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Abstract
Tritrophic interactions among plants, herbivorous insects and their parasitoids have been 
well studied in the past four decades. Recently, a new angle has been uncovered: koinobi-
ont parasitoids, that allow their host to keep feeding on the plant for a certain amount of 
time after parasitism, indirectly alter plant responses against herbivory via the many physi-
ological changes induced in their herbivorous hosts. By affecting plant responses, parasi-
toids may indirectly affect the whole community of insects interacting with plants induced 
by parasitized herbivores and have extended effects on plant fitness. These important find-
ings have renewed research interests on parasitoid manipulation of their host development. 
Parasitoids typically arrest their host development before the last instar, resulting in a lower 
final weight compared to unparasitized hosts. Yet, some parasitoids prolong their host 
development, leading to larger herbivores that consume more plant material than unpara-
sitized ones. Furthermore, parasitoid host regulation is plastic and one parasitoid species 
may arrest or promote its host growth depending on the number of eggs laid, host develop-
mental stage and species as well as environmental conditions. The consequences of plastic-
ity in parasitoid host regulation for plant–insect interactions have received very little atten-
tion over the last two decades, particularly concerning parasitoids that promote their host 
growth. In this review, we first synthesize the mechanisms used by parasitoids to regulate 
host growth and food consumption. Then, we identify the evolutionary and environmental 
factors that influence the direction of parasitoid host regulation in terms of arrestment or 
promotion of host growth. In addition, we discuss the implication of different host regula-
tion types for the parasitoid’s role as agent of plant indirect defence. Finally, we argue that 
the recent research interests about parasitoid plant-mediated interactions would strongly 
benefit from revival of research on the mechanisms, ecology and evolution of host regula-
tion in parasitoids.
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Introduction

Parasitoids are typically small wasps that lay their eggs inside (endoparasitoids) or outside 
(ectoparasitoids) a host that serves as food source for the entire larval stage of the parasi-
toids offspring. They are important model organisms in the study of behavioural and evolu-
tionary ecology that are ubiquitous in many natural and agricultural ecosystems: virtually 
all immature insect can be parasitized by at least one parasitoid species (Godfray 1994).

Recently, studies have shed light on a novel ecological phenomenon in tritrophic inter-
actions: koinobiont parasitoids indirectly affect plant responses to herbivory, which, in 
turn, alter the attraction (Cusumano et  al. 2018; Zhu et  al. 2018) and performance (Tan 
et al. 2018, 2019) of subsequent herbivores. Plant recognition of parasitized herbivores is 
altered because of the important regulation imposed by parasitoids on their host physiol-
ogy (Cusumano and Volkoff 2021). Such host manipulation is achieved via several types 
of factors injected by parasitoids in the host along with eggs, such as symbiotic viruses 
and venom (Vinson and Iwantsch 1980). This exciting new angle of tritrophic interactions 
is receiving increasing attention (Cusumano et al. 2021; Dicke et al. 2020; Poelman and 
Cusumano 2021; Tan et al. 2020; Wang et al. 2021) and has renewed research interests for 
parasitoid host regulation. Host regulation has been understudied over the last two decades, 
and many areas are still not fully understood, particularly concerning the mechanisms, 
plasticity and ecological consequences of parasitoid promotion of host growth.

Parasitoids are generally divided into two categories of host usage strategies: idiobiosis 
and koinobiosis (Harvey 2005; Mackauer and Sequeira 1993). In the first strategy, para-
sitoids either paralyze their host, preventing them from moving and feeding, or parasitize 
sessile host stages (e.g. eggs or pupae). In the second strategy, koinobiont parasitoids 
develop in a growing host that keeps on moving and feeding for a significant period of the 
development of the parasitoid larva. Idiobionts are generally ectoparasitoids with a wide 
host range while koinobionts are typically endoparasitoids and considered to be more spe-
cialized (Santos and Quicke 2011). The common ancestor of parasitoids was an idiobiont 
ectoparasitoid that attacked concealed hosts (Pennacchio and Strand 2006). Koinobiosis as 
adaptation allows parasitoids to lay their eggs in hosts at an earlier stage of development 
and without the risk of the parasitoid eggs or larvae becoming disconnected from their host 
(Mackauer et al. 1997; Strand 2000). On the other hand, the continuous development of 
the host can be a constraint when the host environment becomes more hostile during lar-
val development. Koinobiont parasitoids overcome this constraint by regulating their host 
development for their own benefit (Beckage and Gelman 2004). The degree of host manip-
ulation in parasitoids ranges from ‘conformers’ that are adapted to the normal development 
of their host with limited host manipulation to parasitoids that are strong ‘regulators’ that 
induce significant changes in their host development (Lawrence 1986). However, in several 
species, parasitoid larvae are plastic in the level of host regulation depending on factors 
such as host age or species (Harvey et al. 1999; Harvey and Malcicka 2016; Mackauer and 
Sequeira 1993).

In many documented cases of host regulation, koinobiont parasitoids prematurely stop 
the development of their herbivorous host which results in a reduction of their final size 
and host food consumption (Table 1; Beckage and Gelman 2004; Harvey 1996; Varley and 
Butler 1933). Alternatively, some koinobiont parasitoids extend their host development 
time (for example, by inducing a supernumerary larval instar) or increase their feeding rate, 
resulting in a higher final host weight compared to unparasitized hosts (Table 2; Ode 2006). 
Furthermore, some parasitoids exert plasticity in the direction of their host regulation and 



301Evolutionary Ecology (2022) 36:299–319	

1 3

Ta
bl

e 
1  

N
on

-e
xh

au
sti

ve
 re

vi
ew

 o
f t

he
 li

te
ra

tu
re

 re
po

rti
ng

 a
 d

ec
re

as
e 

in
 p

ar
as

iti
ze

d 
he

rb
iv

or
e 

w
ei

gh
t o

r f
oo

d 
co

ns
um

pt
io

n 
co

m
pa

re
d 

to
 u

np
ar

as
iti

ze
d 

he
rb

iv
or

es
. D

ec
re

as
e 

of
 

he
rb

iv
or

e 
gr

ow
th

 h
as

 b
ee

n 
fo

un
d 

in
 H

em
ip

te
ra

n 
an

d 
Le

pi
do

pt
er

an
 h

os
ts

 a
nd

 m
ay

 y
ie

ld
 h

os
ts

 th
at

 a
re

 u
p 

to
 9

7%
 sm

al
le

r t
ha

n 
un

pa
ra

si
tiz

ed
 h

os
ts

Pa
ra

si
to

id
 sp

ec
ie

s
G

re
ga

rio
us

/
So

lit
ar

y 
pa

ra
-

si
to

id

H
os

t s
pe

ci
es

H
os

t o
rd

er
Eff

ec
t o

f p
ar

as
iti

sm
 

co
m

pa
re

d 
to

 h
ea

lth
y 

ho
sts

 (%
)

M
ea

su
re

m
en

t
Re

fe
re

nc
e

Al
ab

ag
ru

s t
ex

an
us

So
lit

ar
y

H
er

pe
to

gr
am

m
a 

th
es

eu
sa

lis
Le

pi
do

pt
er

a
−

 4
0

M
ea

n 
w

ei
gh

t
M

or
se

 a
nd

 C
ha

pm
an

 (M
or

se
 a

nd
 C

ha
p-

m
an

 2
01

5)
Ap

hi
di

us
 e

rv
i

So
lit

ar
y

Ac
yr

th
os

ip
ho

n 
pi

su
m

H
em

ip
te

ra
−

 4
0

M
ax

im
um

 w
ei

gh
t

Se
qu

ei
ra

 a
nd

 M
ac

ka
ue

r (
19

92
)

C
am

po
le

tis
 g

ri
ot

i
So

lit
ar

y
Sp

od
op

te
ra

 fr
ug

ip
er

da
Le

pi
do

pt
er

a
−

 9
6

M
ax

im
um

 w
ei

gh
t

A
sh

le
y 

(1
98

3)
C

am
po

le
tis

 so
no

re
ns

is
So

lit
ar

y
Sp

od
op

te
ra

 fr
ug

ip
er

da
Le

pi
do

pt
er

a
−

 8
3

M
ax

im
um

 w
ei

gh
t

Is
en

ho
ur

 e
t a

l. 
(1

98
8)

C
am

po
le

tis
 so

no
re

ns
is

So
lit

ar
y

H
el

ic
ov

er
pa

 v
ire

sc
en

s
Le

pi
do

pt
er

a
−

 6
9

M
ax

im
um

 w
ei

gh
t

V
in

so
n 

(1
97

2)
C

ar
di

oc
hi

le
s n

ig
ri

ce
ps

So
lit

ar
y

H
el

ic
ov

er
pa

 v
ire

sc
en

s
Le

pi
do

pt
er

a
−

 7
5

Fo
od

 c
on

su
m

pt
io

n
G

ui
llo

t a
nd

 V
in

so
n 

(1
97

3)
C

he
lo

nu
s i

na
ni

tu
s

So
lit

ar
y

Sp
od

op
te

ra
 li

tto
ra

lis
Le

pi
do

pt
er

a
−

 8
6

M
ax

im
um

 w
ei

gh
t

M
or

al
es

 e
t a

l. 
(2

00
7)

C
he

lo
nu

s i
ns

ul
ar

is
So

lit
ar

y
Sp

od
op

te
ra

 fr
ug

ip
er

da
Le

pi
do

pt
er

a
−

 8
1

M
ax

im
um

 w
ei

gh
t

A
sh

le
y 

(1
98

3)
C

ot
es

ia
 c

on
gr

eg
at

a
G

re
ga

rio
us

M
an

du
ca

 se
xt

a
Le

pi
do

pt
er

a
−

 3
9

M
ax

im
um

 w
ei

gh
t

A
lle

yn
e 

an
d 

B
ec

ka
ge

 (1
99

7)
C

ot
es

ia
 c

on
gr

eg
at

a
G

re
ga

rio
us

M
an

du
ca

 se
xt

a
Le

pi
do

pt
er

a
−

 8
M

ax
im

um
 w

ei
gh

t
M

oo
re

 e
t a

l. 
(2

02
0)

C
ot

es
ia

 fl
av

ip
es

G
re

ga
rio

us
D

ia
tra

ea
 sa

cc
ha

ra
lis

Le
pi

do
pt

er
a

−
 2

7
Fo

od
co

ns
um

pt
io

n
Ro

ss
i (

20
14

)
C

ot
es

ia
 m

ar
gi

ni
ve

nt
ri

s
So

lit
ar

y
Sp

od
op

te
ra

 fr
ug

ip
er

da
Le

pi
do

pt
er

a
−

 9
7

M
ax

im
um

 w
ei

gh
t

A
sh

le
y 

(1
98

3)
C

ot
es

ia
 m

ar
gi

ni
ve

nt
ri

s
So

lit
ar

y
Sp

od
op

te
ra

 li
tu

ra
Le

pi
do

pt
er

a
−

 8
8

M
ax

im
um

 w
ei

gh
t

Ja
la

li 
an

d 
B

al
la

l (
19

88
)

C
ot

es
ia

 m
ar

gi
ni

ve
nt

ri
s 

/ C
am

po
le

tis
 so

no
-

re
ns

is

So
lit

ar
y

Sp
od

op
te

ra
 li

tto
ra

lis
Le

pi
do

pt
er

a
−

 9
7

M
ax

im
um

 w
ei

gh
t

H
ob

al
la

h 
an

d 
Tu

rli
ng

s (
20

01
)

C
ot

es
ia

 ru
be

cu
la

So
lit

ar
y

Pi
er

is
 ra

pa
e

Le
pi

do
pt

er
a

−
 8

8
Fo

od
 c

on
su

m
pt

io
n

Pa
rk

er
 a

nd
 P

in
ne

ll 
(1

97
3)

C
ot

es
ia

 ru
be

cu
la

So
lit

ar
y

Pi
er

is
 ra

pa
e

Le
pi

do
pt

er
a

−
 7

7
Fo

od
 c

on
su

m
pt

io
n

R
ah

m
an

 (1
97

0)
C

ot
es

ia
 ru

be
cu

la
So

lit
ar

y
Pi

er
is

 ra
pa

e
Le

pi
do

pt
er

a
−

 8
7

M
ax

im
um

 w
ei

gh
t

H
ar

ve
y 

et
 a

l. 
(1

99
9)

C
ot

es
ia

 ru
be

cu
la

So
lit

ar
y

Pi
er

is
 b

ra
ss

ic
ae

Le
pi

do
pt

er
a

−
 9

7
M

ax
im

um
 w

ei
gh

t
H

ar
ve

y 
et

 a
l. 

(1
99

9)
Ei

ph
os

om
a 

vi
tti

co
le

So
lit

ar
y

Sp
od

op
te

ra
 fr

ug
ip

er
da

Le
pi

do
pt

er
a

−
 7

5
M

ax
im

um
 w

ei
gh

t
A

sh
le

y 
(1

98
3)

H
yp

os
ot

er
 d

id
ym

at
or

So
lit

ar
y

H
el

ic
ov

er
pa

 a
rm

ig
er

a
Le

pi
do

pt
er

a
−

 8
8

M
ax

im
um

 w
ei

gh
t

M
iro

ni
di

s a
nd

 S
av

op
ou

lo
u-

So
ul

ta
ni

 
(2

00
9)



302	 Evolutionary Ecology (2022) 36:299–319

1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

Pa
ra

si
to

id
 sp

ec
ie

s
G

re
ga

rio
us

/
So

lit
ar

y 
pa

ra
-

si
to

id

H
os

t s
pe

ci
es

H
os

t o
rd

er
Eff

ec
t o

f p
ar

as
iti

sm
 

co
m

pa
re

d 
to

 h
ea

lth
y 

ho
sts

 (%
)

M
ea

su
re

m
en

t
Re

fe
re

nc
e

H
yp

os
ot

er
 d

id
ym

at
or

So
lit

ar
y

Sp
od

op
te

ra
 li

tto
ra

lis
Le

pi
do

pt
er

a
−

 9
3

M
ax

im
um

 w
ei

gh
t

M
or

al
es

 e
t a

l. 
(2

00
7)

H
yp

os
ot

er
 e

be
ni

nu
s

So
lit

ar
y

Pi
er

is
 ra

pa
e

Le
pi

do
pt

er
a

−
 7

7
M

ax
im

um
 w

ei
gh

t
H

ar
ve

y 
et

 a
l. 

(2
01

0a
)

H
yp

os
ot

er
 e

be
ni

nu
s

So
lit

ar
y

Pi
er

is
 b

ra
ss

ic
ae

Le
pi

do
pt

er
a

−
 7

6
M

ax
im

um
 w

ei
gh

t
H

ar
ve

y 
et

 a
l. 

(2
01

0a
)

H
yp

os
ot

er
 e

xi
gu

a
So

lit
ar

y
Tr

ic
ho

pl
us

ia
 n

i
Le

pi
do

pt
er

a
−

 8
2

M
ax

im
um

 w
ei

gh
t

Th
om

ps
on

 (1
98

2)
M

et
eo

ru
s p

ul
ch

ri
co

rn
is

So
lit

ar
y

M
yt

hi
m

na
 se

pa
ra

ta
Le

pi
do

pt
er

a
−

 9
7

M
ax

im
um

 w
ei

gh
t

H
ar

ve
y 

et
 a

l. 
(2

01
0b

)
M

ic
ro

pl
iti

s c
ro

ce
ip

es
So

lit
ar

y
H

el
ic

ov
er

pa
 ze

a
Le

pi
do

pt
er

a
−

 7
9

M
ax

im
um

 w
ei

gh
t

Jo
ne

s a
nd

 L
ew

is
 (1

97
1)

M
ic

ro
pl

iti
s d

em
ol

ito
r

So
lit

ar
y

H
el

ic
ov

er
pa

 v
ire

sc
en

s
Le

pi
do

pt
er

a
−

 9
4

M
ax

im
um

 w
ei

gh
t

St
ra

nd
 e

t a
l. 

(1
98

8)
M

ic
ro

pl
iti

s s
im

ili
s

So
lit

ar
y

Sp
od

op
te

ra
 e

xi
gu

a
Le

pi
do

pt
er

a
−

 3
8

M
ax

im
um

 w
ei

gh
t

Li
 e

t a
l. 

(2
01

5)
M

ic
ro

pl
iti

s s
im

ili
s

So
lit

ar
y

Sp
od

op
te

ra
 li

tu
ra

Le
pi

do
pt

er
a

−
 7

6
M

ax
im

um
 w

ei
gh

t
Li

 e
t a

l. 
(2

01
5)

M
ic

ro
pl

iti
s t

ri
st

is
G

re
ga

rio
us

H
ad

en
a 

bi
cr

ur
is

Le
pi

do
pt

er
a

−
 5

1
M

ax
im

um
 w

ei
gh

t
El

zi
ng

a 
et

 a
l. 

(2
00

3)
M

ic
ro

pl
iti

s t
ub

er
cu

lif
er

So
lit

ar
y

M
yt

hi
m

na
 se

pa
ra

ta
Le

pi
do

pt
er

a
−

 9
6

M
ax

im
um

 w
ei

gh
t

C
hu

 e
t a

l. 
(2

01
4)

Ro
ga

s l
ap

hy
gm

ae
So

lit
ar

y
Sp

od
op

te
ra

 fr
ug

ip
er

da
Le

pi
do

pt
er

a
−

 8
5

M
ax

im
um

 w
ei

gh
t

Is
en

ho
ur

 e
t a

l. 
(1

98
8)

Ve
nt

ur
ia

 c
an

es
ce

ns
So

lit
ar

y
G

al
le

ri
a 

m
el

lo
ne

lla
Le

pi
do

pt
er

a
−

 8
4

M
ax

im
um

 w
ei

gh
t

H
ar

ve
y 

(1
99

6)
Ve

nt
ur

ia
 c

an
es

ce
ns

So
lit

ar
y

An
ag

as
ta

 k
ue

hn
ie

lla
Le

pi
do

pt
er

a
−

 6
5

M
ax

im
um

 w
ei

gh
t

H
ar

ve
y 

(1
99

6)



303Evolutionary Ecology (2022) 36:299–319	

1 3

Ta
bl

e 
2  

R
ev

ie
w

 o
f t

he
 li

te
ra

tu
re

 re
po

rti
ng

 a
n 

in
cr

ea
se

 in
 p

ar
as

iti
ze

d 
he

rb
iv

or
e 

w
ei

gh
t, 

si
ze

, d
ev

el
op

m
en

ta
l t

im
e 

or
 fe

ed
in

g 
be

ha
vi

ou
r. 

In
cr

ea
se

 o
f h

er
bi

vo
re

 g
ro

w
th

 h
as

 b
ee

n 
fo

un
d 

in
 H

em
ip

te
ra

n 
an

d 
Le

pi
do

pt
er

an
 h

os
ts

 a
nd

 m
ay

 y
ie

ld
 h

os
ts

 th
at

 a
re

 u
p 

to
 8

1%
 la

rg
er

 th
an

 u
np

ar
as

iti
ze

d 
ho

sts
. I

nc
re

as
e 

of
 h

os
t g

ro
w

th
 h

as
 re

ce
iv

ed
 li

ttl
e 

at
te

nt
io

n 
on

 
re

se
ar

ch
 a

ge
nd

as
 o

f t
he

 la
st 

tw
o 

de
ca

de
s

Pa
ra

si
to

id
 sp

ec
ie

s
G

re
ga

rio
us

 / 
So

lit
ar

y 
pa

ra
-

si
to

id

H
os

t s
pe

ci
es

H
os

t o
rd

er
Eff

ec
t o

f p
ar

as
iti

sm
 

co
m

pa
re

d 
to

 h
ea

lth
y 

ho
sts

 (%
)

M
ea

su
re

m
en

t
C

om
m

en
t

Re
fe

re
nc

e

Ap
hi

di
us

 e
rv

i
So

lit
ar

y
Ac

yr
th

os
ip

ho
n 

pi
su

m
H

em
ip

te
ra

 +
 35

H
os

t f
oo

d 
co

ns
um

p-
tio

n
Lo

w
er

 fo
od

 a
ss

im
ila

-
tio

n
C

lo
ut

ie
r a

nd
 M

ac
ka

ue
r 

(1
97

9)
Ap

hi
di

us
 e

rv
i

So
lit

ar
y

Ac
yr

th
os

ip
ho

n 
pi

su
m

H
em

ip
te

ra
 +

 53
H

os
t f

oo
d 

co
ns

um
p-

tio
n

Su
pe

rp
ar

as
iti

sm
C

lo
ut

ie
r a

nd
 M

ac
ka

ue
r 

(1
98

0)
C

op
id

om
op

si
s n

ac
-

ol
ei

ae
G

re
ga

rio
us

M
ar

as
m

ia
 p

at
na

lis
Le

pi
do

pt
er

a
 +

 33
Le

af
 c

on
su

m
pt

io
n

–
A

rid
a 

et
 a

l. 
(1

98
9)

C
op

id
os

om
a 

ba
ke

ri
G

re
ga

rio
us

Eu
xo

a 
au

xi
lia

ri
s

Le
pi

do
pt

er
a

 +
 65

M
ax

im
um

 w
ei

gh
t

Lo
ng

er
 d

ev
el

op
m

en
t 

tim
e

B
ye

rs
 e

t a
l. 

(1
99

3)

C
op

id
os

om
a 

flo
ri

-
da

nu
m

G
re

ga
rio

us
Tr

ic
ho

pl
us

ia
 n

i
Le

pi
do

pt
er

a
 +

 50
In

du
ct

io
n 

of
 p

la
nt

 
gl

uc
os

in
ol

at
es

In
cr

ea
se

d 
fe

ed
in

g
O

de
 e

t a
l. 

(2
01

6)

C
op

id
os

om
a 

flo
ri

-
da

nu
m

G
re

ga
rio

us
Tr

ic
ho

pl
us

ia
 n

i
Le

pi
do

pt
er

a
 +

 41
W

ei
gh

t
–

St
ra

nd
 (1

98
9)

C
op

id
os

om
a 

so
sa

re
s

G
re

ga
rio

us
D

ep
re

ss
ar

ia
 p

as
ti-

na
ce

lla
Le

pi
do

pt
er

a
 +

 55
M

ea
n 

w
ei

gh
t

–
M

cG
ov

er
n 

et
 a

l. 
(2

00
6)

C
op

id
os

om
a 

tr
un

ca
-

te
llu

m
G

re
ga

rio
us

Tr
ic

ho
pl

us
ia

 n
i

Le
pi

do
pt

er
a

 +
 30

M
ax

im
um

 w
ei

gh
t

Lo
ng

er
 d

ev
el

op
m

en
t 

tim
e

H
un

te
r a

nd
 S

to
ne

r 
(1

97
5)

C
ot

es
ia

 c
on

gr
eg

at
a

G
re

ga
rio

us
M

an
du

ca
 se

xt
a

Le
pi

do
pt

er
a

 +
 21

4
5t

h 
in

st
ar

 d
ur

at
io

n
–

B
ec

ka
ge

 a
nd

 R
id

di
fo

rd
 

(1
98

3)
C

ot
es

ia
 c

on
gr

eg
at

a
G

re
ga

rio
us

M
an

du
ca

 se
xt

a
Le

pi
do

pt
er

a
 +

 24
H

ea
d 

ca
ps

ul
e 

si
ze

Su
pe

rn
um

er
ar

y 
la

rv
al

 
in

st
ar

s
B

ec
ka

ge
 a

nd
 R

id
di

fo
rd

 
(1

97
8)

C
ot

es
ia

 c
on

gr
eg

at
a

G
re

ga
rio

us
M

an
du

ca
 se

xt
a

Le
pi

do
pt

er
a

 +
 50

W
ei

gh
t

H
ig

h 
am

ou
nt

 o
f w

as
p 

PD
V

D
us

ha
y 

an
d 

B
ec

ka
ge

 
(1

99
3)

C
ot

es
ia

 c
on

gr
eg

at
a

G
re

ga
rio

us
M

an
du

ca
 se

xt
a

Le
pi

do
pt

er
a

 +
 26

W
ei

gh
t

In
je

ct
io

n 
of

 
PD

V
 +

 V
en

om
Re

ed
 a

nd
 B

ec
ka

ge
 

(1
99

7)
C

ot
es

ia
 g

lo
m

er
at

a
G

re
ga

rio
us

Pi
er

is
 b

ra
ss

ic
ae

Le
pi

do
pt

er
a

 +
 81

Fi
na

l l
ar

va
l w

ei
gh

t
H

ea
vi

ly
 p

ar
as

iti
ze

d
Fü

hr
er

 a
nd

 K
ej

a 
(1

97
6)



304	 Evolutionary Ecology (2022) 36:299–319

1 3

Ta
bl

e 
2  

(c
on

tin
ue

d)

Pa
ra

si
to

id
 sp

ec
ie

s
G

re
ga

rio
us

 / 
So

lit
ar

y 
pa

ra
-

si
to

id

H
os

t s
pe

ci
es

H
os

t o
rd

er
Eff

ec
t o

f p
ar

as
iti

sm
 

co
m

pa
re

d 
to

 h
ea

lth
y 

ho
sts

 (%
)

M
ea

su
re

m
en

t
C

om
m

en
t

Re
fe

re
nc

e

C
ot

es
ia

 g
lo

m
er

at
a

G
re

ga
rio

us
Pi

er
is

 b
ra

ss
ic

ae
Le

pi
do

pt
er

a
 +

 25
Le

af
 c

on
su

m
pt

io
n

Su
pe

rp
ar

as
iti

sm
G

u 
et

 a
l. 

(2
00

3)

C
ot

es
ia

gl
om

er
at

a
G

re
ga

rio
us

Pi
er

is
br

as
si

ca
e

Le
pi

do
pt

er
a

 +
 60

M
ax

im
um

 w
ei

gh
t

Su
pe

rp
ar

as
iti

sm
H

as
an

 a
nd

 A
ns

ar
i 

(2
01

2)
C

ot
es

ia
 g

lo
m

er
at

a
G

re
ga

rio
us

Pi
er

is
 ra

pa
e

Le
pi

do
pt

er
a

 +
 16

Le
af

 c
on

su
m

pt
io

n
Lo

ng
er

 d
ev

el
op

m
en

t 
tim

e
R

ah
m

an
 (1

97
0)

C
ot

es
ia

 g
lo

m
er

at
a

G
re

ga
rio

us
Pi

er
is

 ra
pa

e
Le

pi
do

pt
er

a
 +

 30
Le

af
 c

on
su

m
pt

io
n

Lo
ng

er
 d

ev
el

op
m

en
t 

tim
e

Pa
rk

er
 a

nd
 P

in
ne

ll 
(1

97
3)

C
ot

es
ia

 g
lo

m
er

at
a

G
re

ga
rio

us
Pi

er
is

 ra
pa

e
Le

pi
do

pt
er

a
 +

 8
W

ei
gh

t
–

Sl
an

sk
y 

(1
97

8)
C

ot
es

ia
 g

lo
m

er
at

a
G

re
ga

rio
us

Pi
er

is
 ra

pa
e

Le
pi

do
pt

er
a

 +
 64

M
ax

im
um

 w
ei

gh
t

H
ea

vi
ly

 p
ar

as
iti

ze
d

H
ar

ve
y 

(2
00

0)
C

ot
es

ia
 k

ar
iy

ai
G

re
ga

rio
us

Ps
eu

da
le

tia
 se

pa
ra

ta
Le

pi
do

pt
er

a
 +

 50
D

ev
el

op
m

en
t t

im
e

H
os

t p
ar

as
iti

ze
d 

at
 

la
te

 in
st

ar
Sa

to
 e

t a
l. 

(1
98

6)

C
ot

es
ia

 p
lu

te
lla

e
So

lit
ar

y
Pl

ut
el

la
 x

yl
os

te
lla

Le
pi

do
pt

er
a

 +
 43

Fr
es

h 
le

af
 c

on
su

m
p-

tio
n

Lo
ng

er
 d

ev
el

op
m

en
t 

tim
e

Sh
i e

t a
l. 

(2
00

2)

Eu
ce

la
to

ri
a 

sp
G

re
ga

rio
us

H
el

ic
ov

er
pa

 v
ire

sc
en

s
Le

pi
do

pt
er

a
 +

 15
H

os
t f

oo
d 

co
ns

um
p-

tio
n

H
os

t p
ar

as
iti

ze
d 

at
 

la
st 

in
st

ar
B

re
w

er
 a

nd
 K

in
g 

(1
98

0)
Eu

pl
ec

tr
us

 p
la

ty
-

hy
pe

na
e 

an
d 

E.
 

co
m

sto
ck

ii

G
re

ga
rio

us
H

el
ic

ov
er

pa
 v

ire
sc

en
s

Le
pi

do
pt

er
a

 +
 7

M
ax

im
um

 w
ei

gh
t

H
os

t p
ar

as
iti

ze
d 

at
 

la
st 

in
st

ar
C

ou
dr

on
 e

t a
l. 

(1
99

7)

M
et

eo
ru

s p
ul

ch
ri

-
co

rn
is

So
lit

ar
y

Pl
ut

el
la

 x
yl

os
te

lla
Le

pi
do

pt
er

a
 +

 30
M

ax
im

um
 w

ei
gh

t
Sm

al
l h

os
t s

pe
ci

es
H

ar
ve

y 
et

 a
l. 

(2
01

0a
, b

)

Ps
yl

la
ep

ha
gu

s b
ac

-
ch

ar
id

is
So

lit
ar

y
Ba

cc
ha

ro
pe

lm
a 

dr
a-

cu
nc

ul
ifo

lia
e

H
em

ip
te

ra
 +

 41
G

al
l v

ol
um

e
H

ig
he

r h
os

t f
ee

di
ng

Es
pì

rit
o-

Sa
nt

o 
et

 a
l. 

(2
00

4)
Pt

er
om

al
us

 a
lb

ip
en

-
ni

s
So

lit
ar

y
Te

ph
ri

tis
 fe

m
or

al
is

D
ip

te
ra

 +
 25

W
ei

gh
t

Lo
ng

er
 d

ev
el

op
m

en
t 

tim
e

X
i e

t a
l. 

(2
01

5)



305Evolutionary Ecology (2022) 36:299–319	

1 3

are able to arrest or prolong their host development according to environmental conditions 
(Harvey 1996). Several factors may explain why parasitoids evolved such opposite strate-
gies of host regulation, such as reduction of their host predation risk or parasitoid resource 
needs (Fritz 1982; Harvey 2005; Pennacchio and Strand 2006).

When parasitism results in a premature arrestment of the herbivorous host development, 
it often reduces the host plant consumption and can have a beneficial effect on plant fitness 
(Bustos-Segura et al. 2019; Gols et al. 2015; Gómez and Zamora 1994; Hoballah and Turl-
ings 2001; van Loon et al. 2000). Consequently, plants are hypothesized to have evolved 
several traits to increase parasitoid attraction (e.g. extrafloral nectar, volatiles) as part of 
plant indirect defence strategies (Gols 2014; Pearse et  al. 2020; Schuman et  al. 2012). 
However, these traits may also attract parasitoids that do not reduce or even enhance plant 
fitness costs of feeding by the herbivore host (Cuny et al. 2021).

Here, we first review the physiological and molecular traits used by koinobiont para-
sitoids in order to regulate their host development and feeding behaviour. Then, we iden-
tify the evolutionary and ecological factors that may be responsible for whether parasitoids 
increase or decrease their host weight and plant consumption. Furthermore, we discuss 
the evolutionary implications of koinobiont parasitoid host regulation for plant indirect 
defence strategies. Finally, we argue that indirect plant-parasitoid interactions can only be 
deciphered with a full understanding of how parasitoids regulate their host development.

Mechanisms of koinobiont parasitoid host developmental regulation 
and feeding behaviour

Parasitoids significantly change the physiology of their host in order to render it more suit-
able for an optimal development of the parasitoid larva(e) (Beckage and Gelman 2004; 
Vinson and Iwantsch 1980). Host regulation is often a concerted process directed by 
the parasitoid larva itself and factors that parasitoids inject along with the eggs into the 
host, such as endogenous viruses, venom, and teratocytes. Although these factors may be 
injected to suppress the immune system of the host (Vinson 1990), we here focus on their 
role in regulation of the host development and feeding behaviour.

(a)	 Polydnaviruses (PDVs)
Many parasitoids harbour endogenous viruses from the family of the Polydnaviridae that 
reproduce in the calyx of adult wasps and are injected inside the host during oviposition 
(Rotheram 1967; Stoltz et al. 1984; Strand and Burke 2019). The association with viruses 
arose in two separate lineages of parasitoids belonging to the Braconidae and Ichneumo-
nidae families (Strand and Burke 2015). The polydnaviruses (PDVs) are therefore divided 
into two groups: bracoviruses and ichnoviruses. Once released into the host, PDVs infect 
the host cells and discharge their DNA into the nuclei. As a consequence, the host cells 
integrate virus DNA segments into their genome and start producing PDV gene products 
such as protein tyrosine phosphatases (PTPs, (Pruijssers and Strand 2007)). These products 
are released into the host and have a strong effect on its immune system, but also on the 
regulation of host growth (Strand and Burke 2014).

PDV host regulation is mainly achieved through alterations of the host hormonal levels (e.g. 
juvenile hormone and ecdysteroid) or neuropeptides that are controlling metamorphosis, pupa-
tion or feeding behaviour (Dushay and Beckage 1993; Ignesti 2018; Shi et al. 2015). PDVs can 
also induce metabolic changes in the host, such as hyperglycemia, resulting in an arrestment of 
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the feeding behaviour of the host and a reduction in weight (Pruijssers et al. 2009). In most of the 
reported cases, PDVs reduce the size, inhibit moulting and cause an early arrestment of the devel-
opment and feeding of their host (Dorémus et al. 2014; Strand and Burke 2014). Although less 
well documented, PDVs can also prolong the host development time and increase its final weight 
(Beckage et al. 1994; Doucet and Cusson 1996). For example, Manduca sexta larvae injected with 
calyx fluid derived from parasitoids had a longer developmental time and a higher weight than 
hosts injected with parasitoid eggs that were parted of the calyx fluid (Dushay and Beckage 1993).

(b)	 Venom
�While parasitizing their host, koinobiont parasitoids also inject non-paralysing venom, a 
complex mixture mainly composed of enzymes with diverse functions (Asgari and Riv-
ers 2011; Poirié et al. 2014). It is produced in the parasitoid venom gland and stored in 
its reservoir. Venom injected by koinobiont endoparasitoids typically plays an important 
immunosuppressive role (Asgari and Rivers 2011; Moreau and Asgari 2015), but also affects 
their host development (Digilio et al. 1998). For koinobiont parasitoids that harbour PDVs, 
venom also plays a synergistic role in the support of the PDVs functions. When PDVs are 
experimentally injected into the host without venom, host development is prolonged because 
ecdysteroid disruption is either reduced or not observed anymore (Digilio et al. 1998; Strand 
and Dover 1991; Tanaka 1987; Tanaka and Vinson 1991). Similarly, herbivorous larvae 
parasitized by parasitoids lacking the poison gland lived longer and consumed more food 
than normally parasitized hosts (Guillot and Vinson 1973). In some cases, venom can even 
be mandatory for the survival of PDVs in the host (Stoltz et al. 1988).

(c)	 Teratocytes
Some parasitoid species from two families (Braconidae and Platygastroidea) inject eggs 
that have a specialized membrane that differentiates into autonomous cells (so called: "ter-
atocytes", (Dahlman 1990; Strand 2014)) that are released into the host haemolymph when 
the parasitoid egg hatches (Pedata et al. 2003; Vinson 1970). Teratocytes play an important 
role in the arrestment of the host growth by the production of proteins and miRNAs that 
interfere with host hormones (e.g. juvenile hormones or ecdysteroids) that control its growth 
and metamorphosis (Falabella et al. 2000; Joiner et al. 1973; Wang et al. 2018; Zhang et al. 
1992, 1997). In addition, teratocytes inhibit host protein synthesis which has negative con-
sequences for the host growth (Dahlman et al. 2003). However, teratocytes injected alone 
in unparasitized hosts may prolong host development time and feeding behaviour compared 
to unparasitized hosts (Adamo et al. 1997). In general, the study of teratocytes has lagged 
behind other host regulating parasitoid factors such as PDVs and venom (Strand 2014).

(d)	 Parasitoid larvae
The parasitoid larva itself can affect its host development via the production of several 
secretory products such as proteins, saliva or hormones. Parasitoid larvae can act on the 
endocrinal system of their host via the release of hormones into the haemolymph of their 
host, such as ecdysteroids and juvenile hormone, inducing a premature host metamorphosis 
or developmental arrestment (Brown et al. 1993; Cole et al. 2002; Gelman et al. 1999). They 
also release proteins (Vinson et al. 1994) that play a role in the control of host development 
(Hochuli et al. 1999). Proteins present in the saliva of some ectoparasitoid larvae allow 
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them to kill their host just before parasitoid pupation (Nakamatsu and Tanaka 2004). For the 
gregarious endoparasitoid Cotesia congregata, when only the parasitoid larvae are injected 
in an unparasitized Manduca sexta (without venom or PDVs), the host may stop feeding 
after the larvae emerged, similar to naturally parasitized hosts, suggesting that the larvae 
are responsible for this arrestment of feeding behaviour (Adamo et al. 1997). This could be 
caused by an over-activation of the host immunity response (Adamo et al. 2016).

Evolutionary and ecological factors promoting parasitoid arrestment 
or increase in host development

Whether parasitoids increase or decrease their host weight and food consumption depends 
on several parameters (Fig. 1). At the evolutionary scale, host feeding ecology as well as 
parasitoid life-history traits play an important role in shaping the type of host regulation. 
While at the ecological scale, parasitoid resource need for an optimal development is a 
good predictor for host arrestment or prolongation.

(a)	 Evolutionary factors

1993). However, koinobiont parasitoids often face trade-offs between the optimisation of 
offspring size and development time, and other important ecophysiological factors such as 
host mobility and continuous development (Harvey 2005).
The type of host regulation strategy increases or decreases the time that parasitoids spend 
developing in their host, which can increase or decrease the host exposure to predators. 
This is particularly important for the fitness of parasitoids developing in an exposed host 
with high risks of predation, which would result in the death of the parasitoid larva(e) 
(Fritz 1982). Therefore, it is hypothesized that parasitoids have evolved host regulation 

Fig. 1   Evolutionary and environmental factors influencing the outcome of parasitoid host regulation toward 
an early arrestment of the host development or toward a promotion of its growth. a: host feeding ecology, 
b: parasitoid host-utilization strategies, c: parasitoid developmental strategies, d: host quality and e: host 
availability
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strategies that arrest the development of their host early in their development (e.g. earlier 
moulting or pupation) in order to minimize the predation risks of exposed hosts. For exam-
ple, parasitoid larvae that develop in exposed hosts tend to favour a faster developmental 
time, at the expense of a smaller final weight, and therefore arrest the development of their 
host earlier (Harvey and Strand 2002). On the other hand, parasitoids that develop in a 
concealed host with a lower risk of predation tend to favour host regulation strategies that 
increase host developmental time, total food consumption and final weight compared to 
their exposed counterparts (Harvey and Strand 2002).

The evolution of parasitoid host regulation is also constrained by the feeding ecology 
of parasitoid larvae. Koinobiont endoparasitoids can be categorized in two larval host-uti-
lization strategies: tissue and haemolymph feeders (Harvey et al. 2000; Harvey and Gols 
2018). Tissue feeders typically consume their host almost entirely in order to pupate. As 
a consequence, if the host grows too much, the parasitoid can be forced to overeat or can 
be trapped inside and die (Harvey 1996, 2005). Hence, we can hypothesize that for parasi-
toids feeding on host tissue, there is an evolutionary advantage to arrest the host develop-
ment below a threshold, resulting in a development time of parasitized hosts that is usually 
shorter than unparasitized ones. On the other hand, parasitoids that feed on haemolymph 
and fat bodies typically pupate outside of their host, which they do not have to entirely con-
sume (Harvey and Strand 2002). They are not constrained by a short host developmental 
time and they can allow their host to grow until the last instar. They even sometimes extend 
the host developmental time with a supernumerary instar which significantly increase its 
final weight (Table 2, Harvey and Malcicka 2016). Therefore, the capacity of feeding on 
the host haemolymph could have favoured host regulation strategies that stimulate host 
growth.

Finally, the evolution of parasitoid host regulation type is affected by their life-history 
strategies (i.e. solitary and gregarious (Godfray 1994)) and the amount of resource needed 
to complete development. Solitary parasitoids typically lay only one egg in their host. In 
contrast, gregarious parasitoids lay several eggs in the same host where they can all com-
plete their development if sufficient resource is provided by the parasitized host. Gregari-
ous parasitoid larvae need significantly more resources than their solitary counterparts. 
Consequently, they often prolong their host development in order to increase the amount 
of resource available, while solitary parasitoids often arrest their host development pre-
maturely. All known gregarious parasitoids are haemolymph feeders, suggesting that this 
strategy is particularly well adapted for the high resource needs of gregarious parasitoids. 
Therefore, it can be hypothesized that the ability to feed on haemolymph has favoured the 
transition from solitary parasitoid development to gregariousness (Strand 2000), increasing 
parasitoid resource needs and favouring the evolution toward host growth promotion. Com-
petition for limiting host supplies could also be an important factor favouring the evolution 
from solitary to gregariousness (Mackauer and Chow 2015).

(b)	 Environmental factors

Parasitoid host regulation can be plastic: the intensity in decreasing or increasing their 
host weight can greatly vary according to environmental factors linked with parasitoid 
resource needs. Furthermore, in different ecological contexts, parasitoids from the same 
species can exert either a decrease or an increase of their hosts weight.
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Parasitoids that typically reduce their final host weight tend to have a stronger host 
regulation when developing in large hosts. Consequently, in an environment where 
only large hosts can be found (either large species or late instars), the reduction in host 
weight due to parasitism will be stronger. This is particularly the case for tissue-feeder 
parasitoids that entirely consume their host in order to pupate, as having too much 
resources can be particularly detrimental (Harvey 1996, 2005). This is important when 
parasitizing a host at a late instar (Harvey et  al. 1994), or when parasitizing a large 
host species. For example, the parasitoid Venturia canescens has a stronger effect on the 
arrestment of its host development when developing in a large host species (Galleria 
mellonella) compared to a smaller one (Anagasta kuehniella) (Harvey 1996).

The increase of parasitized host weight tends to be stronger when the amount of 
resources available in the host is not sufficient for an optimal development of the para-
sitoid larva(e). This is particularly the case for gregarious parasitoids, as several larvae 
are developing in the same host and therefore the amount of resources needed is higher 
compared to their solitary counterparts (Table 2). Importantly, the number of parasitoid 
larvae developing on/in the same host greatly influences the intensity of the host devel-
opmental regulation (Harvey 2000). The higher the number of parasitoid larvae sharing 
the same host, the more they will regulate the host development to increase its final 
weight (Smallegange et al. 2008). As a consequence, all the environmental conditions 
that favour a higher number of gregarious parasitoid larvae developing in the same host 
will also favour a stronger host regulation toward a higher host plant consumption and 
final weight. Gregarious parasitoid clutch size usually increases according to the size 
of the host at parasitism (Sato et al. 1986). Additionally, hosts can also be superpara-
sitized (i.e. laying eggs in a host that is already parasitized by a conspecific parasitoid), 
leading to very high numbers of parasitoid larvae in the same host and an even stronger 
host regulation (Table 2; Gu et  al. 2003). Several environmental factors can influence 
the probability of superparasitism (or self-superparasitism when the same female para-
sitizes the same host several times), such as the amount of hosts available in the envi-
ronment, the competition with other parasitoids (when superparasitism increases the 
probability to survive larval competition) and the necessity to exhaust the host immune 
system (Mackauer et al. 1992; Rosenheim and Hongkham 1996). It has to be noted that 
superparasitism by solitary parasitoids can also lead to an increased host food consump-
tion (Cloutier and Mackauer 1979, 1980).

Finally, depending on the host species availability in a given environment, the same 
parasitoid species can either arrest or increase its host development in order to match 
resources requirement for the developing parasitoid larva(e). For example, Meteorus 
pulchricornis, a solitary parasitoid that feeds on its host haemolymph, strongly reduces 
its host development compared to unparasitized hosts when developing in a large host 
species (Mythimma separata) (Harvey et  al. 2010b). Interestingly, when the same 
parasitoid developed in a very small host species (Plutella xylostella), with likely not 
enough resources for an optimal parasitoid larval development, host maximum weight 
was increased by 30% compared to an unparasitized host. Similarly, the gregarious 
endoparasitoids Cotesia glomerata either reduce or increase their host final weight when 
developing in a big (Pieris brassicae) or small (P. rapae) host, respectively (Harvey 
2000).
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Implications of the type of host regulation for plant‑parasitoid 
interaction

Depending on the direction of host regulation, parasitoids can have either a beneficial, neu-
tral or negative effect on plant performance. This may have important consequences for the 
role of parasitoids as part of plant indirect defence.

In many cases, koinobiont parasitoid host regulation leads to a reduction of the host 
final weight compared to unparasitized hosts, especially when parasitoids are tissue-feeders 
and solitary (Table 1; Beckage and Gelman 2004; Vinson and Iwantsch 1980). In this case, 
parasitism usually reduces herbivory, which can in turn have a positive effect on plant fit-
ness (Dicke and van Loon 2000; Gols et  al. 2015; Gómez and Zamora 1994; Hoballah 
and Turlings 2001). From this point of view, the production of herbivore-induced plant 
volatiles that attract koinobiont parasitoids toward the plant under attack could be regarded 
as part of plant indirect defence strategy (Gols 2014; Pearse et  al. 2020; Schuman et  al. 
2012). Considering that parasitoids benefit from the emission of HIPVs that allow them to 
find their host and increase their fitness (Turlings et al. 1990), plant-parasitoid interactions 
could even be classified as mutualism (van Loon et al. 2000). The adaptiveness of HIPVs 
to attract koinobiont parasitoids is still subject to debate (Turlings and Erb 2018). How-
ever, when the attracted natural enemies are predators that eat their prey, the advantage of 
HIPV emission for plant fitness is clearer (Pearse et al. 2020). This leads to the hypoth-
esis that HIPVs are adaptively produced to attract natural enemies (among other functions, 
Hare 2011; Heil 2014), but it is likely that in several environments, koinobiont parasitoids 
are not the ideal natural enemies for a plant to attract (Cuny et al. 2021). An alternative 
hypothesis is that HIPVs are a by-product of plant responses to herbivore attack and para-
sitoids evolved to exploit these cues in host searching, without a fitness benefit to the plant.

Some koinobiont parasitoids regulate their host in a way that they increase their final 
weight as well as the amount of plant tissue consumed, compared to unparasitized herbi-
vores (Ode 2006, Table 2). This can even translate into a negative effect on plant fitness (Xi 
et al. 2015). Therefore, parasitoids that promote their host growth should not be recruited 
by plants as they do not deliver indirect defence. Yet, when HIPVs are released in the envi-
ronment, the emitter plant has virtually no control on the receiver species (Kessler and Heil 
2011; van der Meijden and Klinkhamer 2000). This may result in the attraction of koinobi-
ont parasitoids that have negative effects on plants due to their host regulation type (Cole-
man et  al. 1999; Kaplan 2012). The context dependency of direction of host regulation 
by some parasitoids further increases the unreliability in recruiting parasitoids as indirect 
defence against herbivores and may sometimes turn into an antagonistic relationship.

For a plant trait to be positively selected via natural selection, the main factor to con-
sider is the final overall fitness gain. Therefore, if on average a plant has a net fitness gain 
when attracting koinobiont parasitoids with HIPVs, this trait will be positively selected via 
natural selection, even if the plant also interacts with parasitoids that have a negative effect. 
This raises the following questions: (1) what is the ratio of parasitoids that reduce their 
host plant consumption versus parasitoids that increase it in natural environments?, (2) do 
they have the same effect size on plant damage? and (3) does variation in plant damage 
always translate into an effect on plant fitness? First, it seems that solitary and tissue-feeder 
parasitoids are more prevalent than gregarious and haemolymph-feeders, probably because 
haemolymph feeding and gregariousness are relatively recent adaptations (Harvey et  al. 
2000; Hoballah et al. 2004; Mayhew 1998). Assuming that in general solitary and tissue-
feeder parasitoids have more chance to reduce plant damage than haemolymph-feeders and 
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gregarious parasitoids (but see Gols et al. 2015; Harvey et al. 2000, 2010b; Xi et al. 2015), 
it can be hypothesized that there are more parasitoid species that tend to reduce plant dam-
age (although this pattern could greatly vary according to the environment). Second, if we 
compare the size of effect of host regulation by parasitoids that increase or decrease their 
host weight (Tables 1, 2; Hoballah et al. 2004), it seems that, in general, the reduction of 
parasitized host weight is more important than the increase (approximately − 80% versus 
+40%, respectively). Thirdly, herbivory does not always translate into a negative effect on 
plant fitness: some plants can tolerate herbivore damage in order to maintain their fitness 
(Strauss and Agrawal 1999; Simms 2000). In such plants, variation in herbivory due to 
parasitism is likely to have no effect on plant fitness, although this has never been tested.

Moreover, it is also very important to consider long-term (i.e. multigenerational) effects 
of herbivore population reduction by parasitoids on plant fitness (Ode 2006; Pearse et al. 
2020). Indeed, even though parasitoids may not always reduce plant damage, or may even 
increase it, they virtually all ultimately kill their host and reduce herbivore populations 
(Price et al. 1980). As a consequence, in a context with long-lived plants that suffer from 
several generations of herbivores, parasitoids have the potential to negatively affect their 
host population size, and to locally relieve plants from herbivory. This could be particu-
larly visible when the migration of herbivore progeny is negligible (van der Meijden and 
Klinkhamer 2000). As a consequence, it can be hypothesized that even if the direct effect 
of parasitism is an increase of plant damage, this negative effect could be entirely compen-
sated by the local reduction in the host population size during the following generations of 
herbivores.

Furthermore, for some herbivorous hosts such as caterpillars from the Pieris genera, 
parasitism may be predominantly by gregarious parasitoids. In such specific cases, there 
are higher chances that the overall consequences of parasitoid attraction could be negative 
for plant fitness. This may result in a local selection against plant volatile production fol-
lowed by a local reduction in plant volatile emission (Kergunteuil et al. 2019; Kessler and 
Heil 2011; Schuman et  al. 2012). Such local selection of parasitoids on plant defensive 
traits has received very little attention so far (Ode 2006, 2019).

Conclusion and future directions

Over the last two decades, the significance of parasitoid host manipulation has been 
extended to indirect plant-mediated species interactions that are initiated by parasitized 
herbivores. We argue that the identification of an extended phenotype of parasitoid host 
manipulation to plant–insect interactions requires deep understanding of the changes in 
parasitized herbivores.

First, we should explore whether parasitoids that arrest host growth differ in their 
impact on plant responses to parasitized herbivores compared to parasitoids that prolong 
host development. Although some studies compared plant induced responses to hosts para-
sitized by a solitary parasitoid that arrest growth with a gregarious parasitoid that promotes 
development (Poelman et al. 2011a, b, 2012), these studies could not provide causal evi-
dence for host development as driving factor for the extended phenotype of parasitoids on 
plant–insect interactions. This is primarily caused by under sampling of gregarious parasi-
toid species for these interactions. We propose that superparasitizing hosts to create varia-
tion in host development from arrestment to prolongation should be used to provide direct 
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evidence for the importance of host development in determining induced plant responses to 
parasitized hosts.

Second, parasitoid host manipulation affects plant-mediated species interactions through 
quantitative aspects such as amount of food consumed by parasitized hosts as well as quali-
tative aspects such as composition of herbivore oral secretions (Poelman et al. 2011b; Tan 
et al. 2018). How parasitoids prolong herbivore development is understudied compared to 
arrestment of growth and we thus urge for studies that explore the physiological mecha-
nisms that cause prolongation of host development. In addition, we require detailed under-
standing of how parasitoids manipulate their host environment beyond the traits that benefit 
the parasitoid itself. All traits that may influence how parasitoids influence plant-mediated 
species interactions should be considered. This includes to identify changes in host organs 
that may not be relevant to parasitoid development, but are crucial in the interface between 
parasitized herbivores and the food plant, such as salivary glands. A critical knowledge 
gap is which mechanisms in parasitoid host manipulation predict the outcome of plant-
mediated species interactions and determine the net benefit of plants to recruit parasitoids 
as agents of indirect defence. Such knowledge could be profitable for the ongoing debate 
about the adaptive role of HIPVs in the attraction of parasitoids (Turlings and Erb 2018; 
Pearse et al. 2020). We thus pledge for revival of mechanistic, ecological and evolution-
ary studies on parasitoid host manipulation and emphasize that these studies should more 
prominently include parasitoids that prolong herbivore development.
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