasizes the importance of integrating multiple mutation

modes for signature discovery and patient stratification, and provides a statistical modeling

framework to incorporate additional features of interest for future studies.

Author summary

Over time DNA accumulates mutations from a variety of sources. Some mutations result

from external mutagens, such as UV radiation, while others result from processes occur-

ring within the cell itself. Each of these sources can impart characteristic patterns of

mutations on the genome, known as mutation signatures, which can be detected using

computational techniques. Loss of DNA repair mechanisms can leave specific mutation

signatures in the genomes of cancer cells. To identify cancers with broken DNA-repair

processes, accurate methods are needed for detecting mutation signatures and, in particu-

lar, their activities or probabilities within individual cancers. In this paper, we introduce a

class of statistical modeling methods used for natural language processing, known as

“topic models”, that outperform standard methods for signature analysis. We show that

topic models that incorporate signature probability correlations across cancers perform
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best, while jointly analyzing multiple mutation types improves robustness to low mutation

counts.

Introduction

Patterns of mutation in cancer genomes reflect both endogenous and exogenous mutagenic

processes [1], allowing inference of causative mechanisms, prognostic associations [2], and

clinically actionable [3–6] vulnerabilities in tumors. Many mutational processes leave distinct

genomic “footprints”, measurable via nucleotide substitution patterns [1], localised mutation

densities, and patterns of structural variation (SV). As such, each mutagenic source (whether

exogenous or endogenous) changes DNA in a characteristic manner, at genomic locations

with preferred chemical and structural characteristics. Exogenous insults such as ultra-violet

radiation and tobacco smoke-associated mutagens (e.g. benzo[a]pyrene) induce single nucleo-

tide variants (SNVs) with characteristic C!T (at CC or TC dinucleotides) [7] and C!A

mutation patterns [8], respectively; endogenous APOBEC activity mediates enzymatic

5-methylcytosine deamination, resulting in C!T substitution patterns at TC dinucleotides

[7].

Cancer cells can also acquire endogenous mutator phenotypes, accumulating mutations [7]

due to DNA repair deficiencies. Defective DNA repair processes induce both point mutations

and structural variations [9], and include several mechanistic classes such as mismatch repair

deficiency (MMRD), homologous recombination deficiency (HRD), microhomology medi-

ated end-joining, and breakage fusion bridge processes. Defective DNA repair has been

exploited in therapeutic regimes, including immune checkpoint blockade for mismatch repair

deficiency [6], and synthetic lethal approaches for HRD [4, 5], underscoring their clinical

importance.

Both point mutation signatures [10] and structural variation signatures [11] have been

studied extensively as independent features of cancer genomes, mostly through non-negative

matrix factorization (NMF) approaches [1, 3, 12–15]. As increasing numbers of whole

genomes are generated from tumors in international consortia and focused investigator

research, the need for robust signature inference methods is acute. Additional computational

methods have been proposed [16–19], however no approaches jointly infer signatures from

both point mutation and structural variations. We contend that systematic, integrative analysis

of point mutation and structural variation processes enhances ability to exploit signatures for

subgroup discovery, prognostic and therapeutic stratification, clinical prediction, and driver

gene association.

Latent Dirichlet allocation (LDA) [20], a popular and effective approach for natural lan-

guage document analysis, is well suited to the task of mutation signature inference. Although

LDA was designed to extract topics from documents, these concepts can be mapped to muta-

tion signatures and somatic mutation catalogues derived from tissue samples, respectively. In

this paper we introduce the correlated topic model (CTM) [21], an extension of LDA which

incorporates signature correlation, and a multi-modal correlated topic model (mf-CTM.dt in

Salomatin et al. [22], hereafter referred to as MMCTM). A modality is a particular kind of

data, and in this report SNV and SV counts are two distinct modalities. The MMCTM thereby

jointly infers signatures from multiple mutation types, such as SNVs and SVs.

Signature correlations can arise through a mutational process generating multiple signa-

tures, as with the HRD-associated SNV and SV signatures. C!T substitutions caused by APO-

BEC cytidine deaminases have also been shown to cluster around SV breakpoints [12].

Correlated topic modeling of multi-type mutation signatures in cancer
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Correlations between mechanistically independent signatures can also occur; for example,

COSMIC SNV signatures 1 and 5 are both correlated with age of diagnosis in some cancer

types [23].

We set out to investigate whether statistical modeling that could encode correlations

between signatures could enhance accuracy in signature analysis. We show how integrating

SNV and SV signature probability correlation improves mutation signature inference relative

to NMF and standard topic modeling methods. By incorporating statistical correlation and

multiple modalities, more information is provided to the model, improving inference further,

while still maintaining distinct signatures for each modality.

Motivated by the need to better understand mutation signatures in the context of DNA

repair deficiency, we analysed breast and ovarian tumour genomes. We applied the MMCTM

to SNV and SV somatic mutations derived from whole genomes (breast [13] and ovarian [2];

755 samples total), performing joint statistical inference of signatures. Our results reveal corre-

lated topic models as an important analytic advance over standard approaches. Rigorous

benchmarking over mutation signatures inferred from previously published mutation corpora

was used to establish metrics for comparison. We show systematically how correlation integra-

tion improves inference, especially in the context of sparse mutation counts, and where SNVs

and SVs are considered jointly. In addition, we report novel strata using MMCTM-derived sig-

natures, including patient groups exhibiting combined whole genome SNV and SV signature

profiles from breast and ovary cancers. We automatically recovered BRCA1-like and BRCA2-

like homologous recombination repair deficient breast and ovarian cancers, where the tumors

bearing the well known SNV HRD signature were reproducibly split on the basis of SVs. In

aggregate, our study reveals the importance of simultaneously considering multiple classes of

genomic disruption as a route to expanding mutation signature discovery, and their down-

stream impact on novel stratification across human cancers.

Results

Correlated topic models for signature inference

We developed a suite of probabilistic correlated topic models (Fig 1) to evaluate their utility in

signature discovery. We describe the models here briefly and refer to S1 Text for more detailed

descriptions.

Topic models represent mutation signatures as discrete distributions over unique mutation

categories (e.g. C!T substitutions at TCT trinucleotides). Each sample is then represented as

a discrete distribution over signatures. How the sample-signature distributions are generated

differ between LDA (Fig 1a and 1d) and the correlated topic models. In LDA, this variable is

drawn from a Dirichlet distribution [20]. With the correlated topic models, however, it comes

from the transformation of a variable that is distributed according to a multivariate Gaussian

distribution [21] (Fig 1b, 1c and 1d). By using the multivariate Gaussian, the covariance of sig-

nature probabilities across samples can be captured. The multi-modal extension of the CTM

(i.e MMCTM) encodes mutation counts and signatures for different modalities (e.g. SNVs and

SVs) independently, except for the sample-signature probabilities which are all modeled using

the same Gaussian distribution, allowing for cross-modality correlations.

We also developed a set of “independent” feature models based on the method introduced

by Shiraishi et al. [16]—independent-feature LDA, CTM, and MMCTM (ILDA, ICTM,

IMMCTM, S1 Fig, S1 Table, S1 Text). These models can treat each mutation feature (e.g. sub-

stitution type, flanking nucleotide) independently. That is, one feature for the mutation itself

(say, C!T), and features for each piece of contextual information (e.g. 50 A and 30 G). Using

this scheme, we drastically reduced the number of feature values: assuming 6 SNV types, and 2

Correlated topic modeling of multi-type mutation signatures in cancer
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flanking nucleotides the number of feature values is reduced from 6 � 4 � 4 = 96 to 6 + 4 + 4 =

14 [16].

Datasets and feature construction

We studied mutation signatures in 560 breast [13] and 195 ovarian [2, 24] cancer genomes (S2

Table). Each dataset was analyzed separately to avoid biases from differences in sample

sequencing, data-processing or annotation.

We constructed SNV features using the 6 types of pyrimidine-centric substitutions (C!A,

C!G, C!T, T!A, T!C, T!G), and their flanking nucleotides. For example, a C!T substi-

tution with an upstream A and downstream G is represented as the item “A[C!T]G”. We

defined SV features by rearrangement type (deletion, tandem duplication, inversion, foldback

inversion (FBI), translocation), number of homologous nucleotides around the breakpoints

(0–1, 2–5, >5), and breakpoint distance (<10kbp, 10–100kbp, 100kbp–1Mbp, 1–10Mbp,

>10Mbp, except for translocations). Foldback inversions are inverted duplications caused by

breakage-fusion-bridge cycles.

We then computed counts of mutations, categorized as described above. The resulting

count matrices were provided as input to LDA, CTM, MMCTM, and NMF (S1 Table).

Correlated topic models improve signature inference

We compared NMF to the LDA, CTM, and MMCTM topic models. As NMF is commonly

applied to normalized mutation counts, we also compared output from this alternative NMF

procedure (NMF-NORM). Each method was run on input mutation counts constructed in an

Fig 1. Plate notation for LDA, CTM, and MMCTM. Graphical models for the a LDA, b CTM and c MMCTM

models, with d descriptions of their variables. See S1 Text for detailed descriptions.

https://doi.org/10.1371/journal.pcbi.1006799.g001
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identical manner (e.g. for SNVS, 96 counts for each sample), and methods were compared

using three different benchmarks: i) average per-mutation predictive log-likelihood; ii) logistic

regression prediction accuracy of HRD labels; and iii) the mean absolute error of inferred solu-

tions compared to a synthetic reference dataset.

For log-likelihood comparisons, we performed 5-fold cross validation, repeated 10 times,

on the 560 breast cancer dataset. In each comparison, we fit SNV and SV signatures to four

folds, leaving out a test fold (112 samples). We split mutation counts from each test fold sample

into two parts, inferred sample-signature probabilities with one portion, and computed aver-

age per-mutation predictive log-likelihood values with the other portion. By evaluating each

method on data different than those used for parameter estimation, we alleviated the risk of

over-fitting parameters. This evaluation procedure only required estimated mutation signa-

tures and sample-signature probabilities from each method, and did not depend on other

model details, e.g. signature correlation structure. The average per-mutation predictive log-

likelihood is an established comparison metric used in the topic modeling literature [25–27],

and is also not directly optimized by any method here (unlike e.g. reconstruction error which

is directly minimized by NMF). Although a likelihood-based metric may seem more applicable

to the probabilistic models, NMF can be interpreted as maximum likelihood estimation of the

“signature” and “activity” matrices under certain conditions (e.g. using Euclidean distance for

the cost function maps NMF to a Gaussian emission model) [17, 28].

We first compared performance as a function of the number of signatures, fitting models

over a range of 2–12 SNV and SV signatures (Fig 2a, S1 Dataset). For SNV signatures, LDA,

CTM, and MMCTM performed similarly, and were consistently higher than the NMF meth-

ods across the full range of signature numbers. For SV signatures, the probabilistic topic mod-

els’ performance was consistently higher than the NMF models, and improved until a plateau

was reached with an inflection point at 5. Within the topic models, the CTM and MMCTM

showed better performance than LDA. NMF-NORM performance degraded with >5 signa-

tures, and NMF performance degraded with >6 signatures.

Correlated topic models performed better than their non-correlated analogues at inferring

SV signatures, possibly due to relatively low input counts for SV features. To explore this fur-

ther, we compared performance over a range of mutation count fractions (Fig 2b, S2 Dataset).

When subsetting SNV counts, LDA, CTM, and MMCTM performed roughly equally until

only 1% of mutation counts were retained, at which point LDA performance became worse

than the CTM and MMCTM. With fewer SV counts, the MMCTM performed better than the

CTM, and both outperformed LDA. Importantly, correlated topic models were the least

affected by reducing mutation counts, whereas NMF-NORM exhibited the worst performance

decline, indicating that correlated models were in general more robust to data sparsity. Fur-

ther, fixing the MMCTM covariance matrix during inference reduced it’s performance with

fewer counts (Fig 2c, S2 Dataset), underlining the benefit of modeling signature correlations.

We next compared the ability of these methods to provide informative, low-dimensional

representations of samples, using signatures to stratify patients (Fig 3, S3 Dataset). We trained

each method 10 times with random initializations on the full breast cancer dataset. We then

trained a logistic regression classifier with the per-sample signature probabilities from each

run as input features, and published labels from HRDetect [3]. HRD prediction accuracy

scores were computed using 5-fold cross-validation. When the classifier was trained on only

SNV signature probabilities, LDA, CTM, and MMCTM performed equally well. NMF and

NMF-NORM generally performed worse. With SVs, the MMCTM signature probabilities pro-

vided the best accuracy, followed by the CTM and LDA. When the classifier was trained on

both SNV and SV signature probabilities, the CTM and MMCTM performed better than other

methods, further supporting the advantage of correlated models.

Correlated topic modeling of multi-type mutation signatures in cancer
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Fig 2. Predictive log-likelihood benchmark. SNV and SV signature per-mutation predictive log likelihood

means ± standard error (n = 50) for: a 2–12 signatures, b a range of mutation count fractions, and c MMCTM with

estimated or fixed Gaussian covariance matrix. NMF: applied to raw counts, NMF-norm: applied to normalized

counts.

https://doi.org/10.1371/journal.pcbi.1006799.g002

Correlated topic modeling of multi-type mutation signatures in cancer
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We then tested each method on a simulated dataset based on SNV and SV counts from 560

breast cancers [13] (Fig 4, S2 Fig, S4 Dataset). Briefly, we used NMF to fit signature probabili-

ties to a set of distinct SNV and SV signatures previously identified in this dataset (COSMIC 1,

2, 3, 13; RS 1, 2, 3, 5; see Methods) [13]. We note that using NMF-based signatures and esti-

mated signature probabilities likely biased results in favour of NMF. Using the signatures, esti-

mated signature probabilities, and mutation counts per sample, we generated 20 new sets of

counts (560 synthetic tumour samples each) by sampling from a Poisson distribution. We then

repeated the experiment by generating synthetic datasets with only 1% and 10% of the original

SNVs and SVs. Signatures and signature probabilities were estimated using each method,

selecting the best solution from 500 restarts, and the mean absolute error (MAE) was calcu-

lated between estimated and reference values.

While all methods generally performed well at recovering SNV signatures (all median MAE

<0.01, except for LDA in COSMIC 2 with 1% counts), NMF-NORM performed worst at infer-

ring SV signatures (adjusted t-test p-values <0.05, S2 Fig). The relatively low MAE even with

reduced mutation counts also indicated that these methods are able to detect similar signatures

as with a full set of mutations. Considering signature probabilities with full counts (Fig 4),

NMF performed best for COSMIC 1 (except v.s. NMF-NORM), COSMIC 3, COSMIC 13,

and the SV signatures, except v.s. CTM in RS 3 (adjusted t-test p-values <0.05). NMF-NORM

was worst for COSMIC 2, 3, and 13 (adjusted t-test p-values <0.05). However, with 1% of

the original SNV counts, the MMCTM did better than other methods for COSMIC 1, 3, & 13,

and both the MMCTM and CTM did best for COSMIC 2 (adjusted t-test p-values <0.05).

Fig 3. Low-dimensional classifier input benchmark. Accuracy means ± standard error (n = 50) is displayed for

training with SNV (left), SV (middle), and both SNV and SV (right) signature probabilities. NMF: applied to raw

counts, NMF-norm: applied to normalized counts.

https://doi.org/10.1371/journal.pcbi.1006799.g003
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With 10% SV counts, the MMCTM did best for RS 2 and 5. The CTM and MMCTM both

did better than other methods for RS 1 and 3 (adjusted t-test p-values <0.05).

The performances of the independent-feature models (ILDA, ICTM, IMMCTM) were also

robust to low mutation counts, as previously described [16], and they typically worked well for

SV signature estimation. However, they are generally worse than the MMCTM at inferring

SNV signatures, and were not considered for subsequent analysis (S3 and S4 Figs).

Overall, correlated topic models produced superior predictive mutation signature distribu-

tions and low-dimensional representations of samples. This was especially true when each

sample had few mutations, as for SVs. We also found similar patterns in log-likelihood

comparisons using the smaller ovarian cancer dataset (S4 Fig), except we detected no major

differences between the CTM and MMCTM. Performance of probabilistic topic models was

stable across a range of topic hyperparameter values (S3d Fig), and across random restarts

compared to NMF (S5 Fig), although randomization schemes differ across these two classes of

methods.

Fig 4. Signature probability mean absolute errors on synthetic data. Shown are mean absolute errors per method

and per signature (n = 20) for estimated signature probabilities compared to reference probabilities. The experiment

was repeated with full mutation counts and with 1% SNVs & 10% SVs. Data is represented as Tufte-like boxplots with

the following elements: points (medians), gaps (first to third quartiles), whiskers (extend to the most extreme value no

further than 1.5X the inter-quartile range from the gap edge), dashes (outliers). NMF: applied to raw counts, NMF-

norm: applied to normalized counts.

https://doi.org/10.1371/journal.pcbi.1006799.g004
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Integrated SNV and SV signatures in breast cancer

We next analysed mutations from the 560 breast cancer genomes [13] with the MMCTM for

stratification analysis (S6a Fig). We simultaneously fit 6 SNV and 7 SV signatures to counts of

SNVs and SVs (Fig 5a and 5b, S7 Fig, S5 Dataset, see Methods for signature count selection).

We found SNV signatures similar to those previously identified with proposed etiologies (S8

Fig), including the age-related (Age, COSMIC 1), APOBEC (APOBEC-1 & APOBEC-2, COS-

MIC 2 & 13), MMRD (COSMIC 20), and HRD (COSMIC 3) signatures. Additionally we

found an SNV signature of unknown etiology, UNK (COSMIC 17). We identified SV signa-

tures including small, medium, and large tandem duplications (S-Dup, M-Dup, L-Dup), dele-

tions (Del), intrachromosomal SVs (Intra-Chr & L-Intra-Chr), and translocations (Tr).

Some signatures were more likely to co-occur in the same tumour, possibly reflecting com-

mon etiology. According to the MMCTM model, the two APOBEC signatures were positively

correlated (Pearson’s r = 0.34) (Fig 5d, S6 Dataset), and the HRD SNV signature was positively

correlated with the S-Dup signature (r = 0.3), as expected. The Age signature was positively

correlated with Intra-Chr (r = 0.66), L-Intra-Chr (r = 0.53), and Tr (r = 0.38) SV signatures.

We next performed unsupervised clustering over tumours on joint per-tumour SNV and

SV signature probabilities (Fig 5c, S6b and S9 Figs, S7 and S8 Dataset, see Methods). The

resulting 7 groups included two (clusters 1 & 2, n = 164 & 147) enriched for the Age signature

(see S10a Fig, S9 Dataset for significant cluster-signature associations). Cluster 1 was enriched

for the Tr signature, and both clusters 1 & 2 were enriched for Intra-Chr and L-Intra-Chr.

While the Age signature was most correlated with patient age at diagnosis (r = 0.23, adjusted

p-value << 0.0001), Intra-Chr was second most correlated (r = 0.20, adjusted p-value <<

0.0001). Cluster 1 was associated with Luminal A cancers with relatively fewer SNVs, and con-

tained tumours from generally older patients (see Fig 5e, S10 Dataset for significant cluster-

annotation associations). This implies that older patients may be more likely to have accumu-

lated SVs in their cancers’ etiology as function of background rates, indicating a putative SV-

related age signature for breast cancer.

We also observed clusters with BRCA1/BRCA2 mutations and methylation (clusters 3 & 4,

n = 79 & 71), as previously described [13]. These tumours typically exhibited an HRD pheno-

type, and had elevated probability of the HRD SNV signature. Cluster 3 was associated with

the S-Dup & M-Dup SV signatures, and more BRCA1, RB1, and PTEN driver mutations than

expected by chance. As expected, cluster 3 patients were predominantly from the Basal

PAM50 class. Cluster 4 was associated with the Del signature, and BRCA2 mutation. In con-

trast to cluster 1, patients in cluster 3 also tended to be younger than patients in other clusters.

The majority (87%) of BRCA1/2 samples fell into clusters 3 & 4, although BRCA1/2 mutant

tumours that fell outside these clusters often had evidence of HRD, albeit with increased prob-

ability of unrelated signatures (e.g. L-Dup in cluster 6). Of patients predicted by HRDetect [3]

to harbour HRD, 97% fell within the BRCA1/2 (clusters 3 & 4) groups, demonstrating that the

MMCTM output provides a substrate upon which known biological clusters are recovered,

with further stratification as a result of SNV and SV integration.

Cluster 5 (n = 62) was enriched for the APOBEC-1, APOBEC-2, Intra-Chr, and L-Intra-

Chr signatures, and was also enriched for HER2-positive tumours, relating Her2-amplification

and APOBEC deamination processes for approximately 11% of breast cancers, as previously

reported [29]. Cluster 6 (n = 29) was the only group enriched for L-Dup, and also contained

older patients than expected by chance. Cluster 7 (n = 8) was associated with defective DNA

mismatch repair (MMRD), and the MMRD SNV signature, consistent with previous reports

[30].
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Fig 5. BRCA-EU mutation signature analysis. a SNV mutation signatures. SNVs are organized according to the

SNV type (color). Within each type, SNVs are further organized into the pattern of flanking nucleotides (A—A, A—

C, . . .,T—G, T—T). b SV mutation signatures. SVs are grouped by type (DEL: deletion, DUP: tandem duplication,

INV: inversion, TR: translocation). c Heatmap of relative signature probabilities in BRCA-EU samples. Each heatmap

column represents a single sample, and is composed of the SNV and SV signature probabilities output from the

MMCTM model. The values for each signature (row) have been standardized, producing z-scores. Heatmap display

has been truncated to ±3. Samples have been hierarchically clustered according to their transformed signature

probabilities and cluster labels are indicated with colors underneath the dendrogram. The number of samples in each

Correlated topic modeling of multi-type mutation signatures in cancer
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SNV and SV signature probabilities segregate ovarian cancer samples into

prognostically distinct groups

A recent analysis of ovarian tumours revealed a novel high-grade serous ovarian carcinoma

(HGSC) sub-group with relatively worse prognosis, characterized by increased frequency of

foldback inversions (FBI) [2]. Their analysis combined NMF-based SNV signature analysis

with ad-hoc SV and copy number variant (CNV) features. Here we expanded on some of their

findings using the MMCTM on a merged data set consisting of 133 samples from Wang et al.

[2] and 62 samples from the International Cancer Genome Consortium (ICGC) ovarian can-

cer whole genome dataset [31].

We fit 6 SNV and 7 SV signatures to mutation counts from the 195 ovarian cancer genomes

(Fig 6a and 6b, S11 Fig, S5 Dataset, see Methods for signature count selection), including

endometrioid carcinomas (ENOC), clear cell carcinomas (CCOC), granulosa cell tumours

(GCT), and HGSC (S2 Table). Amongst the resultant SNV signatures were the previously

described Age (COSMIC 1), APOBEC (COSMIC 13), HRD (COSMIC 3), MMRD-1 (COS-

MIC 20), MMRD-2 (COSMIC 26), and POLE (COSMIC 10) signatures (S8 Fig, see also for a

comparison to the breast SNV signatures). The SVs included signatures for small, medium,

and large tandem duplications (S-Dup, M-Dup, L-Dup); deletions (Del); FBI, inversions, and

deletions (FBI/Inv/Del); intrachromosomal SVs (Intra-Chr); and translocations (Tr). The

association of deletions with FBI can be understood in terms of the underlying cause of FBI:

breakage-fusion-bridge cycles. After the loss of a telomere, sister chromatids fuse and are then

pulled apart during mitosis, producing one chromosome with a foldback inversion and

another with a terminal deletion.

We clustered the tumours according to their joint standardized SNV and SV signature

probabilities, which resulted in 11 groups (Fig 6c, S12 Fig, S7 and S8 Dataset). While the origi-

nal study identified one HRD signature group [2], our analysis here produced two major HRD

clusters (1 & 4, n = 34 & 23), roughly defined by tumours with S-Dup and M-Dup (see S10 Fig,

S9 Dataset for cluster-signature associations) coupled with loss of BRCA1 (see Fig 6d, S10

Dataset for cluster-annotation associations), and small deletions (Del) coupled with loss of

BRCA2, respectively. The association of BRCA1/2 status with tandem duplication and deletion

SV signatures has been reported in breast cancer tumours [13], and was reflected in our analy-

sis of the 560 breast cancer dataset (Fig 5, described above), providing strong evidence for

BRCA1-like and BRCA2-like HRD sub-strata crossing tumour types.

Cluster 2 (n = 32), 5 (n = 20), 7 (n = 14), and 9 (n = 8) were all enriched for the FBI/Inv/Del

signature. Cluster 9 also included all microsatellite instable (MSI) ENOC tumours, and was

also associated with MMRD-1, Age, and Del signatures, along with higher numbers of SNVs,

and KMT2B and RPL22 mutations. Cluster 3 (n = 25) contained mainly CCOC and ENOC

tumours enriched for the Age, L-Dup, and Tr signatures. Cluster 6 (n = 16) included tumours

highly enriched for APOBEC signature probability. Cluster 7 (n = 14) was associated with the

HRD SNV signature as well as Del and FBI/Inv/Del. Cluster 8 (n = 11) was only enriched for

the Intra-Chr signature. Cluster 10 (n = 6) was similar to the BRCA1 cluster (1), but was more

strongly associated with the M-Dup signature. Another small cluster of mainly HGSC tumours

cluster is indicated in parentheses in the cluster legend. ER, PR, and HER2 positive status, BRCA1/2 mutation or

methylation status, other gene driver mutation status, HRDetect prediction, and MMRD status is indicated with black

bars. Grey cells represent missing data for annotation tracks. Samples with zero mutations for a mutation type also

have grey signature probability cells. d Correlation heatmap between SNV and SV signatures. e Annotation

associations for sample clusters. Upward- and downward-pointing triangles indicate enrichment and depletion,

respectively. Adjusted p-values>0.05 are not shown. Colors correspond to cluster colors indicated in the heatmap.

https://doi.org/10.1371/journal.pcbi.1006799.g005
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Fig 6. Ovarian cancer mutation signature analysis. a SNV mutation signatures. SNVs are organized according to the

SNV type (color). Within each type, SNVs are further organized into the pattern of flanking nucleotides (A—A, A—

C, . . .,T—G, T—T). b SV mutation signatures. SVs are grouped by type (DEL: deletion, DUP: tandem duplication,

INV: inversion, FBI: foldback inversion, TR: translocation). c Heatmap of relative signature probabilities in ovarian

cancer samples. Each heatmap column represents a single sample, and is composed of the SNV and SV signature

probabilities output from the MMCTM model. The values for each signature (row) have been standardized, producing

z-scores. Heatmap display has been truncated to ±3. Samples have been hierarchically clustered according to their

transformed signature probabilities and cluster labels are indicated with colors underneath the dendrogram. The

number of samples in each cluster is indicated in parentheses in the cluster legend. Samples from the ICGC OV-AU

project are indicated with black bars, as is microsatellite instability (MSI) and gene mutation status. Samples with zero
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(11, n = 6), was associated with higher probability of the L-Dup signature, and CDK12 muta-

tions, an association supported by a previous study [32].

By inspecting the signature correlations output by the MMCTM model (Fig 6g, S6 Dataset)

we saw that the HRD SNV signature was positively correlated with the S-Dup (r = 0.12) signa-

ture, as may be expected from the underlying biology of these signatures. The Age signature is

positively correlated with the L-Dup (r = 0.45) and FBI/Inv/Del (r = 0.37) signatures. MMRD-

1 is positively correlated with the S-Dup (r = 0.26), and Del (r = 0.53) SV signatures.

HGSC patient groups, defined by their standardized mutation signature probabilities, dif-

fered in survival rates. We defined 5 HGSC groups (see Methods), representing BRCA1-

mutant (clusters 1, 10; n = 36), BRCA2-mutant (cluster 4, n = 19), FBI (clusters 2, 5, 7; n = 50),

Intra-Chr (cluster 8, n = 8), and CDK12-like tandem duplicator tumours (cluster 11, n = 5).

We compared overall-survival amongst the HGSC super-clusters using the Kaplan-Meier

method (Fig 6e and 6f). The BRCA2/deletion cluster had the highest survival rate, while the

CDK12/tandem duplicator group had the worst. Comparing the HGSC clusters in a pairwise

fashion, the CDK12 group had worse survival than the BRCA1 and BRCA2 groups (adjusted

log-rank p-value < 0.05). The FBI group had worse survival than the BRCA2 group (adjusted

log-rank p-value < 0.05). The BRCA1/tandem-duplication group had an intermediate survival

rate, but the survival curve was not significantly different than those of the FBI or BRCA2
groups (adjusted log-rank p> 0.05). While FBI was previously identified as a marker for poor

prognosis [2], activity of a mutational process linked with loss of CDK12 and producing

100kbp–1Mbp tandem duplications could indicate even worse outcomes. Overall, the

MMCTM analysis represented a refinement of signature-based prognostic stratification in

HGSC indicating BRCA2-like HRD as the best performing group of patients, followed by

BRCA1-like HRD, Intra-Chr, FBI, and CDK12-like tandem duplicators.

MMCTM produces reproducible mutation signatures

To evaluate the reproducibility of signatures inferred using the MMCTM, we applied the

method to the two independent HGSC datasets included in our ovarian cancer analysis above.

Specifically, 59 samples previously published by our group, and 62 samples from ICGC. Each

HGSC group contained signatures that were similar between both groups, including HRD

associated SNV and SV signatures. Both groups also showed a segregation of BRCA1- and

BRCA2-like cases based on per-sample signature probabilities (S13 and S14 Figs).

We also compared SNV signatures inferred in the ovarian and breast datasets to each other

and to the COSMIC signatures (S8 Fig). In both datasets we found signatures similar to those

previously reported to occur in ovary and breast cancers [2, 10, 13], including the APOBEC;

HRD; and age-associated signatures, demonstrating the ability of the MMCTM to capture

established signatures.

Discussion

Through integrated statistical inference and analysis of SNV and SV mutation signatures,

our results reveal at once correlated signatures and patient stratification within DNA repair

deficient tumours. Our findings have several implications for the field. The use of structural

mutations for a mutation type also have greyed signature probability cells. The number of SNVs for a POLE mutant

sample has been truncated to 40k in the barplot; The actual number is 596,135. d Annotation associations for sample

clusters. Upward- and downward-pointing triangles indicate enrichment and depletion, respectively. Adjusted p-

values>0.05 are not shown. Colors correspond to cluster colors indicated in the heatmap. e Kaplan-Meier curves for

HGSC samples only. f Risk table for HGSC samples only. Kaplan-Meier curve plots and risk tables share x-axes. g

Correlation heatmap between SNV and SV signatures.

https://doi.org/10.1371/journal.pcbi.1006799.g006
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variations in signature analysis is less common than for point mutations, in part due to the rel-

ative paucity of whole-genome sequencing datasets. Here, we show the significant new value

from their joint interpretation, and set the framework for their simultaneous consideration

across a broad range of tumour types. Moreover, our results demonstrate that correlated statis-

tical modeling improves signature inference in the context of sparse mutation counts. The

HRD point mutational signature is well described, but automated association of tandem dupli-

cations within BRCA1-like and interstitial deletions within BRCA2-like cancers represents an

important refinement, reproduced here in two independent cancer types, with data from two

independent studies. Furthermore, we show in the ovarian cancer cohort how this has prog-

nostic implication, superseding what could be derived from gene-based biomarkers (i.e. if only

BRCA1 and BRCA2 mutation status were considered).

We have introduced a new formalism for mutation signature analysis in cancer genomes.

Our approach models the correlation between signatures, which provides their performance

increase. However, when no correlations exist between signature probabilities, this method

will likely not provide much benefit. In these situations, a researcher may opt to use an alterna-

tive, such as NMF or LDA. Nevertheless, signature correlations exist in at least breast and ovar-

ian cancer, as shown in this report, and we believe analysis of other cancer types will benefit

from our approach.

The topic models discussed in this manuscript produce signature probabilities, as opposed

to activity estimates, which requires a subtle difference in interpretation. Signature probabili-

ties are related to activities, but they indicate the probability of signatures generating a muta-

tion, rather than the proportion of mutations generated by a signature. The topic models

discussed output non-zero signature probabilities for each sample, due to their Bayesian

formulation. Since every sample is unlikely to have experienced activity from every detected

signature, one may wish to set a probability threshold to determine active signatures for down-

stream analysis. However, the optimal choice of probability threshold is a matter for future

investigation.

Correlated topic models are significantly more robust to reduced mutation burden, which

can occur in a number of scenarios. We have already described that signature extraction from

SVs, at the level detected in the breast and ovarian datasets analysed here, benefits from corre-

lated signature modeling. Analysis of other low-count mutation types may also benefit, for

example mutations called from exome or single-cell sequencing experiments.

Importantly, the statistical framework of the MMCTM is flexible and extensible. While

here we show the advantage of integrated SNV and SV analysis, the MMCTM can seamlessly

integrate other count-based features such as copy number events, double strand breaks, and

telomeric insertions. As the field develops, we suggest a robust and extensible framework will

be required to encode and integrate multiple feature types of the genome as they relate to

mutational processes.

The advantage of our relatively simple SNV and SV integration is evident and motivates

further advances through multi-modal statistical modelling leading to richer biological inter-

pretations of endogenous and potentially exogenous processes. In conclusion, our findings

reinforce the importance of an integrated, holistic view of multiple classes of genomic scarring

to drive discovery and characterization of mutation processes across human cancers.

Materials and methods

Mutation data processing

Nucleotides flanking SNVs were extracted from human reference GRCh37. The number of

each type of SNV (e.g. C!T) with a particular flanking sequence was counted. SV calls were
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split according to type (deletion, tandem duplication, inversion, foldback-inversion, transloca-

tion), the level of homology (0–1, 2–5,>5 bp), and breakpoint distance (<10kbp, 10–100kbp,

100 kbp–1Mbp, 1–10Mbp, >10Mbp), then counted. Foldback inversion calls were not

included in the breast cancer dataset. Breakpoint distance bins are those used in a previous

study on SV signatures [13]. Breakpoint distance was not calculated for translocations, as the

concept is not applicable for this class of SVs. SNV and SV counts per sample were computed

from the mutations used for signature analysis. Additional ovary sample gene mutation anno-

tations were computed from SNV and indel calls according to the original paper.

Inference in topic models and NMF

For LDA and ILDA, parameters were inferred using mean-field Variational Bayes. For CTM,

MMCTM, ICTM and IMMCTM, parameter inference was performed using mean-field varia-

tional EM. The MMCTM updates and derivations can be found in Salomatin et al. [22]. See S1

Text for detailed descriptions of the topic models.

When using only a single mutation type, the MMCTM reduces to the CTM described by

Blei and Lafferty [21] (similarly for the IMMCTM and ICTM). Therefore, the CTM and ICTM

parameters were inferred using the MMCTM and IMMCTM implementations, but with

counts from a single mutation type. The CTM, ICTM, LDA, ILDA, and NMF methods were

used to compute SNV or SV signatures separately.

The probabilistic topic models were implemented similarly using the Julia language v0.6.3

[33]. NMF models were fit using the coordinate descent solver implementation in the Scikit-

learn library [34] v0.19.1.

Method comparison

NMF was run on both raw and normalized mutation counts. Normalization was performed by

dividing mutation counts by sample totals, for each mutation type.

For log-likelihood-based comparisons, mutation counts were split according to a stratified

10 × 5 cross validation scheme; For each histotype, samples were split into 5 training and test

sets. The splitting procedure was performed 10 times, resulting in 50 training and test sets.

Each method was run on each training set and evaluated on each corresponding test set,

using random initialization. Random initialization for the topic models involved generating

random positive integer values for the variational signature-mutation dirichlet parameters.

Evaluation was performed by randomly splitting the mutations in each test sample into

observed and hidden sets. Signature probabilities for each test sample were estimated using the

observed test mutation counts, then the per-mutation predictive log likelihood was computed

using the hidden test mutation counts. Methods were tested over a range of 2–12 signatures, as

well as over a range of count subsets. Multi-modal topic models were given the same number

of signatures for SNVs and SVs. An additional, similar comparison was performed by fitting

the MMCTM to this data with covariance fixed to the identity matrix.

Count subset comparisons were performed by removing mutations from each genome,

retaining only a given fraction. Mutations were randomly selected according to their type (e.g.

C(C!T)T) and relative type proportions. These mutations were removed and the genome

mutation counts updated. The updated mutation counts were then input to the compared

methods. SNVs were subset to 1, 5, 10%, while keeping SVs at 100%. SVs were subset to 10, 15,

20%, while keeping SNVs at 100%. For the breast cancer dataset, the number of SNV and SV

signatures was fixed at 5, selected by observing the log-likelihood curves in the above bench-

marking experiment (S3 Fig) with the objective of choosing a “fair” value. For the ovarian can-

cer dataset, the number of SNV and SV signatures was fixed to 6 and 5, respectively.

Correlated topic modeling of multi-type mutation signatures in cancer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006799 February 22, 2019 15 / 24

https://doi.org/10.1371/journal.pcbi.1006799


The stability of method solutions were also compared over 100 random restarts on 4/5 of

the breast cancer dataset. Solutions were evaluated on the remaining 1/5 of the samples in the

manner described earlier.

Predictive log likelihoods were computed on test sets with signatures for SNVs and SVs sep-

arately. The likelihood computation involves the signatures fit with the training data, sample-

signature probabilities estimated using the observed test counts, and the hidden test counts.

The average per-mutation predictive log likelihood for a particular mutation type is given in

Eq 1.

l ¼
PD

d

PNd
n log

PK
k pðX

d
n j �kÞpðZd

n ¼ k j ydÞ
� �

PD
d Nd

ð1Þ

where D is the number of samples, Nd is the number of mutations in sample d, K is the number

of signatures, X is the mutations in sample d, Z is the mutation-signature indicators, ϕk is the

signature-mutation distribution, and θd is the sample-signature distribution.

For comparisons involving the breast cancer dataset, foldback inversion counts were not

provided to NMF as these SV types were not included in this dataset. When evaluating the

NMF solutions, the outputs are normalized to produce valid probability distributions that can

be used for the log-likelihood calculations. Since NMF does not take into account uncertainty

during estimation, the sum of probabilities calculation above can occasionally produce zeros.

To avoid taking log(0), we add 10−16 to the sum of probabilities for NMF. Topic model signa-

ture-mutation and sample-signature distribution point-estimates were obtained by taking the

mean of their variational posterior distributions.

For the logistic regression classifier-based comparisons, each signature detection method

was trained 10 times with 2–10 signatures, using the full 560 breast cancer dataset. For multi-

modal methods, the same number of SNV and SV signatures was given. The sample-signature

distributions were used as training data for the classifier along with previously published

HRDetect-derived labels. HRDetect negative cases were subsampled for each method run to

produce balanced datasets for training and evaluation, with 124 positive and negative labels

each. Three types of tests were performed: using only SNV, only SV, or both SNV and SV sam-

ple-signature distributions. Stratified 5-fold cross-validation was performed for each test,

resulting in 5 × 10 = 50 scores for each method, training data type, and setting of the number

of signatures. The output score of cross validation is the mean accuracy of the logistic regres-

sion classifier. Parameter inference was performed using the Scikit-learn [34] v0.19.1 imple-

mentation with the liblinear solver and maximum 10,000 iterations.

Simulated datasets were generated by first selecting COSMIC SNV signatures 1, 2, 3, 13,

and breast cancer SV signatures [13] RS 1, 2, 3, and 5. These SNV signatures were reported as

present in the breast cancer dataset [13], and they are qualitatively distinct from each other. SV

signatures largely defined by clustered breakpoints were excluded as that feature was not

included in this analysis. Reference signature probabilities were estimated using NMF, the

given signatures, and counts for the 560 breast cancer dataset. 10 synthetic datasets were gen-

erated, where for each mutation type in each sample, counts were generated by drawing from

a Poisson distribution with rate equal to the number of mutations in the sample multiplied by

the reference signature matrix and the sample’s signature probability vector. This approach is

similar to that used in a previous study [18]. This procedure was repeated using the reference

signatures, signature probabilities, and mutation counts subsetted to 1% SNVs and 10% SVs.

Signatures and signature probabilities per dataset were then estimated by running each

method 500 times with random restarts and choosing the best solution per method based on

predictive log-likelihood. Topic model signature hyperparameters were set to 1.0. Estimated
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signatures were then matched to the reference signatures, and the mean absolute differences

between the reference and estimated values were computed. Signature matching was per-

formed by finding the pairwise combination of estimated and reference signatures that gave

the lowest mean absolute error. Then the matching procedure was repeated for the rest of the

signatures, while ignoring previously assigned reference signatures.

Choosing the number of signatures

The number of signatures to estimate in the breast and ovarian datasets was selected by

inspecting the log-likelihood curves from the benchmarking experiment, using the elbow

curve method (S15 Fig). The number of signatures to estimate in the two HGSC datasets was

selected by fitting the MMCTM to approximately half the mutations in each sample, and com-

puting the average per-mutation log-likelihood on the other half of the mutations. This differs

from the benchmarking cross-validation scheme in that it takes in account all samples in the

dataset.

Fitting MMCTM to cancer datasets for downstream analysis

The model was initially fit to each dataset 1000 times for a limited number of iterations. α
hyper-parameters were set to 0.1. Each restart is run until the relative difference in predictive

log likelihood on the training data was< 10−4 between iterations. The restart with the best

mean rank of the SNV and SV predictive log likelihoods was selected for fitting to convergence

with a tolerance of 10−5.

Sample hierarchical clustering

Samples were clustered using sample-signature probabilities for SNV and SV signatures

together. Signature probabilities were converted to Z-scores for each signature across samples.

By standardizing the probabilities, the inter-sample differences of low-prevalence signatures

are given increased emphasis relative to higher-prevalence signatures. Hierarchical agglomera-

tive clustering was performed using the Euclidean metric, and Ward linkage. Discrete clusters

were formed using the R dynamicTreeCut package [35] v1.63 with method = “hybrid”,

deepSplit = FALSE, and minClusterSize = 3.

Sample cluster enrichment and depletion tests

Enrichment of a sample cluster’s signature probability was tested using an unequal variance

one-sided t-test against the signature probabilities of other clusters.

For the breast cancer dataset, cluster associations with ER, PR, HER2, MMRD, and PAM50

status were performed with a two-tailed Fisher’s exact test. Differences in Age or the number

of SNVs and SVs were tested with two-tailed unequal variance t-tests. Driver gene mutation

and HRDetect prediction associations were computed using a blocked permutation test.

The permutation tests were performed as follows: For each cluster, “new” clusters were gen-

erated by sampling tumour samples without replacement from the full dataset. New clusters

maintained the same ER, PR, and HER2 status composition as the original cluster. The differ-

ence in proportions of samples with the annotation of interest between the new cluster and all

other samples was computed. Two-tailed p-values were calculated using Eq 2:

p ¼
1þ

PN
n Iðabsðs0Þ � absðsÞÞ

1þ N
ð2Þ

where N is the number of permutations (generated clusters, here 10,000), and s is the statistic
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of interest for the original cluster (e.g. difference in proportions of samples with loss of TP53),

and s0 is the same statistic for a generated cluster. This procedure attempts to correct for corre-

lations between the tested annotations and ER, PR, and HER2 status.

Gene mutation status and MSI cluster associations in ovarian cancer were tested with the

blocked permutation test described above, accounting for histotype rather than ER, PR, and

HER2 status. Differences in SNV and SV counts were performed with two-tailed unequal vari-

ance t-tests. Due to the presence of a POLE mutant sample with a very high number of SNVs,

t-tests for this statistic were performed on count ranks. The unequal variance t-test on ranked

data is a robust alternative to Student’s t-test and the Mann-Whitney U test when assumptions

are violated [36].

Cluster-signature and cluster-annotation p-values within each dataset were corrected using

the Benjamini & Hochberg method [37].

Survival analysis

HGSC samples grouped according to the hierarchical clustering were compared by estimating

overall-survival Kaplan-Meier curves for each cluster, using the R survival package. Clusters 2,

5, and 7 were grouped as they were all enriched for the FBI/Inv/Del signature, and had no sig-

nificant difference in survival outcome. We call this the “FBI” group. Similarly, cluster 10

was grouped with cluster 1 as it contained BRCA1 mutant patients with similar signature

profiles. P-values were calculated using the log-rank test. Pairwise survival curve comparison

p-values were adjusted using the Benjamini & Hochberg method [37] implemented in the R

p.adjust function.

Code availability

Topic model code is available in a GitHub repository: https://github.com/shahcompbio/

MultiModalMuSig.jl.

Supporting information

S1 Fig. Plate notation for ILDA, ICTM, and IMMCTM. Graphical models for the a ILDA, b

ICTM and c IMMCTM models, with d descriptions of their variables. See S1 Text for detailed

descriptions.

(PDF)

S2 Fig. Signature mean absolute errors on synthetic data. Shown are mean absolute errors

per method and per signature for estimated signatures compared to the reference signatures.

The experiment was repeated with full mutation counts and with 1% SNVs & 10% SVs. Data is

represented as Tufte-like boxplots with the following elements: points (median), gap (first to

third quartile), whisker (extends to the most extreme value no further than 1.5X the inter-

quartile range from the gap edge), dash (outlier). NMF: applied to raw counts, NMF-norm:

applied to normalized counts.

(PDF)

S3 Fig. Comparisons of NMF, LDA, CTM, MMCTM, ILDA, ICTM, and IMMCTM, using

the 560 breast cancer dataset. Displayed are SNV and SV signature log likelihood means ±
standard error for: a 2–12 signatures, and b a range of mutation count fractions. c Logistic

regression accuracy means ± standard error for predicting HRD labels using per-sample signa-

ture probabilities across a range of 1–10 signatures. d Method comparison across topic Dirich-

let hyperparameter values using the breast cancer dataset. Displayed are log likelihood

means ± standard error. NMF: applied to raw counts, NMF-norm: applied to normalized
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counts. Vertices and error bars are dodged slightly to reduce overplotting.

(PDF)

S4 Fig. Comparison of NMF with LDA, CTM, MMCTM, ILDA, ICTM, and IMMCTM,

using the ovarian cancer dataset. Displayed are log likelihood means ± standard error for: a

2–15 signatures, and b a range of mutation count fractions. Top panels are evaluations on

SNV counts, bottom panels are evaluations on SV counts only. NMF: applied to raw counts,

NMF-norm: applied to normalized counts. Downsampled SNV: only SNV counts are down-

sampled. Downsampled SV: only SV counts are down-sampled. The down-sampling frac-

tions are different for SNV and SV counts. Vertices and error bars are dodged slightly to

reduce overplotting.

(PDF)

S5 Fig. Log likelihoods across random restarts. Average per-mutation predictive log-likeli-

hoods from 100 restarts for SNV and SV signatures inferred by each method. Values have

been mean-centered.

(PDF)

S6 Fig. Mutation processes and mutation signature analysis workflow. a Analysis workflow

for the multimodal topic models MMCTM and IMMCTM. b Mutation process activity is

detected as patterns of mutations, i.e. mutation signatures, in the genome. Samples with com-

mon levels of signature probabilities may be grouped, and potentially exhibit similar pheno-

types.

(PDF)

S7 Fig. SNV signatures for the 560 genomes BRCA-EU dataset. Mutation and flanking

sequence shown on x-axis.

(PDF)

S8 Fig. Binary heatmap indicating which SNV signatures have cosine similarity� 0.8.

Included are SNV signatures from COSMIC, the breast, and ovarian cancer datasets.

(PDF)

S9 Fig. Heatmap of relative probabilities of signatures in BRCA-EU samples. Each heatmap

column represents a single sample, and is composed of the probabilities of SNV and SV signa-

tures output from the MMCTM model. The values for each signature (row) have been stan-

dardized, producing z-scores. Heatmap display has been truncated to ±3. Samples have been

hierarchically clustered according to their transformed signature probabilities and cluster labels

are indicated with colours underneath the dendrogram. The number of samples in each cluster

is indicated in parentheses in the cluster legend. ER, PR, and HER2 positive status are indicated

with black bars. Similarly, BRCA1/2 mutation status and HRDetect prediction are indicated.

(PDF)

S10 Fig. Sample cluster signature probability comparisons. Tests compared signature prob-

ability means for clusters in the a breast, and b ovarian cancer datasets. Adjusted p-values

>0.05 are not shown. Cluster labels are colored according to those in the associated signature

probability heatmap.

(PDF)

S11 Fig. SNV signatures for the ovarian cancer dataset. Mutation and flanking sequence

shown on x-axis.

(PDF)
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S12 Fig. Heatmap of relative probabilities of signatures in ovarian cancer samples. Each

heatmap column represents a single sample, and is composed of the probabilities of SNV

and SV signatures output from the MMCTM model. The values for each signature (row)

have been standardized, producing z-scores. Heatmap display has been truncated to ±3.

Samples have been hierarchically clustered according to their transformed signature proba-

bilities and cluster labels are indicated with colours underneath the dendrogram. The

number of samples in each cluster is indicated in parentheses in the cluster legend. Samples

from the ICGC OV-AU project are indicated with black bars, as is gene mutation and MSI

status.

(PDF)

S13 Fig. Shah HGSC cancer mutation signature analysis. a SNV mutation signatures. SNVs

are organized according to the SNV type (color). Within each type, SNVs are further organized

into the pattern of flanking nucleotides (A—A, A—C, . . .,T—G, T—T). b SV mutation signa-

tures. SVs are grouped by type (DEL: deletion, DUP: tandem duplication, INV: inversion, FBI:

foldback inversion, TR: translocation). c Heatmap of relative signature probabilities in HGSC

cancer samples. Each heatmap column represents a single sample, and is composed of the

probabilities of SNV and SV signatures output from the MMCTM model. The values for each

signature (row) have been standardized, producing z-scores. Heatmap display has been trun-

cated to ±3. Samples have been hierarchically clustered according to their transformed signa-

ture probabilities and cluster labels are indicated with colors underneath the dendrogram. The

number of samples in each cluster is indicated in parentheses in the cluster legend. Samples

with mutated BRCA1/2 or methylated BRCA1 genes indicated with black boxes under the clus-

ter assignments above the heatmap. d Signature log likelihood means ± standard error for

2–12 signatures. Signatures estimated from one half of counts, log-likelihood evaluated on the

other half. Used to choose number of signatures.

(PDF)

S14 Fig. ICGC HGSC cancer mutation signature analysis. a SNV mutation signatures. SNVs

are organized according to the SNV type (color). Within each type, SNVs are further organized

into the pattern of flanking nucleotides (A—A, A—C, . . .,T—G, T—T). b SV mutation signa-

tures. SVs are grouped by type (DEL: deletion, DUP: tandem duplication, INV: inversion, FBI:

foldback inversion, TR: translocation). c Heatmap of relative signature probabilities in HGSC

cancer samples. Each heatmap column represents a single sample, and is composed of the

probabilities of SNV and SV signatures output from the MMCTM model. The values for each

signature (row) have been standardized, producing z-scores. Heatmap display has been trun-

cated to ±3. Samples have been hierarchically clustered according to their transformed signa-

ture probabilities and cluster labels are indicated with colors underneath the dendrogram. The

number of samples in each cluster is indicated in parentheses in the cluster legend. Samples

with mutated or methylated BRCA1/2 genes indicated with black boxes under the cluster

assignments above the heatmap. d Signature log likelihood means ± standard error for 2–12

signatures. Signatures estimated from one half of counts, log-likelihood evaluated on the other

half. Used to choose number of signatures.

(PDF)

S15 Fig. MMCTM SNV and SV log likelihood means ± standard error across signature

number. Shown for: a breast, and b ovarian cancer datasets. Signature number choice indi-

cated as an green vertical line.

(PDF)
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S1 Table. Description of mutation signature methods.

(PDF)

S2 Table. Dataset breakdown.

(PDF)

S1 Text. Descriptions of the topic models.

(PDF)

S1 Dataset. Method benchmarking log-likelihood values across a range of the number of

signatures. Columns: method (signature inference method; string), evaluation (snv or sv;

string), k (number of signatures; integer), n (cross validation repeat; integer), fold (cross vali-

dation fold; integer), ll (log-likelihood; float), dataset (breast, ovary; string).

(TSV)

S2 Dataset. Method benchmarking log-likelihood values across a range of mutation count

fractions. Columns: method (signature inference method; string), evaluation (snv or sv;

string), k (number of signatures; integer), snv_frac (fraction of retained SNVs; float), sv_frac

(fraction of retained SVs; float), n (cross validation repeat; integer), fold (cross validation fold;

integer), ll (log-likelihood; float), dataset (breast, ovary; string).

(TSV)

S3 Dataset. Method benchmarking logistic regression accuracy across a range of the num-

ber of signatures. Columns: score (logistic regression accuracy; float), k (number of signa-

tures; integer), n (cross validation repeat; integer), fold (cross validation fold; integer), method

(signature inference method; string), train (training set, either SNV, SV or SNV & SV; string).

(TSV)

S4 Dataset. Method benchmarking mean absolute error on synthetic breast cancer data.

Columns: value (estimated value type, signature or probability; string), method (signature

inference method; string), evaluation (snv or sv; string), signature (signature name; string),

subset (1.0-1.0: full counts, 0.01-0.1: 1% SNVs & 10% SVs; string), seed (random seed; integer),

mae (mean absolute error between ground truth and estimated value; float).

(TSV)

S5 Dataset. Mutation signatures. Columns: modality (1: SNV, 2: SV; integer), signature (sig-

nature label; string), value (mutation term number; integer), term (mutation term; string),

probability (signature-mutation probability; float), dataset (breast, ovary; string).

(TSV)

S6 Dataset. Mutation signature probability correlations. Columns: signature_� (mutation

signature label; string), correlation (sample-signature probability correlation between two sig-

natures; float), dataset (breast, ovary; string).

(TSV)

S7 Dataset. Mutation signature probabilities per sample. Columns: signature (mutation sig-

nature label; string), sample (sample id; string), probability (sample-signature probability;

float), dataset (breast, ovary; string).

(TSV)

S8 Dataset. Sample clusters. Columns: sample (sample id; string), cluster (cluster number;

integer), dataset (breast, ovary; string).

(TSV)
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S9 Dataset. Sample cluster signature probability enrichment p-values. Columns: cluster

(sample cluster; integer), signature (mutation signature label; string), p_value (enrichment p-

value, float), mean_diff (difference between means, float), conf_low (lower bound of confi-

dence interval; float), conf_high (upper bound of confidence interval; float), q_value (BH

adjusted p-value; float), dataset (breast, ovary; string).

(TSV)

S10 Dataset. Sample cluster annotation association p-values. Columns: label (annotation

label; string), p_value (enrichment p-value, float), diff (difference between group statistics,

float), conf_low (lower bound of confidence interval; float), conf_high (upper bound of confi-

dence interval; float), test (statistical test; string), cluster (sample cluster; integer), q_value (BH

adjusted p-value; float), dataset (breast, ovary; string).

(TSV)
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