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Serum metabolite profiles are associated
with the presence of advanced liver fibrosis
in Chinese patients with chronic hepatitis B
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Abstract

Background: Accurate and noninvasive diagnosis and staging of liver fibrosis are essential for effective clinical
management of chronic liver disease (CLD). We aimed to identify serum metabolite markers that reliably predict the
stage of fibrosis in CLD patients.

Methods: We quantitatively profiled serum metabolites of participants in 2 independent cohorts. Based on the
metabolomics data from cohort 1 (504 HBV associated liver fibrosis patients and 502 normal controls, NC), we
selected a panel of 4 predictive metabolite markers. Consequently, we constructed 3 machine learning models with
the 4 metabolite markers using random forest (RF), to differentiate CLD patients from normal controls (NC), to
differentiate cirrhosis patients from fibrosis patients, and to differentiate advanced fibrosis from early fibrosis,
respectively.

Results: The panel of 4 metabolite markers consisted of taurocholate, tyrosine, valine, and linoelaidic acid. The RF
models of the metabolite panel demonstrated the strongest stratification ability in cohort 1 to diagnose CLD
patients from NC (area under the receiver operating characteristic curve (AUROC) = 0.997 and the precision-recall
curve (AUPR) = 0.994), to differentiate fibrosis from cirrhosis (0.941, 0.870), and to stage liver fibrosis (0.918, 0.892).
The diagnostic accuracy of the models was further validated in an independent cohort 2 consisting of 300 CLD
patients with chronic HBV infection and 90 NC. The AUCs of the models were consistently higher than APRI, FIB-4,
and AST/ALT ratio, with both greater sensitivity and specificity.

Conclusions: Our study showed that this 4-metabolite panel has potential usefulness in clinical assessments of CLD
progression in patients with chronic hepatitis B virus infection.

Keywords: Bile acids, Free fatty acids, Amino acids, Hepatitis B, Chronic liver disease, Liver fibrosis, Metabolomics,
Random forest
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Background
Liver fibrosis is a wound-healing response to damage
caused by chronic liver disease (CLD) [1]. Liver fibrosis
can progress to cirrhosis over years or decades [2], and
results in liver function decline and increased risk of he-
patocellular carcinoma (HCC). Liver biopsy has been the
gold standard for evaluating the presence and degree of
liver fibrosis, but its clinical application is limited by in-
herent limitations such as invasiveness, sampling errors,
and intra- and inter-observer variability [3]. Recent stud-
ies indicated that liver fibrosis could be reversed [1], cre-
ating the need for less invasive clinical tools to monitor
and assess the responses of CLD patients to treatments.
A number of scoring systems, such as the FibroTest [4],
the aspartate transaminase/alanine transaminase (AST/
ALT) ratio [5], the AST/Platelet Ratio Index (APRI) [6],
FIB-4 (patient age, AST, ALT, and platelet) [7], Wisteria
floribunda agglutinin-positive Mac-2 binding protein
(WFA+-M2BP) [8], and machine learning-based clinical
predictive models [9], have recently been used to stage
CLD and predict the development of liver fibrosis and
cirrhosis. Imaging techniques, such as computed tomog-
raphy, magnetic resonance imaging [10], and two re-
cently approved ultrasound-based systems, shear wave
elastography and transient elastography (FibroScan) [11],
have also been used clinically to assess the degree of
liver fibrosis. However, these imaging modalities have
limited accuracy in some patients, such as those with as-
cites, elevated central venous pressure, and obesity [12].
Developing noninvasive, accurate, and reliable markers

to assess the severity and progression of liver fibrosis in
CLD patients has become increasingly important for
treatment decisions, for continuous monitoring of pa-
tients who have mild liver disease and are not under
treatment [13], and for risk stratification and longitu-
dinal follow-up in clinical trials.
Alterations of bile acids (BAs) [13–15], free fatty acids

(FFAs) [16], and amino acids (AAs) [17] are closely asso-
ciated with CLD regardless of etiology. However, the re-
lationship between serum AAs, BAs, and FFAs and the
stages of liver fibrosis have not been thoroughly investi-
gated. The aim of this study was to identify serum me-
tabolite markers that reliably predict the stage of fibrosis
in CLD patients with chronic hepatitis B virus (HBV) in-
fection, a leading cause of CLD worldwide. We used a
targeted metabolomics approach to quantify serum BAs,
AAs, and FFAs in 1006 participants in cohort 1 (504
biopsy-proven fibrosis and cirrhosis CLD patients with
chronic HBV infection and 502 normal controls, NC),
and selected four predictive metabolite markers to con-
struct three machine learning models using random for-
est (RF). Model 1 diagnosed CLD patients from NC,
model 2 differentiated cirrhosis patients from fibrosis
patients, and model 3 differentiated advanced fibrosis

and early fibrosis patients. The diagnostic accuracy of
the three models was further validated in an independ-
ent cohort consisting of 300 HBV-CLD patients and 90
NC.

Methods
Study design and participants
Two datasets were enrolled in this study. Cohort 1 was
recruited between April 2013 and June 2015 at Shu-
guang Hospital Affiliated to Shanghai University of
Traditional Chinese Medicine, consisted of 1006 partici-
pants, including 504 CLD patients with chronic HBV in-
fection and 502 NC as our training cohort to identify
serum metabolite markers and establish predictive
models (Table 1). All the patients were tested positive
for HBV-DNA or positive for hepatitis B surface antigen
(HBsAg). Infection with chronic HBV was diagnosed ac-
cording to the “Guideline on prevention and treatment
of chronic hepatitis B in China” [18]. More detailed in-
clusion and exclusion criteria can be found in
Additional file 1.
Cohort 2, recruited between December 2016 and De-

cember 2017 at Xiamen Hospital of Traditional Chinese
Medicine, consisted of 300 CLD patients with chronic
HBV infection and 90 NC. Data obtained from cohort 2
were used as a validation set to further verify the per-
formance of the models established from the cohort 1.
Detailed information about this cohort can be found in
Additional file 1. Sample size was not determined by
statistical methods and was comparable to other studies
in the field [4–8, 17, 19].
In this study, the diagnosis and the sample collection

were performed using exactly the same protocols to
avoid “external” influences. The samples were provided
to lab staffs blind samples with respect to patient iden-
tity and other clinical information.
The study was organized and led by Shuguang Hos-

pital Affiliated to Shanghai University of Traditional
Chinese Medicine, and participated by Xiamen Hospital
of Traditional Chinese Medicine. The study was ap-
proved by the institutional review board of Shuguang
Hospital first (approval no. 2012-206-22-01) and en-
dorsed by the ethics committee of Xiamen Hospital. All
participants provided written informed consent.

Liver biopsy
All patients, except those diagnosed with decompensated
cirrhosis (presence of any of the following complications
in cirrhosis: variceal hemorrhage, ascites, encephalop-
athy, and jaundice), received a liver biopsy directed by
ultrasonography within 1 week after enrollment. The bi-
opsy specimens were fixed with 10% formalin, embedded
in paraffin, and stained with hematoxylin/eosin and
Masson’s trichrome stain. Examination of a minimum
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length of 1.5 cm of the liver biopsy and at least six portal
tracts were required for diagnosis. Histological grading
of necro-inflammation (G0 to G4) and staging of liver fi-
brosis (S0 to S4) were carried out according to Scheuer’s
classification [20]. All samples were independently
assessed by three pathologists from Shanghai Medical
College of Fudan University, Shanghai, China, who were
blinded to the sample ID. Specimens with discrepant as-
sessments were re-examined until a consensus was
reached. The final assessments of the three pathologists
were further processed using the kappa concordance
test.

Histological assessment of liver injury
The obtained liver tissues via liver biopsy were fixed in
10% formalin (Sigma), processed using established pro-
tocols, and embedded in paraffin. Sections (5 μm) of
each sample were cut and stained with hematoxylin and
eosin (H&E) for histopathological analysis. All sections
were examined using a light microscope. Based on the
H&E staining results, the necro-inflammation activity of
chronic hepatitis was determined as G0 to G4 according
to Scheuer’s classification as G0 (absent), G1 (portal in-
flammation only), G2 (mild interface hepatitis), G3
(moderate interface hepatitis), and G4 (severe interface
hepatitis) (Additional file 2: Figure S1).

Collagen proportionate area using digital image analysis
The obtained liver tissues via liver biopsy were fixed in
10% formalin (Sigma). Tissue samples were embedded in
paraffin blocks and then sliced into 5-μm-thick sections.
Sections were processed and stained with Masson’s tri-
chrome as reported [21]. Masson staining kits were from
Abcam Co., Ltd. (Trichrome Stain, ab150686). Collagen
stained blue (Additional file 2: Figure S2). In order to
characterize collagen area, Masson’s trichrome-stained
slides were scanned with a Leica SCN400 scanner (Leica
Microsystems) at × 40 magnification and measured using
Aperio ImageScope (v12.3.2.5030, Aperio Technologies).
The images were saved as “.scn” format files. The Color
Deconvolution algorithm (v9, Aperio Technologies) was
used to isolate individual stains for semi-quantification.
The percent total positive, total stained area (mm2), and
total analysis area (mm2) in each visual field were mea-
sured and recorded. The analytical data were saved as
“.xls” format files. CPA = percent total positive × total
stained area/total analysis area.

Serum sample collection
Overnight fasting (12 h) blood samples were collected
from all subjects, and sera were delivered to our labora-
tories on ice within 2 h of collection. Samples were ali-
quoted and stored at − 80 °C until analysis.

Blood clinical marker measurement
Hematological and standard biochemical tests were per-
formed using an LH750 Hematology Analyzer and a
Synchron DXC800 Clinical System (Beckman Coulter,
USA) according to the manufacturer’s protocol. The co-
agulation function was measured using an automatic co-
agulation analyzer (STAGO Compact, Diagnostica
Stago, France). The serum HBV-DNA level was quanti-
fied using a real-time polymerase chain reaction (PCR)
system (LightCycler 480, Roche, USA).

Metabolomics analysis
Samples in cohort 1 were analyzed at the Center for
Translational Medicine, Shanghai Jiao Tong University
Affiliated Sixth People’s Hospital. Samples in cohort 2
were analyzed at the Metabo-Profile Biotechnology
(Shanghai) Co., Ltd. BAs and AAs were quantified using
ultra-performance liquid chromatography (UPLC)-triple
quadrupole mass spectrometry (Waters XEVO TQ-S,
Milford, MA), and FFAs were quantified using UPLC
quadrupole time-of-flight mass spectrometry (Waters
XEVO G2S, Milford, MA), according to our previously
reported protocol [22–25].
The detailed procedure and analysis were performed

as described in Additional file 1.

Classification performance evaluation
ROC curve is a plot of the true positive rate (sensitivity/
recall) against the false positive rate (1 − specificity) at
different cutoffs of a binary classifier. AUROC measures
the area under the ROC curves, and a higher value of
AUROC suggests better classification performances
while an AUROC of 0.5 represents the random guess.
The PR curve demonstrates the relationship between
positive predictive values (precision) and true positive
rate (sensitivity/recall), and a higher value of AUPR indi-
cates better diagnostic capacity of the model. PR curves
are usually preferable for evaluating unbalanced data
compared to ROC curves. NRI and IDI were also used
for the evaluation of prediction improvement. We com-
pared RF models to existing clinical indices by splitting
the continuous risk scores into ten equal risk intervals (de-
fault). We used the R software version 3.2.3 for data ana-
lysis and the “PRROC” R package for binary ROC and PR
curves [26], the “pROC” package for calculating the speci-
ficities and sensitivities of classifiers [27], and the “Predic-
tABEL” package for NRI and IDI calculation [28].

Feature selection and method comparison
Quantitative variables were expressed as mean ± SD for
clinical parameters and median (25% quantile, 75%
quantile) of log10 transformed concentration for metab-
olites. Categorical variables were expressed as percent-
ages. The univariate analysis (Wilcoxon’s rank-sum test)
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was carried out to identify the variables that were signifi-
cantly different between CLD patients and NC, between
fibrosis and cirrhosis (S0–3 vs. S4), and among CLD pa-
tients at different fibrotic stages (early stage fibrosis (S0–
2) vs. advanced stage fibrosis (S3–4)).
For differential metabolites with p < 0.001 across, all

univariate analyses were used in two machine learning
methods, LASSO [29] and RF [30], to further select
markers for the three classifications listed above. Data
were log and z-score transformed before being fed into
LASSO to ensure that the coefficients were comparable
with each other. The regularization parameter lambda of
LASSO was determined using 10-fold cross-validation
(CV). The RF model used 500 decision trees. We ranked
the metabolites according to their LASSO non-zero coeffi-
cients and RF mean decrease of accuracy, and kept the
intersection of top 5 LASSO and RF metabolites in the
three classifications. Considering the overlaps of the sec-
ond and the third classification tasks, we further selected
the intersecting variables of these two situations and then
merged with variables selected from the first situation to
construct our final metabolite markers (Fig. 2).
To identify an appropriate classification method, we

introduced two linear models, i.e., logistic regression
(LR) and linear discriminant analysis (LDA), and one de-
cision tree-based ensemble model, i.e., RF, for the classi-
fier construction for the markers we selected. For RF, we
used 500 decision trees and two candidate variables at
each split. For LDA, the tolerance parameter was set to
1.0E−4 (default). We applied 10-fold CV on the training
set (cohort 1) to compare the classification performances
of these four models and three established fibrosis
markers, i.e., APRI, AST/ALT ratio, and FIB-4. AUROC
and AUPR were recorded at each internal validation set
in CV. We used R packages “randomForest,” “glmnet,”
and “MASS” for RF, LASSO, and LDA constructions, re-
spectively [31, 32].

Predictive model construction and validation
We trained the final RF models for different classifica-
tion objectives using the training data (cohort 1), with
model 1 differentiating CLD and NC, model 2 differenti-
ating fibrosis and cirrhosis, and model 3 differentiating
early and advanced stages of liver fibrosis. A total of 500
decision trees were included in a single RF model with
two variables randomly sampled as candidates at each
split. We re-balanced the sample size for different
groups at each bootstrap resampling step for models 2
and 3 considering the unbalanced samples [33].
In RF, each decision tree was fitted on the bootstrap

samples and tested on the untouched OOB samples.
Thus, the OOB predictions provided unbiased estimates
of how the RF model performed on the training data
and were used for the evaluation on cohort 1. We

further validated our mark panel-based RF models in the
independent validation datasets from cohort 2, and com-
pared results with the established fibrosis markers, AST/
ALT ratio, APRI, and FIB-4. ROC and PR curves were
drawn, and AUROC and AUPR values, respectively, were
calculated to evaluate their diagnostic performances. Op-
timal cutoffs were selected to maximize the sum of sen-
sitivity and specificity for the RF model. For APRI, FIB-
4, and AST/ALT, predefined cutoffs were used (1.0 and
2.0 for APRI to distinguish fibrosis and cirrhosis [6],
1.45 and 3.25 for FIB-4 to distinguish S0–2 and S3–4
[7], and 0.8 and 1.0 for AST/ALT to distinguish S0–2
and S3–4 [5, 34]). Bootstrap resampling (1000 times)
was conducted to calculate 95% confidence intervals
(CIs) of AUCs for all binary classifiers. A comparison of
the AUROC of our biomarker panel vs. FIB-4, AST/
ALT, or APRI was performed using DeLong’s test. The
significance level was adjusted for multiple testing ac-
cording to the Benjamini and Hochberg procedure [35].
Log and z-score transformed data were also used for
constructing heatmaps. The R packages “ggplot2” and
“cowplot” were used for data visualization and multiple
plots arrangement.
We further derived an RF risk score for each partici-

pant based on the marker panel and logit function of the
predicted probability (Prob.) of the RF model for corre-
sponding classification objective:

RF score ¼ logit Prob:ð Þ ¼ log
Prob:

1−Prob:

� �

F1 scores were then calculated at the predefined cut-
offs using following formula:

F1 ¼ 2

Precision−1 þ Recall−1

To determine whether the RF score could independ-
ently predict the fibrosis staging in the presence of other
potential confounding factors, we applied logistic regres-
sion on the RF score to differentiate cirrhosis from fibro-
sis as well as discriminate early and advance fibrosis
while adjusting for HBV-DNA levels, the degree of
necro-inflammation, HBeAb status, HBeAg status, liver
function tests (i.e., PT, ALB, DBIL, IBIL), platelets, BMI,
and medication (entecavir) use.

Multi-group classification of S0–2 vs. S3 vs. S4
We built a new RF model based on our metabolite
marker panel and applied multinomial regressions to
APRI, AST/ALT, and FIB-4 separately to differentiate
S0–2 vs. S3 vs. S4 in cohort 1. Then, we compared and
validated these multi-group classifiers on both cohort 1
and cohort 2 datasets using micro-average ROC and PR
curves. Micro-average ROC and PR curves were
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calculated by stacking binary classification results from
each group together to generate a concatenated binary
classification result [36]. We then calculated AUROC
and AUPR with 95% CIs using 100 times bootstrap re-
sampling. We used the “multiROC” R package for calcu-
lating the micro-average AUROC and AUPR as well as
for plotting [37].

Results
Characteristics of the participants
Two independent cohorts were studied (Fig. 1). CLD
groups were staged and assigned according to the results
of their liver biopsy. Cohort 1 consisted of 1006 partici-
pants (502 NC and 504 biopsy-proven HBV-CLD pa-
tients (400 with liver fibrosis (S0–3) and 104 with
cirrhosis (S4), or 349 with early stage fibrosis (S0–2) and
155 with advanced stage fibrosis (S3–4))). Cohort 2 con-
sisted of 390 participants (90 NC and 300 biopsy-proven
CLD patients comprising 141 with fibrosis and 159 with
cirrhosis, or 134 with early stage fibrosis (S0–2) and 166
with advanced stage fibrosis (S3–4)). Models established

from cohort 1 were validated in cohort 2 (models 1, 2,
and 3). The cohort stratification and major demographic
and clinical characteristics are shown in Table 1. More
detailed clinical data are provided in Additional file 3:
Table S1.

Quantification of metabolites in serum
Using targeted metabolomic protocols established in our
lab [22–24], we quantified the concentrations of 98 me-
tabolites, including 24 BAs, 42 FFAs, and 32 AAs, in the
sera of all participants (Additional file 3: Table S2).
These metabolites were used for the subsequent metab-
olite marker selection.

Serum metabolite marker selection
From the 98 serum metabolites, we identified 26 differ-
ential metabolites in three classification situations (i.e.,
to diagnose CLD patients from NC, to differentiate fi-
brosis from cirrhosis, and to differentiate advanced fi-
brosis from early fibrosis) using univariate analysis
(Wilcoxon’s rank-sum test, p < 0.001). The 26

Fig. 1 Study design. Serum metabolites were quantified in cohort 1 (504 biopsy-proven HBV-CLD patients and 502 NC) and were used to identify
candidate markers. After data analysis and feature selection, four metabolites were selected to compose our marker panel. Different machine
models and clinical indices were compared using 10-fold cross-validation. Three RF models were constructed to diagnose CLD from NC (model
1), differentiate fibrosis vs. cirrhosis (model 2), and grade early fibrosis vs. advanced fibrosis (model 3) in cohort 1. These three were further
validated in the independent HBV cohort 2
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statistically significant metabolites were then entered
into least absolute shrinkage and selection operator
(LASSO) [29] and random forest (RF) [30]. According to
the rank of LASSO non-zero coefficients and RF mean
decrease of accuracy, four metabolite markers were se-
lected, which included one FFA, linoelaidic acid (C18:2
n6t); one BA, taurocholate (TCA); and two AAs, tyrosine
(Tyr) and valine (Val) (Fig. 2). The principal component
analysis (PCA) of these four metabolite markers also
showed a clear separation between CLD patients and
NC (Additional file 2: Figure S3). We also derived one

ratio, the Tyr/Val ratio, to further improve the classifica-
tion performances while also including one extra access-
ible risk factor, age, to our panel for the differentiation
of fibrosis and cirrhosis and the staging of fibrosis. Cor-
relations of the four metabolites with fibrosis stage,
necro-inflammation, CPA, AST, ALT, AST/ALT ratio,
PLT, FIB-4, and APRI were assessed using Spearman’s
correlation analysis (Additional file 2: Figure S4). The
four metabolite markers (including the Tyr/Val ratio) all
significantly correlated with fibrosis stage (ρ = 0.38 for
TCA, ρ = 0.50 for Tyr, ρ = 0.53 for Tyr/Val ratio, and

Fig. 2 Workflow chart of feature selection. For a total of 98 metabolites (including AAs, BAs, and FFAs), univariate analyses (Wilcoxon’s rank-sum
test) were employed for three clinical aims (aim 1: CLD vs. NC, aim 2: cirrhosis vs. fibrosis, aim 3: early fibrosis vs. advanced fibrosis). Twenty-six
metabolites with p < 0.001 in all three clinical aims were selected and fed into LASSO and random forest algorithms for three aims. The overlap of
top 5 LASSO non-zero coefficients and top 5 important variables from random forest (by mean decrease of accuracy) was selected. For aim 2 and
aim 3, we selected the overlapped variables and combined with variables selected from aim 1 to yield the final panel four metabolites. “OR”
means the union of two sets, and “AND” means the intersection of two or more sets
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ρ = 0.23 for C18:2 n6t) using Spearman’s correlation ana-
lysis. In addition, we found our metabolite markers
showed stronger associations with the fibrosis stage than
the previously used clinical indices.
To determine an appropriate classification model, we

applied 10-fold CV on cohort 1 to compare the classifi-
cation performances of RF models and two linear
models (i.e., logistic regression (LR), linear discriminant
analysis (LDA)) as well as the clinical indices, APRI,
AST/ALT ratio, and FIB-4. The CV-area under the re-
ceiver operating characteristic curve (CV-AUROC) and
CV-area under the precision-recall curve (CV-AUPR)
were employed as the evaluation metrics. We found that
to differentiate CLD from control, APRI, LR, LDA, and
RF had the highest AUROCs and AUPR, while RF dem-
onstrated the most robust classification performance
(Additional file 2: Figure S5a). For the differentiation of
fibrosis and cirrhosis and S0–2 vs. S3–4, RF outper-
formed other methods with the highest CV-AUROC and
CV-AUPR overall (Additional file 2: Figure S5b, c). PCA
score plot showed linearly separable discrimination be-
tween the most CLD and control subjects (Add-
itional file 2: Figure S3); thus, linear models could
achieve good classification performances. However, for a
situation where there is more extensive overlapping of
groups (Additional file 2: Figure S6), the decision tree-
based ensemble learning algorithm, RF, achieved im-
proved classification performances compared to other
methods (Additional file 2: Figure S5).

Model 1: Differentiating CLD patients from NC
The concentration of linoelaidic acid (C18:2 n6t) was
significantly higher in the control group than in the
CLD group, and conversely, the levels of TCA, Tyr, and
Tyr/Val ratio were higher in the CLD group than in the
control group (Fig. 3a, b).
Model 1 was constructed using an RF model that uti-

lized these four metabolite markers, to differentiate CLD
patients from NC in cohort 1. Out-of-bag (OOB) esti-
mates were employed for the RF model evaluations.
Model 1 showed an AUROC of 0.997 (0.993–1.000) and
AUPR of 0.994 (0.998–1.000) (Fig. 3c, d) which was sig-
nificantly higher than the APRI (AUROC = 0.973, p <
0.001), FIB-4 (AUROC = 0.848, p < 0.001), and AST/ALT
ratio (AUROC = 0.665, p < 0.001) (Table 2). An example
decision tree from the RF model is shown in Additional file 2:
Figure S7a, where we observed that the lower concentration
of C18:2 n6t and the higher concentration of TCA would
lead to higher risk of CLD.
Based on the OOB predicted probabilities, we calcu-

lated a diagnostic RF score for model 1 using the logit
function. The waterfall plot showed a clear ascending
trend of RF scores from NC (lower RF scores) to CLD
patients (higher RF scores) along with the differentiation

trend shown in the heatmap of the four markers (Fig. 3b).
We observed significant differences in the RF score be-
tween both groups in cohort 1 (p < 0.001, Fig. 3g), yield-
ing a sensitivity of 98.4% and specificity of 99% for CLD
patients in the training set at a cutoff value of 0.434
(Table 2). The sensitivity and specificity of our RF model
were superior to those of AST/ALT ratio, APRI, and
FIB-4 for differentiating CLD patients from NC using
the optimal cutoffs generated in cohort 1 using the You-
den index (Additional file 3: Table S3).

Model 2: Differentiating cirrhosis from fibrosis among
CLD patients
The discriminant prediction model was constructed
using an RF model employing the four metabolite
markers along with age to differentiate CLD patients
with cirrhosis from those without cirrhosis in cohort
1. This model demonstrated an AUROC of 0.941
(0.914–0.964) and AUPR of 0.87 (0.824–0.913) (Fig. 4a,
b) based on OOB predictions. These results were bet-
ter than those of the APRI (AUROC= 0.698, p < 0.001),
AST/ALT (AUROC= 0.815, p < 0.001), and FIB-4
(AUROC= 0.869, p < 0.001) (Table 2). We showed an ex-
ample decision tree for model 2 in Additional file 2: Figure
S7b, and we found that the higher the Tyr/Val ratio, Tyr,
and C18:2 n6t, the higher the risk of CLD with cirrhosis.
The model 2 RF score differentiated CLD patients with

cirrhosis from fibrosis in cohort 1 (p < 0.001) (Fig. 4e).
The constructed model yielded a sensitivity of 87.0% and
specificity of 90.4% in the cohort 1 dataset at a cutoff
value of 0.01 (Table 2). The RF scores remained significant
with a coefficient of 0.755 (p < 0.001) after adjusting for
HBV-DNA levels, degree of necro-inflammation, HBeAb
status, HBeAg status, body mass index (BMI), platelets
(PLT), liver function tests (i.e., prothrombin time (PT), al-
bumin (ALB), direct bilirubin (DBIL), indirect bilirubin
(IBIL)), and medication (entecavir) (Additional file 3: Table
S4). The accuracy of our RF model was superior to
those of AST/ALT ratio, APRI, and FIB-4 (Table 2
and Additional file 3: Table S3).

Model 3: Differentiating advanced fibrosis from early
fibrosis among CLD patients
In this study, fibrosis stages 0–2 were defined as early
fibrosis, and stages 3–4 were defined as advanced fi-
brosis. Model 3 was established based on age and the
four metabolite markers selected from cohort 1 data
using the RF model. It was then shown to success-
fully separate CLD patients with early fibrosis from
those with advanced fibrosis in cohort 1 with AUROC
of 0.918 (0.889–0.946) and AUPR = 0.892 (0.854–
0.925) (Fig. 4f, g). Model 3 results demonstrated bet-
ter classification performances than those of APRI
(AUROC = 0.647, p < 0.001), AST/ALT (AUROC =
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0.714, p < 0.001), and FIB-4 (AUROC = 0.802, p <
0.001) in predicting liver fibrosis stages (Table 2).
An example decision tree from model 3 showed
that the higher Tyr/Val ratio, Tyr, age, and TCA
indicated a higher risk of CLD with advanced fibro-
sis (Additional file 2: Figure S7c).

A logit diagnostic RF score for model 3 differenti-
ated CLD patients with early stage fibrosis from those
with advanced fibrosis in cohort 1 (Fig. 4j). The
model yielded a sensitivity of 86.7% and specificity of
90.5% in cohort 1 at a cutoff value of − 0.115
(Table 2). After adjusting for HBV-DNA levels, degree

Fig. 3 Metabolite marker panel and model 1 for CLD with chronic HBV infection diagnosis. a Comparison of the four markers between CLD
patients and NC in cohorts 1 and 2. b Waterfall plot of RF score and corresponding heatmap for the four markers in all datasets. c ROC curves of
model 1 (RF model constructed with four markers), APRI, AST/ALT, and FIB-4 in cohort 1. d PR curves of model 1, APRI, AST/ALT, and FIB-4 in
cohort 1. e ROC curves of model 1, APRI, AST/ALT, and FIB-4 in cohort 2 validation set. f PR curves of model 1, APRI, AST/ALT, and FIB-4 in cohort
2 validation set. g The diagnosis RF score in NC and CLD patients in training and validation sets. ***p < 0.001, Wilcoxon’s rank-sum test. The
optimal cutoff value of the RF score was 0.434
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of necro-inflammation, HBeAb status, HBeAg status,
liver function tests (i.e., PT, ALB, DBIL, IBIL), plate-
lets, BMI, and medication (entecavir) use, RF scores

remained statistically significant with a coefficient of
0.805 (p < 0.001) (Additional file 3: Table S4). The ac-
curacy of our RF model was superior to those of

Fig. 4 Model 2 for differentiating fibrosis vs. cirrhosis and model 3 for differentiating early fibrosis vs. advanced fibrosis in CLD patients with
chronic HBV infection. a ROC curves of model 2 (RF model constructed with four metabolite markers and age), APRI, AST/ALT, and FIB-4 in cohort
1. b PR curves of model 2, APRI, AST/ALT, and FIB-4 in cohort 1. c ROC curves for model 2, APRI, AST/ALT, and FIB-4 for the cohort 2 validation
set. d PR curves for model 2, APRI, AST/ALT, and FIB-4 for the cohort 2 validation set. e The RF score in CLD patients with fibrosis and cirrhosis in
the HBV training, validation sets. The optimal cutoff value of the RF score was 0.01. f ROC curves of model 3 (RF model constructed with four
metabolite markers and age), APRI, AST/ALT, and FIB-4 in cohort 1. g PR curves of model 3, APRI, AST/ALT, and FIB-4 in cohort 1. h ROC curves for
model 3, APRI, AST/ALT, and FIB-4 for the cohort 2 validation set. i PR curves for model 3, APRI, AST/ALT, and FIB-4 for the cohort 2 validation set.
j The RF score in CLD patients with S0–2 and S3–4 in the HBV training, validation sets. The optimal cutoff value of the RF score was − 0.115.
***p < 0.001, Wilcoxon’s rank-sum test
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AST/ALT ratio, APRI, and FIB-4 (Additional file 3:
Table 2 and Table S3).

Validation of the predictive models in an independent
HBV cohort (cohort 2)
The metabolite markers identified and related models
obtained in cohort 1 were further validated for their liver
fibrosis staging performance as well as for CLD diagno-
sis performance in cohort 2, and the results were similar
to those obtained from cohort 1 (Table 2).
For the diagnosis of CLD patients, compared to APRI

(AUROC = 0.879, AUPR = 0.958), AST/ALT (AUROC =
0.603, AUPR = 0.849), and FIB-4 (AUROC = 0.707,
AUPR = 0.897), we again observed higher classification
performances for model 1 with AUROC of 0.977
(0.963–0.988) and AUPR of 0.993 (0.989–0.997) in the
validation set (Fig. 3e, f). In addition, the model 1 pre-
dicted RF score in cohort 2 differentiated CLD from NC
with a sensitivity of 92.2% and specificity of 94.4% at the
cutoff values determined for cohort 1 (Fig. 3g, Table 2).
Applying model 2 to cohort 2 successfully discrimi-

nated cirrhotic patients from fibrotic patients with an
AUROC of 0.844 (0.797–0.884) and AUPR of 0.827
(0.761–0.884) (Fig. 4c, d) and outperformed those of the
APRI (AUROC = 0.608, p < 0.001), AST/ALT (AUROC =
0.684, p < 0.001), and FIB-4 (AUROC = 0.758, p < 0.001)
indices. The model 2 RF score in cohort 2 differentiated
cirrhotic patients from fibrotic patients with a sensitivity
of 71.8% and specificity of 81.6% at the same cutoff value
used for the cohort 1 dataset (Fig. 4e, Table 2). Similarly,
applying model 3 to grade fibrosis stage in cohort 2 re-
sulted in greater performance with AUROC of 0.807
(0.756–0.852) and AUPR of 0.817 (0.764–0.866) (Fig. 4h,
i) than those of APRI (AUROC= 0.595, p < 0.001), AST/
ALT (AUROC= 0.667, p < 0.001), and FIB-4 (AUROC=
0.739, p = 0.01) indices. And the model 3 RF score also dif-
ferentiated S0–2 fibrosis from S3–4 fibrosis with a sensi-
tivity of 72.9% and specificity of 76.1% (Fig. 4j, Table 2).
We then introduced net reclassification improvement

(NRI) and integral discriminant improvement (IDI) to
quantify the improvement of our model to existing clin-
ical indices. For different classification aims (control vs.
CLD, fibrosis vs. cirrhosis, S0–2 vs. S3–4) in an inde-
pendent validation cohort (cohort 2), the categorical and
the continuous NRI and IDI of the RF models all
achieved positive values when compared to FIB-4, APRI,
and AST/ALT, suggesting an augmentation of classifica-
tion performances for our biomarker panel and RF
models (Additional file 3: Table S5).

Classification of S0–2 vs. S3 vs. S4
In addition to the binary classifications that we have per-
formed, we further determined whether our biomarker
panel could classify multiple groups among CLD

patients. We trained a new RF model with the marker
panel and applied multinomial regression to APRI, AST/
ALT, and FIB-4 respectively for the discrimination of
S0–2 vs. S3 vs. S4 using cohort 1. We compared their
performances on cohort 1 (OOB predictions of RF
model) and cohort 2 using micro-average AUROC and
AUPR, and we found that our marker panel-based
multi-group classifier outperformed other methods. In
the cohort 1 data, our classifier showed higher AUROC
of 0.944 (0.928–0.963) and AUPR of 0.908 (0.883–0.938)
compared to APRI (AUROC = 0.79, AUPR = 0.658),
AST/ALT (AUROC = 0.817, AUPR = 0.688), and FIB-4
(AUROC = 0.858, AUPR = 0.774) (Additional file 2: Fig-
ure S8a, b). In the cohort 2 validation data, our marker
panel classifier consistently displayed higher AUROC of
0.841 (0.799–0.885) and AUPR of 0.748 (0.674–0.81)
compared to APRI (AUROC = 0.790, AUPR = 0.608),
AST/ALT (AUROC = 0.772, AUPR = 0.597), and FIB-4
(AUROC = 0.816, AUPR = 0.699) (Additional file 2: Fig-
ure S8c, d).

Discussion
As the prevalence of CLD rises worldwide, accurate and
reliable assessments for the severity of this disease are
increasingly important for treatment selection and longi-
tudinal monitoring [13]. Attempts to develop noninva-
sive tools for staging CLD have yielded multiple scores,
indices, and imaging modalities [4–7, 10] that might be
used in lieu of liver biopsy, with the AST/ALT ratio,
APRI, and FIB-4 as examples [5–7]. Current noninvasive
assessments have the advantage of allowing repeated ap-
plications and are well-received by the patients. In this
study, we identified a panel of metabolite markers that
consisted of C18:2 n6t, TCA, Tyr, and a Tyr/Val ratio
that was highly correlated with discrete stages of CLD
progression in patients with HBV infection.
Histologic staging of CLD by liver biopsy provided a ref-

erence standard for our study. In the Scheuer system, one
of the most clinically validated systems for staging liver fi-
brosis, S0 is defined as no fibrosis, S1 as portal fibrosis, S2
as periportal fibrosis, S3 as septal fibrosis, and S4 as cir-
rhosis [20]. The clinically overt stage of cirrhosis includes
compensated cirrhosis with/without portal hypertension
and decompensated cirrhosis [38]. In this study, we first
identified candidate markers that significantly differed be-
tween NC and patients with CLD that correlated well with
fibrotic stage and necro-inflammation based on univariate,
LASSO, and RF analyses. We then constructed diagnostic
models to discriminate CLD patients from NC, and to dis-
criminate CLD patients at different fibrosis stages, i.e.,
early vs. advanced fibrosis (S0–2 vs. S3–4) and fibrosis vs.
cirrhosis (S0–3 vs. S4). This resulted in three optimized
marker panel-based RF predictive models for staging liver
fibrosis that, upon validation, showed acceptable
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performance across independent cohort. Although the
AUROCs of our models in the validation set were not as
high as in the training set, we still achieved relatively good
AUROC (all > 0.8) considering a rough guide for classify-
ing the accuracy of a diagnostic test in the traditional aca-
demic point system [39]. A decreased external validation/
testing accuracy was a common fact when applied ma-
chine learning in biomedical studies [40]. The AUROC
and AUPR of our biomarker panel were significantly
greater than those of the AST/ALT ratio, APRI, and FIB-
4, suggesting superior predictive value for this metabolite
marker panel.
Altered BA profile and BA synthesis are associated

with various hepatic diseases, such as chronic hepatitis
B, primary biliary cirrhosis, chronic hepatitis C, and
NAFLD. Circulating BAs are commonly used in clinical
practice to assist evaluation of the severity of CLD [41].
Several studies, including our previous work, on cirrho-
sis and HCC have shown dramatically increased levels of
GCA, GCDCA, TCA, and TCDCA in the circulation of
patients with NAFLD [42], NASH [42], HBV [43], cir-
rhosis [44], and HCC [44]. The liver also plays a major
role in lipid metabolism by taking up FFAs and manu-
facturing, storing, and transporting lipid metabolites
[45]. A characteristic pattern of plasma amino acids has
been described in cirrhotic subjects [42, 46, 47], and in
samples collected in England and the USA, metabolic
and biochemical differences have been shown between
stable and unstable cirrhotics [42, 46]. Advanced liver fi-
brosis, especially cirrhosis, was also associated with al-
tered plasma AA patterns, including decreased levels of
branched chain amino acids (leucine, isoleucine, valine)
and increased concentrations of the aromatic amino
acids phenylalanine and tyrosine [19]. An index based
on AA concentration has already been proposed for
diagnosing liver fibrosis [17]. In patients admitted to ei-
ther the Veterans Administration Hospital or the Yale-
New Haven Medical Center between 1 January 1965 and
1 May 1966, fasting tyrosine levels tended to be slightly
increased in patients with hepatitis and markedly in-
creased in patients with cirrhosis [48]. The present study
showed that a combined panel of FFA, BA, and AA was
a strong predictor for CLD progress.
Linoelaidic acid is an isomer of linoleic acid. It has

been reported that linoelaidic acid may inhibit the devel-
opment of tumors through its antioxidant effects, has a
role in the prevention of atherosclerosis, and modulates
certain aspects of immune system [49]. The significantly
decreased levels of linoelaidic acid may thus be an indi-
cation of a disease state. Further research on these find-
ings and human epidemiological data is warranted to
confirm this.
The major strengths of our study were the use of large

sample sizes to construct and verify all models, and the

quantification of the metabolite markers (BA, FFA, and
AA) using standardized protocols. Furthermore, partici-
pants in the validation set (cohort 2) were recruited in-
dependently from those in cohort 1, and this new set of
patients confirmed the robustness of our marker panel
and predictive models.
The limitations of our study included the following:

(1) Use of medications was a confounding factor for our
model, but key findings were not altered after correcting
for medication use. Larger studies are needed to further
evaluate the effect of these medications; (2) HBV infec-
tion was the only or major cause of CLD in this study,
and the participants were all Chinese. Therefore, the re-
sults may not be extrapolated to CLD with other etiolo-
gies outside these diseases, or to other racial/ethnic
groups. Future large-scale validation studies should in-
clude CLD with other etiologies and participants of
other race/ethnicity, before implementing this 4-marker
panel in clinical practice. (3) In addition to cross-
sectional studies, longitudinal studies are needed to fur-
ther validate the reproducibility of the current findings
and the predictive values of the models, especially those
used to differentiate early from advanced liver fibrosis,
and (4) the cost of full spectrum metabolomic analysis is
high. However, if the robustness of this 4-marker panel
is proven in future validation studies, specific tests may
be developed for only C18:2 n6t, TCA, Tyr, and Val to
decrease the cost and to translate this marker panel to
clinical practice.

Conclusions
In summary, using targeted metabolomics analyses, we
identified four metabolite markers from serum that ac-
curately differentiated CLD patients from NC, and dif-
ferentiated varied stages of liver fibrosis, including S0–2
vs. S3–4, and S0–3 vs. S4. The diagnostic performance
of this novel, noninvasive 4-marker panel was superior
to FIB-4, AST/ALT ratio, and APRI. If validated in fu-
ture studies, this 4-marker panel will be useful in redu-
cing the need for liver biopsies in identifying patients
with non-significant fibrosis, as well as aiding in the con-
tinued assessment of CLD in patients previously diag-
nosed with CLD.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12916-020-01595-w.

Additional file 1. Fibrosis and Cirrhosis Patients with hepatitis B viral
(HBV) Infection and Normal Controls (Cohort 1). Patients with CHB-
induced Fibrosis and Cirrhosis and normal controls (Validation Set, Cohort
2). Inclusion and exclusion criteria for patients with chronic HBV infection.
Exclusion criteria for normal controls. Medication the patients received at
the time of sampling. Quality of care. Measurement of bile acids.
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Measurement of Amino Acids. Measurement of FFAs. Quality Control
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Additional file 2: Figure S1. Representative H&E staining images of
chronic liver disease patients with necro-inflammation activity at G0 (A),
G1 (B), G2 (C), G3 (D) to G4 (E) according to the Scheuer’s classification.
Scale, 200 μm. Figure S2. Representative Masson’s trichrome staining,
collagen stained blue. Collagen portionate area increased significantly
along with the degree of liver fibrosis (from S0 to S4, Table 1). Scale,
200 μm. Figure S3. PCA scores plot for CLD patients and normal controls
using the identified four metabolite markers in training and validation
sets. Figure S4. Correlation coefficient matrix among the four selected
serum metabolites, previously proposed liver fibrosis markers, and clinical
markers of chronic liver disease (fibrosis stages, necro-inflammation, and
medication). Figure S5. 10-fold cross-validation AUROC and AUPR of ma-
chine learning methods and clinical indices. Figure S6. PCA scores plot
for CLD patients of S0–2, S3 and S4 using the identified four metabolite
markers in training and validation sets. Figure S7. Example decision trees
from random forest models. (a) An example decision tree of Model 1. (b)
An example decision tree of Model 2. (c) An example decision tree of
Model 3. Figure S8. Micro-ROC and micro-PR of metabolite marker panel
and clinical indicators in multi-group classification of S0–2 vs. S3 vs. S4.
(a) micro-ROC and (b) micro-PR for the classification of S0-2 vs. S3 vs. S4
in Cohort 1. (c) micro-ROC and (d) micro-PR for the classification of S0-2
vs. S3 vs. S4 in Cohort 2.

Additional file 3 Table S1. Clinical data of patients with chronic liver
disease (CLD) and normal controls in Cohorts 1 and 2. Table S2. Serum
bile acid, free fatty acid, and amino acid concentrations in patients with
chronic liver disease (CLD) and in normal controls in Cohorts 1 and 2.
Table S3. Results for measurement of the metabolite marker panel, APRI,
FIB-4, and ALT/AST ratio in the prediction of liver fibrosis using the opti-
mal cut-off values generated using the cohort specific data from this
study. Table S4. Logistic regression analysis of metabolite marker panel-
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cirrhosis and S0–2 with S3–4 adjusting with potential confounding vari-
ables. Table S5. Net reclassification improvement and integral discrimin-
ant improvement analyses comparing RF and other clinical indexes on
validation sets.
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