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The cadmium (Cd), a heavy metal, causes toxicity, which leads to hampering the growth and development of the plant. The
molecular and biochemical approaches were used for the investigation of antioxidant system response and genotoxicity in date palm
(Phoenix dactylifera L.) cv. Sagai in pot experiment having Cd. The root length was more affected than the shoot length as more
accumulation of Cd occurs in roots. Fresh weights of root and shoot were reduced significantly in treated plants as compared to the
control. The proline content was increased at low concentration of Cd (300 𝜇M-CdCl2) than the medium and high concentrations
(600 and 900 𝜇M-CdCl2), respectively. The thiobarbituric acid reactive substances (TBARS) content was increased at 600 and
900 𝜇M-CdCl2 compared to the plants treated at 300 𝜇M-CdCl2 and controls. Antioxidant enzymatic assay was performed under
Cd stress and compared with control plants. The catalase (CAT) and superoxide dismutase (SOD) activities were found to be high
in plants treated with CdCl2 at 300 𝜇M compared to at 600 and 900 𝜇M-CdCl2, respectively. The genotoxicity of Cd was assessed
using the inter-simple sequence repeat (ISSR) marker where all treated and control plants were clustered into three main groups
based on genetic similarity. P. dactylifera plants were found to bemore divergent at high Cd stress as compared to control and plants
treated at low concentration of Cd.

1. Introduction

Heavy metals are inorganic chemical constituents which
have mutagenic, cytotoxic, and genotoxic effects on plants,
humans, and animals [1–4]. Cadmium (Cd) is considered
in the top ten list of hazardous compounds by the Agency
for Toxic Substances and Disease Registry (https://www
.atsdr.cdc.gov). Among the heavy metals, Cd is toxic to ani-
mals and plants due to its nonessentiality in living organism
[5]. The food, which has contamination of Cd, is the main
source of entry to humans via the food chain [6]. The high
uptake of the bivalent cations to the aerial parts of the plant
shifts its cellular phosphorylation state and causes a range of
physiological disturbances and oxidative stresses in the cell
[7, 8]. The plant may get the Cd from the phosphate fertilizer
or sewage sludge as these are used for soil enhancement [9–
11]. The older plants accumulate more heavy metals at their

inactive sites such as cell walls and vacuoles [12]. The Cd
inhibits the growth of lateral root formation in plants while
the main root became brown, rigid, and twisted [13, 14].
The restricted activity of photosynthesis and chlorosis has
been seen in many plant species under Cd stress [15, 16]. It
interferes with the uptake and transport of various elements
from the soil [17]. The functions and stability of the cell
were affected under Cd stress as it binds to enzymes and
membranes [18].

The mutagenic and cytotoxic nature of Cd causes DNA
damage by producing reactive oxygen species [12]. Moreover,
Cd binds to DNA bases and inhibits DNA mismatch repair
[19, 20]. The genotoxic effect was varied among the plant
organs of lettuce and tobacco as more effects were seen in the
root and no changes were observed in the leaf [21, 22]. The
genotoxicity of Cd varies from organ to organ as more DNA
damage was seen in the roots of Nicotiana tabacum but no
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effect was seen in the leaves [22].The oxidative DNA damage,
chromosomal aberrations,DNA strand breaks, and induction
of micronuclei have been observed in vivo and vitro under
Cd stress [23]. Different molecular markers such as random
amplified polymorphic DNA (RAPD) [24], microsatellite
(simple sequence repeat, SSR) [21], and inter-simple sequence
repeat (ISSR) [25] have been used to assess the genotoxicity
in plants caused by various heavy metals.

The cadmium is dispersed in environment through min-
ing, smelting, phosphate fertilizers, sewage sludge, Ni-Cd
batteries, plating, pigments, and plastics items. The environ-
mental Cd goes in the soil with rain water and is taken up
by the plant which then enters the food chain. The different
level of Cd has been reported in the fruits of P. dactylif-
era from different countries including Saudi Arabia, Egypt,
Oman, and Pakistan [26–29]. However, P. dactylifera survives
under extreme abiotic stresses, including high temperature,
relatively high soil salinity levels, and drought [30–33]. The
response of antioxidant enzymes in general to metals and Cd
can also vary in various tissues and among plant species [6,
34, 35]. The cadmium toxicity also causes oxidative damage
in plants through generation of reactive oxygen species ROS
[36, 37]. However, antioxidant system plays an important
role in removal of ROS and provides tolerance to plants
under abiotic stresses. The stress marker “proline” maintains
the cellular homeostasis in the plants under Cd stress. The
present study focuses on Cd tolerance in P. dactylifera using
the biochemical and genetic approaches.

2. Materials and Methods

The pot experiment was performed in a growth chamber
for Cd stress treatment on Sagai cultivar of P. dactylifera.
The same size of pots was filled in a ratio (3 : 1) with a
mixture of sand and peat moss. The seeds were washed with
tap water three times and thereafter surface-sterilized with
sodium hypochlorite solution (4.0% available chlorine) for
10min. Further, these were rinsed thoroughly three times
with autoclaved distilled water. One seed per pot was sown in
plastic pot, watered at regular interval to keep moisture. The
exposure of Cd was given to 2-month-old plants in solution
form (100ml per pot after two-week time intervals) to see
its effect on antioxidant system and growth development.
The three concentrations of CdCl2 were used as low (T1-
300 𝜇M), medium (T2-600𝜇M), and high (T3-900 𝜇M) to
treat the 2-month-old plants.The relative humidity (72%) and
photoperiod with temperature 26-27∘C for 16 h per day were
maintained in the growth chamber for proper growth of the
plants.The Cd treated and control plants were harvested after
90 days of treatment to perform molecular and biochemical
parameters.

2.1. Estimation of Biomass. Fresh roots and leaves weights
were measured after 90 days of Cd treatment. The shoot and
root length were also measured.

2.2. Genomic DNA Isolation and Evaluation of Genotoxicity.
The genomic DNAwas isolated using the protocol developed

Table 1: List of ISSR primers used to assess genotoxicity among
control and treated plants.

Primer code Primer sequence (5-3)
OP-1 AGTCAGTCAGTCAGTC
OP-2 AGAGAGAGAGAGAGAGCTC
OP-3 GAG AGA GAG AGA GAG AA
OP-4 CTC TCT CTC TCT CTC TT
OP-5 CTC TCT CTC TCT CTC TA
OP-6 CTC TCT CTC TCT CTC TG
OP-7 CAC ACA CAC ACA CAC AT
OP-8 CAC ACA CAC ACA CAC AA
OP-9 CAC ACA CAC ACA CAC AG
OP-10 GTG TGT GTG TGT GTG TA
OP-11 GTG TGT GTG TGT GTG TC
OP-12 GTG TGT GTG TGT GTG TT
OP-13 TCT CTC TCT CTC TCT CA
OP-14 TCT CTC TCT CTC TCT CC
OP-15 TCT CTC TCT CTC TCT CG

by Khan et al. [38].The PCR reaction was performed in 25 𝜇L
volume.The PCR bead (master mixture, GE health care) was
used for the amplification of genomic DNA extracted from
the control as well as treated samples. ISSR marker was used
to assess the genotoxicity caused by Cd stress. The doubled
distilled water was added in the master mixture followed by
ISSR primer (Table 1) and template DNA. The PCR program
was set inVeriti 96-wellThermal Cycler (Applied Biosystems,
Singapore). First denaturation at 94∘C for 3min, followed by
38 cycles at 94∘C for 1min, 48∘C for 1min, 72∘C for 1min,
and final extension at 72∘C for 5min, was carried out for
the amplification. Agarose gel (1.3%) was prepared in 1x TBE
buffer solution for electrophoresis.

2.3. Proline Estimation. The proline estimation was per-
formed according to the protocol of Hanson et al. [39]. The
fresh leaf samples of 0.3 g were ground in 10ml of sulphos-
alicylic acid (30% aqueous). The mixture was centrifuged
at 9000×g for 15min and, thereafter, 2ml of supernatant
was taken in another glass tube. An equal volume of acid
ninhydrin and acetic acid were added in the above step and
incubated for 1 h in boiling water. The reaction was stopped
by putting it into the ice bath. The mixture was taken out
from the ice bath and 4ml of toluene was added and vortexed
for 20 s. The upper phase was taken for the estimation of the
proline using the spectrophotometer at 520 nm (Model UB-
1800, Shimadzu, Japan).

2.4. Total Chlorophyll. Total chlorophyll was estimated in
the fresh leaves according to the method of Arnon [40].
Leaves were chopped in small pieces (0.1 g) and 10ml of
dimethyl sulfoxide (DMSO) was added to each test tube.
The incubation was completed at 65∘C in oven for 120
minutes to release the whole chlorophyll in DMSO. The
tubes were taken out from the oven and absorbance of
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the solution was recorded at 663 and 645 nm on a UV-vis
spectrophotometer (Model UB-1800, Shimadzu, Japan). The
content of chlorophyll was calculated as mg/g fresh weight.

2.5. Superoxide Dismutase (SOD) (EC 1.15.1.1). Dhindsa et al.
[41] method was used for the activity assay of superoxide
dismutase. The fresh leaf samples (0.05 g) were chopped
in small pieces and ground in 2.0ml of extraction buffer
containing 0.5M phosphate buffer (pH 7.3), 0.3mM-EDTA,
1% PVP (w/v), and 1% Triton x100 (w/v). The supernatant
was taken after centrifugation for the assay of SOD activity.
The absorbance of the reaction mixture along with blank was
read at 560 nm, using the UV-vis spectrophotometer. A 50%
reduction in color was considered as one enzyme unit (EU),
and the activity was expressed in EU mg−1 protein min−1.

2.6. Catalase (CAT) (EC 1.11.1.6). The CAT activity was
determined by estimatingH2O2 degradation according to the
method of Aebi [42].The reaction was performed in 3.0ml of
reactionmixture containing 10mMH2O2, 100mMpotassium
phosphate buffer solution (pH 7.0), and 100 𝜇l of enzyme
extract. The decrease in absorbance of H2O2 was recorded
at 240 nm using the UV-vis spectrophotometer (Model UB-
1800, Shimadzu, Japan). The enzyme activity was calculated
using the extinction coefficient (0.036mM−1 cm−1). One unit
of CAT determines the amount necessary to decompose
1 𝜇mol of H2O2 per min at 25∘C.

2.7. Thiobarbituric Acid Reactive Substances (TBARS). The
TBARS content was estimated in fresh leaves using the
method described by Cakmak and Horst [43]. 0.5 g of fresh
leaves was ground in 5.0ml of 0.1% (w/v) trichloroacetic
acid (TCA) at 4∘C. The reaction mixture was taken in falcon
tube and centrifuged at 12,000×g for 5min. The 4.0ml of
0.5% (w/v) TBA in 20% (w/v) TCA was added in 1.0ml of
supernatant taken from the above step.Themixture was kept
for 30min at 90∘C in water bath. After incubation of mixture,
the reaction was terminated by keeping it on ice bath. The
reaction mixture was centrifuged at 10,000×g for 5min, and
absorbance of the supernatant was taken at 532 and 600 nm
on a spectrophotometer (Model UB-1800, Shimadzu, Japan).

The amount of TBARS was calculated using an extinction
coefficient of 155mMcm−1 as follows:

TBARS (nmol g−1 fw) =
(A532 − A600) × V × 1000
155 (extinction coff.) × 𝑊

, (1)

where

𝐴532 is absorbance at 532 nm
𝐴600 is absorbance at 600 nm
V is extraction volume
W is fresh weight of tissues and methods.

2.8. Determination of Elements in Leaves and Roots. The leaf
and root powders were digested according to the method
developed by Price [44]. The fine powder of leaves and roots

(200mg)was taken inTECAMdigestion flask inwhich 0.5ml
of sulphuric acid, 1.0ml of perchloric acid, and 5.0ml of
nitric acid were added. The flasks were heated at 110∘C and
further temperature was increased gradually to 330∘C. The
samples were taken out and cooled down.Thereafter, samples
were transferred to 50ml calibrated flask and volume was
made up with distilled water. The content of Cd along with
other minerals (Mg, Ca, and K) was measured by inductively
coupled plasma atomic emission spectroscopy (ICP-AES).

2.9. Data Analysis. One-way analysis of variance (ANOVA)
was used for data analysis obtained from treated and
untreated samples. The significant differences among the
treatment means were evaluated using Duncan’s multiple
range test [45]. ISSR marker was used for the evaluation
of genotoxicity caused by Cd stress. All primers data were
combined into a binary matrix as absence (0) or presence (1)
of the bands on agarose gel. The similarity matrix value was
calculated using the NTSYS.pc software version 2.21 package
between the control and treated P. dactylifera plants [46].

3. Results and Discussion

The heavy metals cause toxicity and also generate oxidative
stress in plant cell by interfering with the antioxidant defense
system [47–49]. The cadmium affects the biomass and plant
height in plant species such as Gossypium hirsutum and
Cichorium pumilum [50, 51]. In our study, P. dactylifera plants
were harvested at 90 days after Cd treatment to investigate
its effect using the biochemical and molecular approaches.
The root length and weight of P. dactylifera were decreased
underCd stress in a dose dependentmanner (Figures 1 and 2).
The root length was decreased significantly as 31.333, 28.333,
and 26 cm at 300, 600, and 900𝜇M-CdCl2 in relation to
control (37 cm). Similarly, root weight was also decreased
significantly as 1.146, 1.045, and 0.922 g at 300, 600, and
900 𝜇M-CdCl2 treatments as compared to control (1.263 g),
respectively. However, shoot length was less affected at all
Cd concentrations applied in the experiment. Shoot weight
was decreased as 2.256 g and 2.168 g at 600 and 900𝜇M-
CdCl2 as compared to control (3.206 g) but result was
found nonsignificant at low concentration of Cd application
(Figures 3 and 4).

The proline content was increased (1283.055𝜇g/g FW)
significantly in leaves of P. dactylifera plants treated at
300 𝜇M-CdCl2 as compared to control (856.746 𝜇g/g FW)
(Figure 5). However, the response was found nonsignificant
at 600 and 900 𝜇M-CdCl2 as compared to controls. The
proline content was increased in Brassica juncea,Groenlandia
densa, andMedicago sativa as the Cd concentration increased
in the treatment [52–54]. Total chlorophyll content was
decreased in the leaf of P. dactylifera plant under Cd stress in
a dose dependent manner in relation to controls (Figure 6).
The chlorophyll content decreased in various plant species
such as strawberry, faba bean, pakchoi, and mustard as the
Cd concentration increased in the treatment [55–57].

The antioxidant enzymes play important role under
abiotic and biotic stresses to protect the cells from oxidative
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Figure 1: Root length variation in Phoenix dactylifera in response to
Cd stress. Data are means of three replicates ± standard deviation;
symbols indicated by different letters on bars represent the signifi-
cant values according to Duncan’s test (𝑝 < 0.05).
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Figure 2: Root weight variation in Phoenix dactylifera in response
to Cd stress. Data aremeans of three replicates ± standard deviation;
symbols indicated by different letters on bars represent the signifi-
cant values according to Duncan’s test (𝑝 < 0.05).
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Figure 3: Changes in shoot length in response to Cd stress in
Phoenix dactylifera. Data are means of three replicates ± standard
deviation; symbols indicated by different letters on bars represent
the significant values according to Duncan’s test (𝑝 < 0.05).

damage. The SOD and CAT activities were increased (178
and 29.400U/mg protein/min) significantly in the leaf of P.
dactylifera plants treated at 300 𝜇M-CdCl2 (Figures 7 and 8)
in relation to controls (99.770 and 14.541U/mg protein/min).
However, SOD activity was found nonsignificant at 600 and
900 𝜇M-CdCl2 in relation to control. Similarly, CATand SOD
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Figure 4: Shoot weight in Phoenix dactylifera plant in response to
Cd stress. Data are means of three replicates ± standard deviation;
symbols indicated by different letters on bars represent the signifi-
cant values according to Duncan’s test (𝑝 < 0.05).
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Figure 5: Changes in proline contents in response to Cd stress
in Phoenix dactylifera leaves. Data are means of three replicates ±
standard deviation; symbols indicated by different letters on bars
represent the significant values according to Duncan’s test (𝑝 <
0.05).
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Figure 6: Total chlorophyll in response to Cd stress in Phoenix
dactylifera leaves. Data are means of three replicates ± standard
deviation; symbols indicated by different letters on bars represent
the significant values according to Duncan’s test (𝑝 < 0.05).

activities were enhanced at low concentration of Cd stress,
whereas it was decreased at high concentration of Cd in
Lemna polyrhiza [58]. The CAT activity was decreased in
many plant species under Cd stress including Amaranthus
lividus [59], Phaseolus aureus [60], Lemna minor [61], and
hybrid poplar [62] under the Cd stress. The SOD activity was
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Figure 7: Superoxide dismutase activities in response to Cd stress
in Phoenix dactylifera leaves. Data are means of three replicates ±
standard deviation; symbols indicated by different letters on bars
represent the significant values according to Duncan’s test (𝑝 <
0.05).
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Figure 8: Catalase activities inPhoenix dactylifera leaves in response
to Cd stress. Data aremeans of three replicates ± standard deviation;
symbols indicated by different letters on bars represent the signifi-
cant values according to Duncan’s test (𝑝 < 0.05).

increased under Cd stress in bean [63], pea [64], and wheat
[65], whereas, in other plant species including Pisum sativum
[65], Phaseolus vulgaris [66], andHelianthus annuus [67], the
activities of both CAT and SOD were decreased.

The TBARS content was increased (0.067 and
0.876 nM/g FW) significantly in P. dactylifera leaves at
600 and 900𝜇M-CdCl2 concentrations as compared to
control (0.045 nM/g FW); however, the result was found
nonsignificant at 300 𝜇M-CdCl2 as compared to the controls
(Figure 9). Similarly, TBARS content was also increased
under Cd stress in leaf and root of strawberry as reported by
Muradoglu et al. [55]. Cd caused an enhancement of lipid
peroxidation in Pisum sativum [68], H. annuus [67], and
Phaseolus vulgaris [66].

The content of Cd along with other minerals was esti-
mated in leaves and roots ofP. dactylifera plants under various
concentration of Cd treatment along with control plants. In
our study, the accumulation of heavy metals was more in
root organ as compared to the leaf organ (Table 2). As the Cd
concentration increased in the treatment, the accumulation
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Figure 9: Changes in TBARS contents in Phoenix dactylifera leaves
in response to Cd stress. Data are means of three replicates ±
standard deviation; symbols indicated by different letters on bars
represent the significant values according to Duncan’s test (𝑝 <
0.05).

of Cd increased both in leaf and in root organs, and more
accumulation (0.187 and 0.223mg/gDW) was observed at
high Cd concentrations (900𝜇M-CdCl2) as compared to
controls (0.063 and 0.092mg/g/DW) (Table 2). Our result
was lined with previous work as carried out by Gichner
et al. [68] as the roots have accumulated more Cd content
than the above ground parts. The more Cd content was
also accumulated in roots of Olea europaea L. cv. Chemlali
and Helianthus annuus L. cv. Oleko under Cd stress (Zouari
et al., 2016; De Maria et al., 2013) [55, 69, 70]. However,
Pillay et al. [28] reported that the accumulation of Cd
in leaves of P. dactylifera was more than the root organ.
Similarly, the accumulation of magnesium (Mg), calcium
(Ca), and potassium (K) was also decreased in leaves and
roots of P. dactylifera in a dose dependent manner. The
content of manganese (Mn), potassium (K), and zinc (Zn)
was decreased in roots as well in shoots of wheat at high level
of Cd toxicity [71]. The mineral contents of iron (Fe), Mg, K,
and Ca were decreased in wheat shoots in a dose dependent
manner under excess Cd stress [72]. However, Cd ions may
compete with Ca, Mg, or iron (Fe) in their transport across
membranes [73] whichmay causemineral deficiency in these
organs.

The individual P. dactylifera leaf was taken for the eval-
uation of genotoxicity under Cd stress. Fifteen ISSR primers
were used for the evaluation of genotoxicity. Out of fifteen
primers, twelve primers produced bright and reproducible
bands which were used further for the comparison between
and among the control and treated plants. In other ISSR
primers, the obtained ISSRprofileswere different atmany loci
between treated and control plants. The more polymorphism
was observed among the treated plants atmedium and higher
concentration of Cd and it might be due to the mutations
produced by Cd toxicity. Similarly, in other plant species,
the polymorphism was also detected under Cd stress using
the molecular markers [25, 74–76]. However, some primers
gave faint and nonreproducible bands in PCR amplification
and were excluded from the data analysis. Genetic similarity
was calculated among the control and treated plants using



6 BioMed Research International

Table 2: Mineral content (mg/g dry weight) in leaves and roots of treated and control plants of Phoenix dactylifera under Cd stress.

Treatments
(CdCl2)

Leaf Root
Mg Ca K Cd Mg Ca K Cd

Control
(0 𝜇M) 7.063 ± 0.097c 40.29 ± 1.44b 64.83 ± 0.99d 0.063 ±

0.0041a
2.383 ±
0.037d 31.29 ± 1.32c 38.38 ± 1.32c 0.092 ±

0.0015a

300 𝜇M 6.466 ±
0.075b 30.77 ± 1.24a 60.4 ± 0.96c 0.121 ±

0.0076b 1.593 ± 0.025c 25.4 ± 0.93b 35.75 ± 1.08b 0.118 ± 0.001b

600 𝜇M 5.64 ± 0.13a 29.41 ± 1.26a 57.29 ± 1.29b 0.139 ±
0.0041c 1.473 ± 0.035b 24.4 ± 0.65b 27.21 ± 0.45a 0.172 ±

0.0041c

900 𝜇M 5.53 ± 0.95a 28.32 ± 1.19a 53.93 ± 1.66a 0.187 ±
0.0046d

1.386 ±
0.0305a 19.6 ± 0.85a 26.21 ± 0.40a 0.223 ±

0.003d

Mean of three replicates ± SD. The letters a, b, c, and d represent the significant values according to Duncan’s test (𝑝 < 0.05).
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Figure 10: Dendrogram showing the clustering of P. dactylifera plants based on genetic similarity controls (C1, C2); T-300 (300𝜇M-CdCl2);
T-600 (600 𝜇M-CdCl2); T-900 (900𝜇M-CdCl2).

the NTSYS.pc software version 2.21. In our study, the plants
treated at 300 𝜇M-CdCl2 showed more genetic similarity
(98.81%) to control plants. The genetic similarity (96.43%)
was found among the plants treated at 300, 600, and 900𝜇M-
CdCl2 and controls. A very low genetic similarity (92.86%)
was observed between the plants treated at 300 and 900 𝜇M-
CdCl2.

All plants were clustered into three main groups accord-
ing to genetic similarity (Figure 10). In the first group,
controls and plants treated at low Cd concentration were
clustered. In second and third groups, medium and high
concentrations treated plants were clustered, respectively.
Thus, genetic variationwas produced inP. dactylifera plants at
different concentration of Cd treatment and more effect was
observed at its high concentration. The highest percentage
of polymorphism was detected in the roots and shoots of
Trifolium repens under As and Cd treatment as they caused
genotoxicity and it was related to their concentrations [77].
The genotoxicity was assessed in germinated seeds of Eruca

sativa under the Zn, Pb, and Cd stresses using the ISSR
marker [25], whereas Cd showed more genotoxicity than the
other two heavy metals. Thus, in conclusion, P. dactylifera
plant grown under high concentration of Cd showed less
genetic similarity, reduction in biomass, and chlorophyll
content and lower root length than the plant under low Cd
stress and controls. However, the enzymatic activities of CAT
and SOD were found to be high in plants grown at low Cd
stress than the high Cd stress and controls.
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