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Abstract: Semiconductor-based gas sensors that use n-type WO3 or p-type Co3O4 powder 
were fabricated and their gas sensing properties toward NO2 or NO (0.5–5 ppm in air) were 
investigated at 100 °C or 200 °C. The resistance of the WO3-based sensor increased on 
exposure to NO2 and NO. On the other hand, the resistance of the Co3O4-based sensor 
varied depending on the operating temperature and the gas species. The chemical states of 
the surface of WO3 or those of the Co3O4 powder on exposure to 1 ppm NO2 and NO were 
investigated by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. No 
clear differences between the chemical states of the metal oxide surface exposed to NO2 or 
NO could be detected from the DRIFT spectra. 

Keywords: gas sensor; metal oxide semiconductor; diffuse reflectance infrared Fourier 
transform spectroscopy; NO2; NO 

 

1. Introduction 

Since environmentally hazardous gases include toxic and greenhouse effect gases, the threshold 
limit value, which is defined as the maximum concentration of a chemical allowable for repeated 
exposure without producing adverse health effects, is regulated by the American Conference of 
Governmental Industrial Hygienists [1]. Effective and inexpensive systems for the detection and 
quantification of environmentally hazardous gases are required. Standard air pollution measurements 
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are still based on time-consuming and expensive analytical techniques such as optical spectroscopy 
and gas chromatography [2,3]. Gas sensors have been considered as promising candidates for 
measurement of environmental pollution levels because of their low cost, high sensitivity, fast 
response, and direct electronic interface. 

Environmentally hazardous gases can be classified into oxidizing gases (such as NO2, CO2, and Cl2) 
and reducing gases (such as NO, H2S, CO, and C2H5OH). When an oxidizing gas is steamed on an  
n-type semiconductor surface, the concentration of electrons on the surface decreases and the 
resistance of the n-type semiconductor increases. In the case of a p-type semiconductor, the 
concentration of electrons on the p-type semiconductor surface decreases and the resistance of the  
p-type semiconductor decreases because the extracted electrons result in the generation holes in the 
valence band. When the reducing gas is streamed on a metal oxide semiconductor, the gas reacts with 
the oxygen ions on the semiconductor surface, releasing electrons back to the conduction band. 
Therefore, when the concentration of electrons on the semiconductor surface increases, the resistance 
of the n-type semiconductor decreases and that of the p-type semiconductor increases because the 
generated electrons recombine with holes [4]. 

Many kinds of NOx (NO and NO2) gas sensors including metal oxide semiconductors [5–7] and 
solid electrolytes [8,9] have been investigated. Among metal oxide semiconductors, n-type 
semiconductors, specifically those based on WO3, which are highly sensitive, are promising candidates 
that can be used for the detection of NOx gas [10–12]. Despite the large number of reports on the use 
of metal oxide semiconductors for the detection of NOx, only a few make a clear distinction between 
the response toward NO and NO2. Because NO is easily oxidized to NO2 in air, the detection of NO2 
gas is carried out via the oxidation of NO by an oxidizing agent such as alumina supported potassium 
permanganate or by oxygen in air over a catalyst such as Pt [13,14]. To develop a high-performance 
NO gas sensor, it is essential to understand the means of optimizing the semiconductor that constitutes 
the sensor. 

In the present work, the gas sensing properties of the sensor element that uses both n-type WO3 and 
p-type Co3O4 toward the NO2 and NO were examined. The oxidation of NO was a thermally activated 
reaction in air atmosphere so that the in situ observation of the chemical state of NO2 and NO on the 
surface of the sensing material at the temperature of operation may provide important information on 
the gas detection mechanism. A diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy is 
an excellent analysis to obtain the chemical state on the surface of the sensing material and has been 
performed to elucidate the gas detection mechanism of the gas sensors [15,16]. The chemical states of 
NO2 and NO on the surface of the semiconductor oxide were investigated by the DRIFT spectroscopy 
at a specific working temperature could be changed to indicate the two temperature used in this project. 

2. Experimental 

WO3 powder (99.5%, Wako Pure Chemical, Osaka, Japan) and Co3O4 powder (average particle size: 
20~30 nm, 99.8%, Sigma-Aldrich, St. Louis, MO, USA) were mixed with an organic dispersant, 
consisting of a mixture of ethyl cellulose and terpineol, to obtain a paste. The weight ratio of the 
mixture of ethyl cellulose and terpineol was 1:9. The weight ratio of the powder and the organic 
dispersant was 1:16. The paste was dispensed on a 5 × 9.5 mm2 surface-oxidized Si substrate,  
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DRIFT spectrum was obtained. Then, the powder was purged to remove NO or NO2 by air flow and 
the DRIFT spectrum was once again obtained. The spectra were recorded at a spectral resolution of  
1 cm−1 with 256 scans. 

3. Results and Discussion 

3.1. Gas Sensing Properties of WO3 

Figure 2a,b show the response of the WO3 sensor element to NO2 at 100 °C and 200 °C, 
respectively. When NO2 gas was introduced, the resistance of the WO3 sensor element increased with 
increase in the concentration of NO2. This is the typical response of an n-type oxide toward an 
oxidizing gas, leading to Rg > Ra. At 200 °C, Ra of WO3 decreased with temperature, and the sensor 
responses were higher than those at 100 °C. At 200 °C, the response of the WO3 sensor element 
increased to S = 19.2 at 1 ppm of NO2 and the response was adequately linear. The response and 
recovery times of the resistance of the WO3 sensor element reduced with increasing the operating 
temperature, but the resistance did not reach the saturation even after 15 min for NO2 exposure. The 
response time of the WO3 sensor element was not so fast in comparison with the other sensors [5–7]. 
In order to reduce the response and recovery times, the optimum operating temperature is required. 

Figure 2. Response of the sensor element using WO3 powder during exposure to NO2  
(0, 0.5, 1, and 5 ppm) in air at (a) 100 °C and (b) 200 °C. The inset shows the relationship 
between the sensor response and NO2 concentration. 

 

Figure 3a,b show the response of the WO3 sensor element to NO at 100 °C and 200 °C, respectively. 
When NO gas was introduced at 100 °C, the resistance of the sensor element immediately increased 
and then subsequently decreased within 10 min. No clear relationship between the gas concentration 
and sensor response could be observed. Therefore, the resistance of the sensor to 5 ppm of NO was 
smaller than that to 0.5 and 1 ppm NO. The unexpected changes of the sensor resistance of WO3 are 
supposed to be under the influence of the low operating temperature of 100 °C, which is not high 
enough for desorption of the reaction product on the WO3. However, when the WO3 sensor was 
exposed to NO gas at 200 °C, the resistance of the element increased with increase in the concentration 
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of NO, similar to the response shown to NO2, as seen in Figure 2b. At 200 °C, the response of the WO3 
sensor element to 1 ppm NO was S = 2.2, and the response was adequately linear. 

Figure 3. Response of the sensor element using WO3 powder during exposure to NO  
(0, 0.5, 1, and 5 ppm) in air at (a) 100 °C and (b) 200 °C. The inset shows the relationship 
between the sensor response and NO concentration. 

 

The resistance of the WO3 sensor element increased by exposure to NO2 and NO at 200 °C. 
Although the resistance of the sensor based on the n-type WO3 is considered to be decreased by 
exposure to reductive NO, the resistance increased, as shown in Figure 3a,b. Since NO with an 
unpaired electron is unstable state, NO easily reacts with oxygen in air to become a stable NO2. The 
reaction of NO to NO2 proceeds with temperature [13]. It has previously been reported that NO could 
be partially oxidized to NO2 and leading to adsorption of NO2 on WO3 (or Pt-doped WO3) surface, 
which has been confirmed by temperature programmed desorption (TPD) analysis [17]. Therefore, we 
assumed that the resistance of the sensor on exposure to NO increased and the responses of the sensor 
toward NO exposure were smaller than those toward NO2 exposure at 100 °C and 200 °C because of 
the partial oxidation of NO. 

3.2. Gas Sensing Properties of Co3O4 

Figure 4a,b show the response of the Co3O4 sensor element toward NO2 exposure at 100 °C and  
200 °C, respectively. When NO2 gas was introduced at 100 °C, the resistance of the sensor element 
immediately decreased. This may be attributed to the adsorption of NO2 onto the surface of the p-type 
semiconductor Co3O4 and to the role of NO2 as an oxidizing gas at 100 °C. A linear relationship 
between the gas concentration and the sensor response was observed. The response of the Co3O4 
sensor element to 1 ppm of NO2 at 100 °C was S = 2.2. The sensor resistance of NO2-exposed Co3O4 
did not reached to Ra even after 15 min for air exposure; the recovery time of Co3O4 sensor element 
was not so fast. In our preliminary experiment, the sensor resistance of NO2-exposed Co3O4 reached 
the saturation within 60 min for air exposure. Therefore, the sensor resistance of NO2-exposed Co3O4 
in this work is also expected to reach the saturation within 60 min for air exposure. When the sensor 
was exposed to NO2 at 200 °C, the resistance of the sensor element immediately increased and then 
gradually decreased on further exposure to NO2, which seems to indicate the role of NO2 as a reducing 
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gas at 200 °C. The decrease in the resistance of the Co3O4 sensor increased with the concentration of 
the NO2 gas. As a result, the resistance of the Co3O4 element after 15 min of exposure to NO2 
decreased with the concentration of NO2 gas. In our preliminary experiment, the sensor resistance of 
the Co3O4 reached the saturation after 30 min for NO2 exposure and did not reached to Ra even after  
60 min for NO2 exposure. Therefore, the sensor resistance of the Co3O4 in this work is also expected to 
reach the saturation within 30 min for NO2 exposure. No clear linear relationship between the gas 
concentration and sensor response could be observed. 

Figure 4. Response of the sensor element using Co3O4 powder during exposure to NO2  
(0, 0.5, 1, and 5 ppm) in air at (a) 100 °C and (b) 200 °C. The inset shows the relationship 
between the sensor response and NO2 concentration. 

 

Figure 5a,b show the response of the Co3O4 sensor element at 100 °C and 200 °C, respectively, 
toward NO. When 5 ppm of NO gas was introduced at 100 °C, the resistance of the Co3O4 sensor 
slightly increased. However, the resistance decreased within 3 min of exposure and a linear 
relationship between the NO gas concentration and the resistance of the Co3O4 sensor element was 
absent. However at 200 °C, the resistance increased with the concentration of NO gas and the 
relationship between the gas concentration and sensor response was linear, as shown in Figure 5b. The 
response of the Co3O4 sensor element to 1 ppm NO at 200 °C was S = 1.2. 

Figure 4a shows the Rg decrease exhibited by the p-type Co3O4 on exposure to NO2 at 100 °C, 
however, the response of resistance Rg of Co3O4 reversed and Rg increased on exposure to NO2 at  
200 °C. This contradictory result indicated a role of NO2 as an oxidizing gas at 100 °C and as a 
reducing gas at 200 °C. However, it rermains unclear how an oxidizing gas such as NO2 could become 
a reducing gas at a different temperature. As shown in Figure 5a,b, NO is expected to be adsorbed on 
the surface of Co3O4 and act as a reducing gas, resulting in an increase in the sensor resistance. The 
sensor resistance of Co3O4 on exposure to 5 ppm of NO at 100 °C increased within 3 min of exposure 
and then became slightly smaller than Ra. The unexpected changes of the sensor resistance of Co3O4 
are supposed to be due to insufficient desorption of reaction product on the oxide surface, similar to 
the case of the WO3 sensor. The reaction of Co3O4 on exposure to 5 ppm of NO at 100 °C is assumed 
as follows: NO reacts with adsorbed oxygen on Co3O4 surface and the sensor resistance increases; the 
reaction of NO and adsorbed oxygen generates NO2. Although the generated NO2 is normally desorbed 
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1,400–1,700 cm−1 region seemed to be the result of multiple overlapping bands and could not be 
determined. The peak around 1,400 cm−1 could be assigned to nitrate species [20,21]. 

Figure 7. DRIFT spectra of WO3 powder at 100 °C. The powders were exposed to 1 ppm 
of NO2 in air for (a) 2 min, (b) 20 min, and (c) 50 min. After NO2 exposure, the powders 
were purged by air for (d) 1 min, (e) 30 min, and (f) 60 min. 

  

Figure 8. DRIFT spectra of WO3 powder at 200 °C. The powders were exposed to 1 ppm 
of NO2 in air for (a) 2 min, (b) 20 min, and (c) 50 min. After NO2 exposure, the powders 
were purged by air for (d) 1 min, (e) 30 min, and (f) 60 min. 
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At 200 °C, the peaks around 2,062, 1,861 and 1,421 cm−1 were also observed in WO3 on NO2 
exposure. The peaks at about 2,062 and 1,861 cm−1 formed upon interaction with NO2 at 200 °C were 
similar to those at 100 °C and the peaks could be assigned to the various overtones and combination 
modes of the bond between oxygen and tungsten in the lattice of the oxide. The peak at around  
1,421 cm−1 could be assigned to nitrate species. This peak at 200 °C seemed much stronger than that at 
100 °C and hence, the amount of the nitrate species on WO3 surface at 200 °C was larger than that at 
100 °C. When air was introduced to the WO3 powder sensor after exposure to NO2, the intensity of the 
peaks at 100 °C and 200 °C decreased with the time of air flow, which indicated the desorption of NO2 
from the surface of WO3. 

Figures 9 and 10 show the DRIFT spectra of WO3 powder on exposure to 1 ppm of NO at 100 °C 
and 200 °C, respectively. In Figure 9, negative peaks at around 2,062 and 1,861 cm−1 were seen upon 
the introduction of NO gas. WO3 powder is supposed to be unreactive for NO at 100 °C because there 
was no difference between the spectra obtained on exposure to NO (Figure 9a–c) and on exposure to 
air (Figure 9d–f). However, as shown in Figure 10, the intensity of the peaks at around 2,062 and  
1,861 cm−1 increased with the time of exposure to NO and decreased on introduction of air. The 
negative peaks of NO observed in Figure 9, Figure 10e,f may be attributed to possible glitches with the 
background subtraction. When NO reacts with adsorbed oxygen on the WO3 surface, NO2 formed and 
adsorbed on the surface of WO3, resulting in the increase in the intensity of the peaks shown in  
Figure 7 or Figure 8. Subsequently, NO2 desorbed from the surface of WO3 by air flow, and the 
intensity of the peaks reduced again. 

Figure 9. DRIFT spectra of WO3 powder at 100 °C. The powders were exposed to 1 ppm 
of NO in air for (a) 2 min, (b) 20 min, and (c) 50 min. After NO exposure, the powders 
were purged by air for (d) 1 min, (e) 30 min, and (f) 60 min. 

 

In the DRIFT spectra of WO3 on exposure to NO2 and NO, peaks corresponding to NO vibration 
and NO2 asymmetric vibration bands could not be observed. Previous reports have shown the presence 
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of peaks corresponding to CO vibration and CO2 asymmetric vibration bands in the DRIFT spectra of 
SnO2 exposed to CO, while peaks of W-O alone were observed in the DRIFT spectra of WO3 exposed 
to CO [16,22]. We assumed that WO3 may have insignificant interaction with NO2 or NO gas in 
comparison with other metal oxide semiconductors. The positions of the peaks observed in the DRIFT 
spectra of WO3 exposed to NO2 were similar to those observed in the DRIFT spectra of WO3 exposed 
to NO. Further, as shown in Figure 7, the peaks in the DRIFT spectra were small and there were hardly 
any differences between the DRIFT spectra. Therefore, the response of the sensor to NO exposure was 
more unstable than that to NO2 exposure at 100 °C. 

Figure 10. DRIFT spectra of WO3 powder at 200 °C. The powders were exposed to 1 ppm 
of NO in air for (a) 2 min, (b) 20 min, and (c) 50 min. After NO exposure, the powders 
were purged by air for (d) 1 min, (e) 30 min, and (f) 60 min. 

 

3.4. DRIFT Spectra of Co3O4 Powder 

Figures 11 and 12 show the DRIFT spectra of Co3O4 powder exposed to 1 ppm NO2 at 100 °C and 
200 °C, respectively. In Figure 11, four peaks around 1,609, 1,535, 1,430 and 1,268 cm−1 were 
observed which are reported to correspond to the NO vibration band of the bridging bidentate nitrate, 
the NO vibration band of the chelating bidentate nitrate, the NO2 asymmetric vibration band of the 
monodentate nitrate, and the NO2 asymmetric vibration of the bridging bidentate nitrate or chelating 
bidentate nitrate, respectively [20,21]. The intensity of the peaks increased with the time of exposure to 
NO2 gas and the intensities did not decrease even after the replacing NO2 flow with air flow. 

In Figure 12, two strong peaks at around 1,535 cm−1 and a weak peak around 1,268 cm−1 were 
observed, which could be assigned to the chelating bidentate nitrate. From the spectra shown in  
Figures 11 and 12, we could suggest that exposure of NO2 gas to the Co3O4 surface formed the 
bridging bidentate, chelating bidentate, and monodentate nitrates at 100 °C and the chelating bidentate 
nitrate at 200 °C. 
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Figure 11. DRIFT spectra of Co3O4 powder at 100 °C. The powders were exposed to  
1 ppm of NO2 in air for (a) 2 min, (b) 20 min, and (c) 50 min. After NO2 exposure, the 
powders were purged by air for (d) 1 min, (e) 30 min, and (f) 60 min. 

  

Figure 12. DRIFT spectra of Co3O4 powder at 200 °C. The powders were exposed to  
1 ppm of NO2 in air for (a) 2 min, (b) 20 min, and (c) 50 min. After NO2 exposure, the 
powders were purged by air for (d) 1 min, (e) 30 min, and (f) 60 min. 

 

Figures 13 and 14 show the DRIFT spectra of Co3O4 powder exposed to 1 ppm NO at 100 °C and 
200 °C, respectively. The peak patterns shown in Figures 13 and 14, are similar to the patterns shown 
by the DRIFT spectra of Co3O4 powder exposed to NO2. Hence, the chemical states of the Co3O4 
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surface achieved on exposure to NO2 and NO seemed identical. Further, most peaks in the DRIFT 
spectra of Co3O4 exposed to air and on exposure to NO2 or NO gases were similar. Despite the changes 
observed in the resistance of Co3O4 on exposure to various atmospheres, there was no clear difference 
in the DRIFT spectra of Co3O4 powder exposed to various atmospheres. With the present data, it is 
difficult to discuss the origin of these contradictory results and we intend to investigate these in future. 

Figure 13. DRIFT spectra of Co3O4 powder at 100 °C. The powders were exposed to  
1 ppm of NO in air for (a) 2 min, (b) 20 min, and (c) 50 min. After NO exposure, the 
powders were purged by air for (d) 1 min, (e) 30 min, and (f) 60 min. 

 

As in the case of the DRIFT spectra of Co3O4 powder, no difference between NO2 and NO 
exposures could be observed in the case of the DRIFT spectra shown by WO3 powder. However, as 
shown in Figures 4 and 5, the sensor resistance of Co3O4 varied depended on the operating temperature 
(100 °C or 200 °C) and the gas species (NO2 or NO in air). It is to be noted that although the chemical 
state of the Co3O4 surface exposed to NO2 exposure was similar to that of the Co3O4 surface exposed 
to NO at 100 °C, the sensor resistance decreased on exposure to NO2 and increased on exposure to NO. 
With the change in the electron concentration on Co3O4 surface, the sensor resistance changed. The 
resistance of the sensor on exposure to NO2 decreased at 100 °C and increased at 200 °C. This can be 
viewed on the basis of the previous studies which report on the transitions from p-type to n-type 
behavior of several metal oxide sensors (or vice versa) [12,23–25]. In particular, Zhang et al. showed 
that the transition of WO3 was observed under 93 ppb NO2 exposure at working temperature above 
130 °C [12]. A similar transition seemed to have occurred in the case of the Co3O4 sensor on exposure 
NO2 at 200 °C in this study. On the other hand, no transition of WO3 seemed to have occurred because 
NO2 concentration was higher than 0.5 ppm in this study. Although the transition would be due to the 
oxygen adsorption and formation of inversion layer at the metal oxide surface, further works are 
necessary to clear the transition mechanism. In this work, we could not examine the DRIFT spectra of 
WO3 or Co3O4 powder in the sample cell but the DRIFT spectra of WO3 or Co3O4 film on the Si 
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substrate with a platinum comb-type electrode; the difference between the reactions of the powder and 
the film might be present. Due to the difference between the reactions of the powder and the film, 
some contradictory results in this work are supposed to be appeared. The chemical states of NO2 and 
NO on the sensor elements will be investigated in the future. 

Figure 14. DRIFT spectra of Co3O4 powder at 200 °C. The powders were exposed to  
1 ppm of NO in air for (a) 2 min, (b) 20 min, and (c) 50 min. After NO exposure, the 
powders were purged by air for (d) 1 min, (e) 30 min, and (f) 60 min. 

 

In this study, we have dealt with the sensor responses of WO3 and Co3O4 elements on exposure to 
NO2 or NO at different operating temperatures. In the case of the real-life application of the sensors,  
if the target gas consisting of an unknown mixture of NO2 and NO is to be analyzed by WO3 and  
Co3O4-based gas sensors, the results should be viewed carefully because the sensor response could be 
changed by the component ratio of NO2 and NO in NOx. 

4. Conclusions 

We have investigated the gas sensing properties of the sensor element that uses n-type WO3 or  
p-type Co3O4 toward NO2 and NO. Further, we also analyzed the chemical states of NO2 and NO on 
the semiconductor oxide surfaces. The resistance of the WO3 sensor at 100 °C and 200 °C increased 
with the concentration of NO2. The resistance of the WO3 sensor to NO exposure first increased and 
then immediately decreased within 10 min at 100 °C, while at 200 °C, the resistance of the sensor 
increased. Since the sensor resistance of Co3O4 exposed to NO increased at 100 °C and 200 °C, NO 
acted as a reducing reagent and oxidized to NO2. The sensor properties for NO exposure were 
consistent with the DRIFT spectra at 100 °C and 200 °C. On the other hand, since the sensor resistance 
of Co3O4 exposed to NO2 decreased at 100 °C, NO2 acted as an oxidizing agent and the sensor 
properties for NO2 exposure were consistent with the DRIFT spectra. At 200 °C, the sensor resistance 
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of Co3O4 exposed to NO2 increased and the sensor properties for NO2 exposure were inconsistent with 
the DRIFT spectra. Interestingly, no clear differences between the chemical states of the metal oxide 
surface exposed to NO2 or NO could be detected from the DRIFT spectra of sensors based on either of 
the semiconductors. We think that NO was oxidized into NO2 and was adsorbed on the surface of WO3 
or Co3O4 as NO2. 
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