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Abstract: Polycystic ovarian syndrome (PCOS) is a complex endocrine disorder affecting females in
their reproductive age. The early diagnosis of PCOS is complicated and complex due to overlapping
symptoms of this disease. The most accepted diagnostic approach today is the Rotterdam Consen-
sus (2003), which supports the positive diagnosis of PCOS when patients present two out of the
following three symptoms: biochemical and clinical signs of hyperandrogenism, oligo, and anovu-
lation, also polycystic ovarian morphology on sonography. Genetic variance, epigenetic changes,
and disturbed lifestyle lead to the development of pathophysiological disturbances, which include
hyperandrogenism, insulin resistance, and chronic inflammation in PCOS females. At the molecular
level, different proteins and molecular and signaling pathways are involved in disease progression,
which leads to the failure of a single genetic diagnostic approach. The genetic approach to elucidate
the mechanism of pathogenesis of PCOS was recently developed, whereby four phenotypic vari-
ances of PCOS categorize PCOS patients into classic, ovulatory, and non-hyperandrogenic types.
Genetic studies help to identify the root cause for the development of this PCOS. PCOS genetic
inheritance is autosomal dominant but the latest investigations revealed it as a multigene origin
disease. Different genetic loci and specific genes have been identified so far as being associated with
this disease. Genome-wide association studies (GWAS) and related genetic studies have changed
the scenario for the diagnosis and treatment of this reproductive and metabolic condition known
as PCOS. This review article briefly discusses different genes associated directly or indirectly with
disease development and progression.

Keywords: polycystic; biochemical; hyperandrogenism; multigene; ovulatory

1. Introduction

Polycystic ovarian syndrome (PCOS) is a multifactorial disorder affecting females in
their reproductive ages. This condition is diagnosed in females with hyperandrogenism,
oligomenorrhea, amenorrhea, acne, hirsutism, insulin resistance, obesity, and infertility [1,2].
It is well-documented that more than 40% of female infertility is associated with PCOS [3].
Additionally, females suffering from PCOS are more prone to endometrial cancer [1]. Other
metabolic conditions such as diabetes mellitus, hepatic steatosis, dyslipidemia, and cardiac
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complications are also present in PCOS patients [4]. Various reported studies have shown
that physiological alterations are complimented with various psychological symptoms in
patients, such as poor self-esteem, depression, negative body image, and decreased quality
of life [5].

The genetic development of PCOS depends on individual genes, gene–gene interac-
tions, and altered genes’ environmental conditions. It is important to identify the variant
key gene that changes its expression and sequence to modify protein function in order to
determine the genetic makeup of PCOS [6]. Epigenetic alterations at the tissue level are
responsible for cells changing their phenotype in response to the changed environment [7].
The proteome profile in pathophysiological tissues describes the changes in the cellular
proteome [8]. The molecular pathophysiology of PCOS depends on genetic and epigenetic
patterns affecting synthesized proteins, which further contribute to PCOS biomarkers.

2. Epidemiologic Profile of PCOS

Recently, different diagnostic criteria have been adopted for the determination of PCOS
in a patient, including hyperandrogenism, dysfunctional ovaries, and polycystic ovaries
morphology (PCOM) and its combination. Initially, National Institute of Health (NIH),
in 1990, proposed hyperandrogenism and chronic anovulation as important diagnostic
symptoms for PCOS [8]. Later on, in 2003, PCOM was also included as a diagnostic criterion
by Rotterdam Consensus [9]. In 2006, Androgen Excess Society included hyperandrogenism
as an essential symptom for diagnosis [10].

Current recommendations suggest Rotterdam consensus for PCOS diagnosis, includ-
ing four phenotypes [11] (Table 1).

Table 1. Diagnostic Criteria for PCOS.

S.N Diagnosis Criteria Symptoms Recommendations

1. National Institute of Health (1990)
1. Biochemical and clinical signs of

hyperandrogenism
2. Chronic anovulation

Both criteria are required

2. Rotterdam Consensus (2003)

1. Biochemical and clinical signs of
hyperandrogenism

2. Oligo and anovulation
3. Polycystic ovaries morphology

Two of three criteria required

3. Androgen Excess Society (2006)

1. Biochemical and clinical signs of
hyperandrogenism

2. Ovarian dysfunction (oligo
anovulation, polycystic ovaries
morphology)

Both criteria required

PCOS prevalence depends on the number of criteria followed for the diagnosis. In a
study, a 4% prevalence rate was found in both Caucasian and Black races [12]. From 1999
through 2016, in a multicentric study conducted on 1089 patients of PCOS from different
ethnicity and race, a significant impact of environmental and racial factors on metabolic
syndrome produced in PCOS patients was reported [13]. In a study conducted on Spanish
Caucasian women, it was found that the PCOS prevalence rate was at 6.5% [14]. In a
combined study conducted at Oxford University and a private healthcare setting, the
prevalence rate was also found to be 6.8% [15].

A study conducted in females of reproductive age in China showed a prevalence rate
of 5.6%, which was quite similar to other reported studies [15,16]. In Indian women of
reproductive age, PCOS was found to be more prevalent by 9.13% [15,17]. Another study
in India showed 8.8% prevalence among adolescent girls [18]. PCOS was found to be more
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prevalent in South Asian females when compared to Caucasian females. Based on 2003
Rotterdam criteria, higher prevalence rate was found in Pakistani females (almost 50%) in
a study by Akram and Roohi in 2015 [15,19]. Other studies from Pakistan reported almost
40% prevalence in infertile females visiting medical health centers in Pakistan [15,20].

3. Window of Susceptibility

PCOS can affect women’s health at any stage of life. This phenotypic difference
requires personalized diagnosis and treatment approaches among different ages. Diagnosis
of PCOS in adolescence is more difficult due to similar physiological patterns in puberty
and PCOS. As a person ages, this syndrome changes into a reproductive disease which
further evolves into a metabolic disorder [21].

3.1. PCOS in Adolescence

The normal pubertal cycle may also indicate an irregular and anovulatory menstrual
cycle, which leads to difficulty in diagnosis of PCOS among adolescent girls. The age
at menarche is associated with the onset of the regular ovulatory cycle [22]. Half of the
menstrual cycles in the first 4.5 years of the menarche will be ovulatory for girls who reach
their menarche after the age of 13. If a girl is an oligo-amenorrheic at the age of 15, she
will show such symptoms in her adult life too [23]. A study report about international
evidence-based guidelines suggests that after menarche (in less than 2 years), if girls show
signs related to PCOS, it could be regarded as “at high risk for PCOS”. Such girls should be
longitudinally followed up and re-evaluated for eight years after menarche [24].

3.2. PCOS in Reproductive Age

The anovulatory subfertility is featured in almost 70% of PCOS patients in their repro-
ductive ages [25]. A study reports 15-fold subfertility in PCOS patients when compared
with independent BMI controls. Additionally, female hormones treatment was reported
more often with PCOS patients (62%) when compared with non-PCOS patients (33%). IVF
treatment was found to be similar in PCOS and non-PCOS females [26]. Pregnancy and
delivery complications have been reported in various meta-analysis studies. Gestational
diabetes, pre-eclampsia, cesarean section, and gestational hypertension have also been re-
ported [21,27,28]. Obesity is associated with insulin resistance and hyperinsulinemia, which
are further responsible for hyper adipogenesis and low lipolysis. Theca cells sensitivity
is also aggravated for the luteinizing hormone, which leads to functional ovarian hyper-
androgenism. These findings suggest that PCOS phenotype (reproductive and metabolic)
seems to be potentiated by obesity [21,29].

3.3. PCOS in Menopausal Age

Menopause is a life stage that occurs at almost 51 years of age. There are limited data
available in terms of longitudinal natural history studies, which leads to confusion among
health care professionals in screening recommendations for the disease progression and
assessment in long-term health risk [24]. PCOS patients have similar aging symptoms as
in the normal physiology, which is the loss of follicles and disappearance of polycystic
ovarian morphology later on [30]. PCOS patients also show a similar shortening of their
menstrual cycle length, and these females turn to eumenorrheic subsequently. Different
studies also reported that menopause occurs later in PCOS females’ lives, and these females
might have a regular ovulatory cycle at the end of their reproductive years. The selective
menopause-postponing genetic variants enrichment in PCOS females is responsible for the
delay in the occurrence of menopause [21,31].

4. Clinical Pattern of Disease

Infertility caused by PCOS produces a social imbalance and burdens females affected
with this disorder. The elevated level of androgen leads to subcellular aberration in ovarian
theca cells. Intrinsic activation of theca cell steroidogenesis leads to androgen excess
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despite the absence of tropic factors. This intrinsic activation also influences granulosa
cell to increase the level of the anti-Mullerian hormone (AMH) in PCOS patient [32,33].
Various studies have reported an increased number of antral and pre-antral follicle cells in
PCOS patients, a defective apoptotic activity in the mature follicular cells that results in the
elevation of an abnormally developed follicle number, which is further responsible for the
availability of ovarian cysts in patients [34,35] (Figure 1).

Figure 1. Diagrammatic Representation of Polycystic Ovary Syndrome.

The insulin signaling defect is an important clinical marker (insulin resistance) of
PCOS, which is independent of obesity. The altered insulin gene expression pathway and
the glyco-oxidative pathway are also involved in pathogenies of PCOS [36–38]. High oxida-
tive stress results in impaired insulin activity, which further results in hyperandrogenism
(Figure 2).
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Figure 2. Cont.
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Figure 2. (a) Pathophysiologic features of polycystic ovary syndrome. PCOS is a multifactorial
disorder that develops due to the combined effects of impaired genetic, epigenetic, and lifestyle
factors. All these factors lead to disturbed pathophysiology (insulin resistance, hyperandrogenism,
and low grade inflammation, which further result in complex symptoms of PCOS (Clinical, Re-
productive, Metabolic, and Psychological). (b) Genetic influences and complications of polycystic
ovarian syndrome. Different genetic polymorphism influences the pathophysiology of PCOS. Genetic
influence alters different hormonal levels—androgen, insulin, AMH, SHBG, LH, FSH, testosterone,
and different other hormonal levels, which further contribute to disease progression.

5. Phenotypic Classification of PCOS

Four types of observable characteristics have been found in patients in different studies:
Phenotype A, Phenotype B, Phenotype C, and Phenotype D.

5.1. Classic Phenotype

Women with PCOS Phenotype A and B are termed classic PCOS patients. These
patients show significant symptoms associated with menstrual dysfunction, hyperinsu-
linemia, insulin resistance, and increased risk of metabolic syndrome. Different reported
studies found that these patients are more prone to obesity and dyslipidemia [39,40]. Sah-
may and his associates found increased serum levels of anti-Mullerian hormone in classic
PCOS patients as compared to other phenotypes [41].

5.2. Ovulatory PCOS

Phenotype C patients are considered to be ovulatory PCOS patients. It has been found
in a cohort study that females with a higher socioeconomic status are more prone to such
conditions. Due to their eating habits, the insulin level and fat distribution are disturbed
in their body which results in ovulatory imbalance among them [42]. A slight elevation
of insulin, androgen, and lipid profile is a common indication of Phenotype C. Ovulatory
PCOS patients show more profound metabolic symptoms as compared to classic PCOS [43].
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5.3. Non-Hyperandrogenic PCOS

Non-hyperandrogenic PCOS patients are considered as Phenotype D. In this phe-
notype, patients show normal androgen with elevated endocrine levels and defective
metabolic conditions [44,45]. As compared to classic PCOS, a lower (Luteinizing Hor-
mone/Folicle stimulating Hormone) LH/FSH ratio can be found in this phenotype, with
altered levels of thyroid hormone (T3, T4) and sex hormone-binding globulin. Phenotype
D patients have regular menstruation with intermittent irregularities [46,47].

Different studies reported the frequency of phenotypic occurrence in a patient popula-
tion, as Phenotype A is found in 44–65%, Phenotype B in 8–33%, Phenotype C in 3–29%,
and Phenotype D in 0–23% [43,48]. A separate study by Moghetti and his colleagues
reported the PCOS phenotype among patient population as 70% classic, 15% as ovulatory
phenotype, and 15% as non-hyperandrogenic [46]. In studying the insulin resistance among
PCOS patients, Moghetti et al. concluded that almost 70% of females had insulin resistance;
however, the percentage varied across different PCOS phenotypes, with 80% of females in
classic, 65% of females in ovulatory PCOS, and 38% of females in non-hyperandrogenic
PCOS [46] (Table 2). The study reported by Lizneva et al. (2016) indicates a 40–45% preva-
lence rate of classic PCOS, 35% for ovulatory PCOS, and 20% for non-hyperandrogenic
PCOS in an unselected population [39] (Table 2).

Table 2. Phenotypic Difference Based on Diagnostic Criteria. - explains the difference in phenotype
symptoms based on diagnostic criteria.

Phenotype Hyperandrogenism Chronic
Anovulation

Polycystic Ovaries
Morphology NIH 1990 Rotterdam AE-PCOS 2006

Phenotype A Yes Yes Yes - - -
Phenotype B Yes Yes No - - -
Phenotype C Yes No Yes - -
Phenotype D No Yes Yes -

The classification of PCOS depends on the following diagnostic criteria:

A. Hyperandrogenism, oligo anovulation, various polycystic ovaries morphology (through
ultrasound)

B. Hyperandrogenism, oligo anovulation, normal ovaries morphology (through ultrasound)
C. Hyperandrogenism, normal menstruation cycle, various polycystic ovaries morphol-

ogy (through ultrasound)
D. Normal androgen, oligo anovulation, and polycystic ovaries morphology (through

ultrasound)

6. PCOS Pathogenesis
6.1. Hyperandrogenism

PCOS is considered to be an intrinsic disorder of the ovaries, whereby hypersynthesis
of androgen occurs due to certain genetic defects. Androgen is synthesized from ovarian
theca cells in response to the luteinizing hormone. The rate-limiting step of steroidal hor-
mone synthesis, 17α hydroxylase and 17, 20 lyase activities occurs in the theca cells, which
express the CYP17A1 gene encoding the P450c17 enzyme responsible for the above reac-
tion [49,50]. Both intra and extra ovarian mechanisms are involved in androgen production.
Increased levels of the luteinizing hormone downregulates the LH receptors, which further
decreases CYP17A1 expression and further negatively affects androgen production. An
autocrine and paracrine negative feedback mechanism through estrogen and androgen
inhibits 17α hydroxylase and 17, 20 lyase activity. LH receptor upregulation and P450c17
are potentiated by insulin and insulin-like growth factor (IGFs) [51]. As per various in vitro
studies, it was found that PCOS theca cells produce more androgen compared to normal
control. This increased androgen synthesis is due to 17α hydroxylase and 17, 20 lyase
hyperactivity. Cholesterol side-chain enzymes action depicts the intrinsic theca cell de-
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fects [52]. Overall, 20–30% of PCOS women have higher ovarian androgen along with
adrenal androgen, dehydroepiandrosterone (DHEA), and dehydroepiandrosterone sulfate
(DHEAS) [53].

Ovarian theca cell enzymes resemble adrenal zona reticularis, which favors the for-
mation of DHEA and DHEAS (sulfated by sulfotransferase 2A1 [SULT2A1]). DHEAS is a
potent inert terminal product, which is again converted to DHEA and metabolized in other
androgens. Due to genetic variation of SULT2A1, PCOS patients vary in DHEA/DHEAS
ratio [54]. Adrenal hyperandrogenism, indicative in PCOS patients, does not depend on
hypothalamus pituitary adrenal gland axes’ mediated response but depends on hyper-
responsiveness toward androgen synthesis [53]. Increased P450c17 enzyme activity is
responsible for this hyperandrogenism. A study reported (Draper et al., 2004) that genetic
and epigenetic variation affects PCOS hyperandrogenism. Cortisone reductase deficiency
is an example of a genetic cause of adrenal PCOS. In 11 β hydroxysteroid dehydrogenase
type 1 deficiency, cortisone is not converted to cortisol, which further elevates the ACTH
level and leads to hyper-androgen production [55].

6.2. Ovarian Follicular Dysfunction

The ovarian follicular recruitment process is independent of gonadal hormones.
Oocytes secrete different inhibitory transcription factors serine/threonine kinase (LKB1, STK11,
and BMP4) and proapoptotic factors FOX (forkhead box) and perform epithelial–mesenchymal
interaction to control follicular growth in a quiescence state [56]. Follicular growth factors
are involved in the regulation and control of ovarian folliculogenesis. These follicular
growth factors (BMP9, GDF9, BMP6, and BMP15) work in synchronicity and synergistically
to regulate the growth and development of follicular cells [51]. The TGF-β superfamily
(BMP), inhibin B, cytokines, and microRNA also play important roles in this process [57].
Ovarian dysgenesis-mediated ovarian failure is the result of a mutation in BMP15 [58–60].
Meikeli and his colleagues found a positive correlation between FOX3 expression and
activation in granulosa cells with apoptosis, which describes the FOX transcription factor
as a potential target for PCOS [61].

Another important folliculogenesis modulator is AMH, which is produced by granu-
losa cells of small growing follicles. A pre-antral and small antral follicle detects the highest
expression of ≤4 mm. A grown follicle (>8 mm) loses AMH expression and becomes more
sensitive to FSH action. In normal ovaries, it further determines follicular growth, estrogen
production, the selection of dominant follicle, and resulting ovulation [56].

AMH is involved in the inhibition of the initial primary follicular recruitment from
the primordial follicle pool (FSH independent), which also inhibits follicular maturation
and a selection of the dominant follicle (FSH dependent) [57]. It has been found in different
studies that the AMH level is significantly high in PCOS women, where follicles are arrested
in the pre-antral and antral states. In both stages, AMH production is high [31,56,58]. The
granulosa cells of anovulatory PCOS patients have 75 times greater production of AMH
per cell [31]. As per this study, high AMH concentration was found to be a causative factor
for anovulation in PCOS patients along with the consequence of increased granulosa cell
mass [31,56].

6.3. Neuroendocrine Imbalance

A gonadotropic hormone is associated with ovarian androgen synthesis, either directly
or indirectly. Higher pulse frequency of LH is an important indicator of PCOS. This high
pulse is due to negative feedback of progesterone in response to GnRH pulse resistance.
However, a neuroendocrine axis imbalance is secondary to hyperandrogenism. Since
imbalanced LH pulse frequency is an inconstant feature in PCOS patients, it is not classified
as a primary feature in PCOS (Figure 2a).
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6.4. Insulin Resistance

Defective insulin autophosphorylation and reduced insulin receptor binding lead to
insulin resistance (Figure 2b).

7. Inheritance in PCOS

A common pathway is associated with the genetic basis of PCOS within the family and
between the families. Patients from the same family have a different genetic susceptibility
for PCOS [60]. Female siblings have menstrual and hyperandrogenic features similar
to their mothers, while male siblings show hyperandrogenic symptoms as early in the
development of baldness [61]. As per initial genetic investigational discoveries, PCOS
inheritance is autosomal dominant but further investigations revealed that it is a multigene
origin disease.

Due to insufficient and inconsistent diagnostic criteria, researchers continue to face
different investigational challenges. Genome-wide association study (GWAS) and candidate
gene studies are two complementary gene studies. GWAS studies are involved in finding
some association between genetic polymorphism and the disease trait while a predefined
hypothesis is unavailable; it discusses the genetic variant role in pathophysiology. The
genetic loci (region) associated with disease traits are found in these studies. These genetic
regions are either directly involved in the genetic function if they are near or in the gene,
or if there are involved genetic upregulations or downregulations. Various GWAS studies
(Chinese, European and Korean) have been performed to detect around 19 different genetic
loci associated with PCOS [62–68].

Candidate gene studies are used to validate GWAS study findings; these studies iden-
tify single nucleotide polymorphism (SNP) contributing to PCOS pathophysiology [63,69].
These studies are effective genetic-variant-detection methods, but they also have some limi-
tations, including sample size, diagnostic criteria, and participant sources which fluctuate
statistically to cause variation in results [70–76].

8. Genetic Heritability Reported in GWAS Studies

GWAS have reported various biological pathways involved in PCOS pathophysiol-
ogy. Isoform 1A (DENND1A), which is differentially expressed in normal and neoplastic
development, has been found to be a potential risk factor, which encodes a protein called
connecdenn-1 associated with clathrin-coated pits residing in cell surface receptors. Theca
cell’s nucleus and cytoplasm contain DENND1A protein [51]. This protein contains two
important transcript variants (DENND1A.V1 and DENND1A.V2), which further encode
1009-aa protein with proline-rich domain C terminal (DENND1A.V1) and truncated 559-aa
protein containing DENN and clathrin domain. The protein, which lacks proline-rich do-
main but includes C terminal 33-aa sequence, is not available in connecdenn-1 [77]. A study
reported (DENND1A.V2) overexpression in PCOS theca cells. Increased CYP17A1 and
CYP11A1 expression and hyper androgen synthesis were reported in normal theca cells,
where (DENND1A.V2) is forced to overexpress. Additionally, DENND1A expression was
recently found in adrenal zona reticularis [78]. All these studies identified DENND1A.V2
as a potential intrinsic factor involved in the steroidogenic pathway in PCOS. The luteiniz-
ing hormone/choriogonadotropin receptor (LHCR) gene is G-protein coupled receptor
(GPCR) expressed in preovulatory follicular granulosa cells. Increased LHCR expression in
granulosa cells of follicles leads to response to LH peak, which further helps in ovulation.
Abnormal mutations in this gene results in amenorrhea, oligomenorrhea, infertility, and
also hyperandrogenism [79–81]. The follicular stimulating hormone receptor (FSHR) gene
is responsible for ovarian responses toward FSH. The abnormal mutation leads to follicular
arrest in the antral state. A polymorphic change in this gene leads to the hyperconcentration
of FSH and decreased susceptibility toward exogenously administered gonadotropins and
clomiphene citrate [82]. THADA and HMGA2 genes are studied in GWAS and they are
associated with type 2 diabetes mellitus [83,84]. Susceptibility locus of type 1 diabetes
mellitus contains RAB5B gene, γAP and ZNF21. Both genes are not associated with ovarian
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function but are related to apoptotic and proliferative functions of the cell [85]. Table 3
illustrates different single nucleotide polymorphism identified by different GWAS studies
in women.

Table 3. Single Nucleotide Polymorphism Identified by Different GWAS Studies in Women.

S.N Diagnostic Criteria Gene Locus SNPs Nearest Gene Study

1. Rotterdam

2p16.3 rs13405728 LHCGHR
STON1-GTF2A1L

Chen et al., 2011 [66]2p21
rs12468394
rs13429458 THADA
rs12478601

9q33.3
rs10818854 DENND1A
rs10986105
rs24779106

2. NIH
8p32.1 rs804279 NEIL2, GATA4

Hayes et al., 2015 [63]9q22.32 rs10993397 C9orf3
11p14.1 rs11031006 ARL14EP, FSHB

3 Rotterdam 12p12.2
rs10841843

GYS2 Hwang et al., 2012 [68]rs6487237
rs7485509

4 NIH

2q.34 rs1351592 ERBB4

Day et at., 2015 [67]

11q22.1 rs11225154 YAP1
2q21 rs7563201 THADA

11p14.1 rs11031006 FSHB
5q31.1 rs13164856 RAD50
12q21.2 rs1275468 KRR1

5. Rotterdam 8q24.2 rs10505648 KHDRBS3
LICE02055 Lee et al., 2012 [69]

9. Specialized Genes Involved in PCOS Pathophysiology
9.1. Gene Involved in Ovarian and Adrenal Steroidogenesis

During the evaluation and identification processes, different genes have been found to
associate with PCOS hyperandrogenism.

CYP19 is the gene responsible for aromatase p450 activities, which are required for
estrogen formation, and is located in the 15q21.2 chromosome. Lean and obese PCOS
patients show lower aromatase activity [86].

The enzyme P450c17α encoded by CYP17 catalyzes the conversion of pregnenolone to
17-hydroxypregnenolone and progesterone to 17-hydroxyprogesterone. The overexpres-
sion of CYP17 in theca cells and polymorphism in the promoter region was found to be
associated with PCOS [87–89].

The CYP21 gene is involved in the encoding of an enzyme responsible for conversion of
17-hydroxyprogesterone to 11-deoxycortisol, a step of steroid hormone synthesis. Inactivity
of the enzyme leads to ineffective anabolism of steroids, which is further responsible for
PCOS [90].

The enzyme involved in rate-limiting step of cholesterol conversion to progesterone is
encoded by CYP11a [91]. Different studies by scientists have found an association between
CYP11a and PCOS as polymorphism and variation has been reported in CYP11a [92–94].

9.2. Epigenetics of PCOS

Epigenetic changes are responsible for PCOS due to transgenerational and mitotic
heritable processes and not due to DNA sequence changes. Different animal models (rat,
sheep, and monkey) have reported hyperandrogen production in the fetal state [95]. These
animals also showed PCOS-like symptoms. Some clinical studies also reported the same
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results in offspring when they are predisposed to increased androgens, and they later
presented with PCOS-like symptoms [96–98]. Chromatin modification (without additions
or deletions in pre-existing DNA) helps in epigenetic reprogramming.

Two specific mechanisms are involved in this process.
CPG Island Methylation—methylation, hydro methylation, formylation, or carboxyla-

tion at cytosine in its 5th carbon of pyrimidine and guanine ring [99,100].
Gene expression is inhibited by DNA methylation but hydromethylation is involved

in the increase in DNA methylation [101].
Histone modification—Acetylation, methylation, ubiquitination, and phosphorylation

reactions are involved in epigenetic reprogramming. Somatic and germ cells can both be
genetically reprogrammed but generational changes can only be transmitted by germ cells
to offspring [99].

Upregulation or downregulation of DNA gene expression may occur when epigenetic
alterations take place. These changes further affect translation and protein synthesis. FST
(a gene involved in the encoding of follistatin), LMNA (encoding Lamin/AC), EPHX1
(encodes for epoxide hydrolase), and PPARGC1A (encode for peroxisome proliferation are
building blocks for physiological processes such as follicular development, insulin, glucose
metabolism, inflammation processes, and steroidogenesis. Disturbed genetic methylation
results in physiological imbalance, that leads to syndromic conditions [100] (Table 4).

Table 4. Different Genes Involved in Pathogenesis of PCOS.

S.N Different Gene Categories Involved in PCOS Genes under Categories

1. Genes involved in ovarian and adrenal
steroidogenesis

i. CYP19
ii. CYP17
iii. CYP21
iv. CYP11a

2. Epigenetics of PCOS i. NCOR1
ii. PPARG1

3. Gene involved in insulin action and secretion

i. CAPN10
ii. IRS-1
iii. IRS-2
iv. INS
v. INS

4. Gene involved in steroid hormone effect i. AR
ii. SHBG

5. Gene involved in gonadotropin
1. LH
2. AMH
3. FSHR

6. Other genes

1. FTO
2. PCO
3. SRD5A
4. SRD5B

9.2.1. Peripubertal Diet and Epigenetics of PCOS

Diet can affect the methylation status of sex steroids and growth-related genes (CYP19A1,
HSF11B2, IGF2), which further influences puberty onset in adolescent girls [102,103].
Makroin ring finger protein 3 (MKRN3) and delta-like noncanonical notch ligand 1 (DLK1)
imprinted mutation leads to the precocious onset of puberty. Kisspeptin (KISS1) and its
receptors, such as KISS1R mutation among these genes, also results in the advance onset
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of puberty. KDNy (Kisspeptin/neurokinin B/dynorphin) neuron, located in the arcuate
nucleus of the hypothalamus, is involved in the regulation of GnRH release. This neuron
can be affected by epigenetic modifications and sirtuins (energy -sensing proteins), which
are coupled with NAD+ (metabolic factor). A recently reported study explains that the
expulsion of SIRT1 from KISS1 neuron leads to produce-changed chromatin state. The over-
nutritional level among adolescent girls was responsible for this condition, which results in
the advance onset of puberty [104]. Another study reported in mice described a specific
deficient diet (folate, methionine, and choline) in adolescent age resulted in increased
plasma levels of (thcy) total homocysteine, which further contributes to important events in
the hippocampus, i.e., promotor hypermethylation and loss of expression of the glutamate
receptor 1 (Gria1), and produces impaired memory and learning [105]. Epigenetic bases
for dietary-mediated puberty onset and mammal’s neuroendocrine influence on ovarian
function were supported by these studies [106,107].

9.2.2. Prenatal Diet and Epigenetics of PCOS

Most of the understanding we acquired about the prenatal dietary influence on epige-
netics comes from reported different non-human primates, rodents, and sheep studies. This
reports the consequential effects of the maternal diet and metabolism on prenatal androge-
nization [108,109]. The provided treatment exposure for such conditions during early and
mid-gestation reflects the key stage for the androgen-sensitive gonadal development [109].
In the ovaries of adult female offspring, genome-wide alterations in DNA methylation
indicates a gene network associated with PCOS [108].

9.3. Genes Involved in Insulin Action and Secretion

CAPN10—Calpain-10 is a protein encoded in humans by the CAPN10 gene. The
Calpains are a family of calcium-dependent, cysteine proteases. This gene encodes a
large sub-unit. Additionally, Calpain-10 (CAPN10) is an atypical calpain because it lacks
the calmodulin-like calcium-binding domain and it instead has a divergent C-terminal
domain [110]. This gene is associated with type 2 or non-insulin-dependent diabetes
mellitus (NIDDM) and is located within the NIDDM1 region. Multiple alternative transcript
variants have been described for this gene. Furthermore, CAPN10 is a protein-coding gene.
Diseases associated with CAPN10 include type 1 diabetes mellitus 2 and PCOS. Among its
related pathways are integrin pathway and ERK signaling. Gene ontology (GO) annotations
related to this gene include cytoskeletal protein binding and calcium-dependent cysteine-
type endopeptidase activity. An important paralog of this gene is CAPN3 [111,112].

In PCOS, patients suffer from disturbed insulin levels. As per previous studies,
CAPN10 mutation is associated with PCOS [113]. The CAPN10 gene was the first to be
identified as a risk gene of type 2 diabetes [114]. Furthermore, the CAPN10 gene consists of
multiple single nucleotide polymorphisms. Both UCSNP-63 and UCSNP-19 polymorphism
have been found to be associated with PCOS [115]. Another study conducted on Asian
women confirms the association of UCSNP-45, UCSNP-19, and UCSNP63 polymorphism
as a risk factor for PCOS [116]. Various case-control and meta-analysis studies have been
conducted in different study populations to discuss the correlation between CAPN10
polymorphism and metabolic trait of PCOS (Table 5).
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Table 5. Polymorphism Associated with Calpain 10 gene.

S.N Gene Type of
Polymorphism Genetic Marker Physiological

Function
Type of Study with
Study Population Reference

1

C
A
P
N
10

UCSNP-43 UCSNP-43,
19 and 63

Calcium medium,
intracellular

signaling, insulin
secretion

Case control study on
Chilean women [117]

2 UCSNP43 UCSNP-43,
19 and 63

Cross sectional study on
Brazilian women [118]

3 UCSNP44 CAPN10
haplotypes

Haplotype phenotype
correlation study on

Spanish women
[119]

4 UCSNP-19,
45, and 63 SNPs Meta-analysis on Asian

women [116]

5 UCSNP-19,
43, and 44

UCSNP-19, 43,
44 and 63

Cross sectional study on
Spanish women [112]

6 UCSNP-19,63 UCSNP-19, 63,
43 and 44

Meta-analysis Different
population [115]

7 - UCSNP-43,
rs 3792267

Case control on Indian
women [120]

Insulin receptor substrate protein (IRS)—Binding of insulin to its receptor leads to auto-
phosphorylation. Activation of tyrosine kinase further activates and phosphorylates IRS-1
and IRS-2. These activated substrate proteins are utilized for downstream processing. Poly-
morphisms among genes (IRS1 and IRS2) have been found for insulin resistance. Gly972Arg
polymorphism for IRS-1 and Gly1057Asp polymorphism for IRS-2 have shown high sus-
ceptibility to diabetes mellitus [121,122]. Initially, there was no difference found between
IRS-1 Gly972Arg and IRS-2 Gly1057Asp alleles in PCOS patients and control [123–125].
Subsequent studies report patients with PCOS have shown a high frequency of Arg972
polymorphism in IRS-1 [123]. A study reported by (Dilek et al.) found PCOS women with
Gly972Arg were more obese, more insulin-resistant, and have high level of fasting insulin
as compared to control and other PCOS patients [125]. In a meta-analysis study, IRS1
Gly972Arg is considered as PCOS-susceptible allele and risk factor for which is responsible
for increased level of fasting glucose [126,127]. It has been proposed that decreased tyrosine
phosphorylation of IRS-1 and increased phosphorylation of IRS-2 Ser 312 are the molecular
mechanisms of insulin resistance among PCOS patients [128]. A study suggests hyper-
androgenic environment of PCOS is responsible for increased mRNA level of IRS1 and
IRS2 [129]; although, insulin receptor gene polymorphism is considered more important
for PCOS etiology compared to IRS1 and IRS2 polymorphism.

Insulin gene—The ovarian theca cells have receptors involved in androgen production,
whereby insulin plays an important role in this process [130]. Furthermore, the Phos-
phoinositide 3-kinases/protein kinase B pathway is activated in ovarian theca cells of
PCOS patients, which is involved in insulin activation for this process [131]. An excess of
insulin is associated with high androgen production [132,133]. The insulin gene is a sand-
wich gene between the insulin growth factor (IGF-II) and tyrosine hydroxylase at 11p15.5
position [134]. Variable number of tandem repeats (VNTR) occupies a 5′ untranslated
region [135]. VNTR polymorphism is responsible for the regulation of insulin gene (INS)
and IGF-II transcription rate. This VNTR polymorphism is associated with the polycystic
ovarian syndrome [136].

INSR—The heterotetrametric proteins composed of two alpha and two beta chains
are encoded by this gene. Initially, an exact association between INSR and PCOS was
not found [137,138]. In this process, a large chromosome part (19p13.2) was isolated and
D19S884 was positively associated with PCOS [139]. This part of the chromosome also con-
tains INSR. Various recent studies in different populations suggest that despite the ethnic
and race variation among population, a strong association has been found in variety of INSR
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gene and PCOS. Additionally, INSR could be considered a good genetic marker for PCOS
(TABLE). The polymorphism rs2059817 and rs1799817 in INSR gene was most widely asso-
ciated with insulin resistance among PCOS women in various populations [140–142]. The
insulin resistance mediated by INSR is produced only in metabolic tissues liver, fibroblast,
and skeletal muscle, whereas pituitary tissues and ovaries remain insulin sensitive [143].

9.4. Genes Involved in Steroid Hormone Effect
9.4.1. Androgen Receptor Gene

The Androgen receptor gene contains 11 exons and encodes a long tri-domain protein
of 90kb; this gene is present in the q arm of chromosome X [144]. PCOS is reported in
patients due to chromosome X mutation and cellular structural disruption [15]. It has
been shown in different studies that menstrual irregularities, anovulation, and microcyst
appearance in the ovaries are due to increased androgen levels [32,145]. Experimental
studies also indicated that the intrauterine exposure of androgen leads to PCOS develop-
ment in adult life [146]. Androgen activity and PCOS prevalence are defined by genetic
polymorphism in the AR gene in exon one with CAG repeat [147]. An increased frequency
of short AR CAG repeat has been found in different studies, indicating androgen gene’s
contribution in PCOS occurrence in Chinese and Caucasian population [148,149]. Andro-
gen receptor upregulation and increased androgen sensitivity are also associated with
this polymorphism [150,151]. However, Slovenian, Indian, Croatian, and Korean studies
found no association between CAG repeat length and PCOS [152–155]. A study reported a
significant connection of XCI (X chromosome inactivation pattern) with PCOS pathogenesis
while comparing PCOS families where sisters paired with XCI diversity have more versatile
symptoms of PCOS as compared to sisters paired with identical XCI profile [156]. The XCI
pattern can also influence the expression of a gene implicated in preovulatory follicular
development BMP15 (Xp11.2) [157]. Increased FSHβ transcription and secretion are asso-
ciated with BMP15 expression while LH expression is not affected [158]. Another study
reported no significant difference between the AR CAG-BM level to DHEAS hormone and
AG CAG allele length, XCI pattern, and hirsutism [159]. Chaudhary et al. suggests that the
XCI pattern can directly alter the genes required for folliculogenesis (gonadotropins and
other genes) by changing LH and FSH levels [160].

9.4.2. Sex Hormone-Binding Globulin Gene

The sex hormone-binding globulin gene (SHBG), which synthesizes a 373 amino
acid-containing protein, is present in chromosome 17p13-p12. Androgen (testosterone
and estrogen) binding with SHBG protein leads to controlled sex hormone levels in the
body [161,162]. Metabolic factors such as androgen and insulin control the synthesis of
SHBG by hepatocytes [163–165]. PCOS females have a lower level of SHBG, which is an
inhibitory effect of hyperinsulinemia on SHBG synthesis [166]. Various studies on PCOS
patients have reported that single nucleotide polymorphism in SHBG is associated with
this disease [167].

9.5. Gene Involved in Gonadotropin
9.5.1. Lutein Hormone and Receptor

The altered level of the luteinizing hormone and its disturbed functions are responsi-
ble for androgen excess and anovulation in PCOS [168,169]. Excess luteinizing hormone
negatively inhibits follicular-stimulating hormone, which further contributes to decreased
estrogen production through androgen transfer, which also stimulates the androgen con-
centration in ovaries [130]. A study reported a point mutation at (Trp8Arg and IIg15Thr) in
luteinizing receptor B sub-unit [170], but this mutation is also reported in 15% non-PCOS
women populations, in a study conducted on PCOS women [171].
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9.5.2. Follicular Stimulating Hormone Receptor

Mutation in this receptor gene leads to the structural disruption of the encoded protein,
thus causing an hormonal imbalance in PCOS women. This gene (situated in the p arm
of chromosome 2 containing 14 exons) encodes for a G-protein coupled receptor, which
is essential for gonadal development [172,173]. A study reported in North Iraq women
showed high-frequency polymorphism in this gene [174].

9.5.3. Anti-Mullerian Hormone

The Anti-Mullerian hormone gene is located in chromosome 19(long arm) at Cytoge-
netic 13.3, which contains five exons and is involved in encoding a protein responsible for
infertility [175]. GWAS and exome-sequencing studies reported different variants in the
AMH gene as PCOS disease predictors [15,176]. Two different studies by the same research
group identified 37 variants with impaired activity in or near AMH and AMHR2 [177,178].
AMH has been found to decrease CYP17 transcription involved in the encoding of rate-
limiting enzyme for androgen production [51,179]. The impaired AMH pathway respon-
sible for hyperandrogenemia in PCOS is probably the decreased AMH signaling and
subsequential increase in CYP17 expression [34,180]. An increased level of CYP17 mRNA
was found in PCOS theca interna cells as compared to normal reproductive subjects [181].
Ceased follicular transition from primary to secondary stage results in early staged follicles
and polycystic ovarian morphology due to AMH, which is further a key characteristic of
development PCOS [182–184]. The study described the role of the impaired AMH pathway
in the pathogenesis of PCOS among patients subgroup [178]. This subgroup population
also showed a slightly delayed menarche. The PCOS phenotype can be determined by an
impaired AMH pathway mechanism by loss of target gene CYP17 inhibition, which results
in an increased CYP17 level and subsequent increase in the testosterone level [178]. Other
target genes under AMH regulation are CYP11A, CYP19A, and 3BSHD [185,186].

9.6. Other Genes
9.6.1. PCO

This gene is also known as PCOS1, which is present in chromosome 19p13.2. This
gene has been studied by several scientists to identify the association. In 1971, this gene
was reported in two sisters for the 1st time; furthermore, this study was again replicated
in 2005. A large sample of 367 PCOS families were included in the study [139]. As per
the study, due to a replication of the results of a previous study by the same scientific
group [187], it was concluded that D19S884, a dinucleotide repeat located in the intron of
FBN3 (Fibrillin 3) gene 105 bp’3 to exon 55, could be responsible for the transcription of
the nearby gene and for INSR. It was also concluded that D19S884 might be involved in
post-translational processing of FBN3to mRNA (Table 4).

9.6.2. SRD5A and SRD5B

In 1999, a study was conducted to identify the activity of SRD5A in PCOS women,
which was reportedly high in the study [188]. Additionally, 2p23.1 is the cytogenetic
location for SRD5B. It was further found that the SRD5A variant is responsible for hirsutism
in PCOS patients, while SRD5B is associated with PCOS protection to patients [189].

9.6.3. Fat Mass Obesity (FTO)

This gene, associated with obesity and type 2 diabetics, encodes an enzyme alpha-
ketoglutarate located in chromosome 16(q arm). Single nucleotide polymorphism (rs9939609)
was associated with PCOS women in Pakistan [190]. This polymorphism was reported to
be significantly high in PCOS women compared to the normal population [191].

10. Application of Genetic Identification

The genetic identification of any disease is a diagnostic or predictive tool, commonly
known as precision medicine. Genetic-risk scores have been used in different studies to
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discuss the increased variance in diseases and association among diseases and phenotypic
comorbidities, type 2 diabetes mellitus disease [192] variance, and coronary heart disease
single nucleotide polymorphism-associated myocardial infraction [193]. GWAS in Chinese
women have already used this concept to determine genetic loci in PCOS women [194,195]
and also in cohort studies reported in English women [196]. Recently, various genetic
loci have been identified, which could be incorporated into disease diagnosis, prediction,
and treatment.

11. Treatment

An ideal treatment approach suited to all PCOS women is not achievable; instead, it
provides only symptomatic relief to the patients [197,198]. Due to the complexity of disease
(such as infertility, menstrual irregularity, weight reduction, acne, and hirsutism), personal-
ized treatment approaches are required [199,200], depending on the patient’s condition.

11.1. Non-Pharmacological Approach
11.1.1. Weight Reduction

PCOS women suffer from obesity, especially in the abdominal area, due to androgen
excess. The first treatment approach for such females is to reduce their weight. The study
found that 5% weight reduction may restore PCOS women’s menstrual irregularity [201].
Reaching the normal level of BMI results in decreased free testosterone and decreased
metabolic syndromes [202].

11.1.2. Diet

A better way to achieve weight reduction is choosing the right food, specifically fiber-
rich, low glycemic-indexed, low-saturated fat-indexed food. Additionally, patients should
be aware of high glycemic-indexed food in order to avoid them [203].

11.1.3. Exercise

Exercise plays an important role in the weight-reduction process, which is further
associated with an improvement in insulin sensitivity [204]. Exercise with or without
diet also leads to the regulation of ovulation. The mechanism involved in the ovulatory
regulation is the modulation of the hypothalamus–pituitary–gonadal (HPG) axis [205].

11.1.4. Complementary and Alternative Medicines (CAM)

Some studies report that only 60% of PCOS patients treated pharmacologically re-
spond to the therapy [206]. CAM approaches involve nutritional, psychological, physical,
and a combination of all these factors [206]. PCOS management has always involved some
form of adjuvant therapy, which includes CAM [207]. Moreover, 70% of PCOS females
have utilized such treatment once in their treatment process [208]. Traditional Chinese
medicine, immunotherapy, yoga, spa, Tai Chi, and diet therapy (herbal, probiotics, and sup-
plementations) are some examples of complementary and alternative medicines [208–213].

Acupuncture

This alternative therapy has been used in China for more than 3000 years [208]. The
thin needles are placed in the skin and muscles for sensory stimulation. The clinical mani-
festations of PCOS are improved due to increased endorphin production, which increases
gonadotrophin-releasing hormone secretion, ovulation, and the menstrual cycle [205,207].

Diet Therapy (Health Supplementation)

Along with the medicines, different supplementations have been effective in PCOS
females, which include vitamin D, resveratrol, α lipoic acid, omega 3, folic acid, myoinositol,
and d-Chiro inositol [208–211]. Studies have reported that myoinositol, d-chiro inositol
taken alone or in combination, results in an increased frequency of ovulation and decreased
frequency of FSH-targeted ovulation for pregnancy [212–214].
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11.2. Medicinal Approach

A healthy lifestyle with diet and exercise is always recommended to PCOS-diagnosed
patients because patients solely get benefit from diet and exercise in mild to moderate
cases [215]. The medicinal approach depends on the patient’s condition and choice. If the
patient does not want to get pregnant and reports only menstrual irregularities, combined
oral contraceptives (COCs) or progestin are the drugs of choice. Metformin is also a drug
of choice, along with COCs, as it restores the ovulatory cycles. If infertility is to be cured,
clomiphene citrate or other aromatase inhibitors are treatment options [216].

12. Conclusions

PCOS is a complicated disease in terms of its pathophysiology. Its early diagnosis and
treatment can be beneficial for patients, as long-term modalities can be delayed or prevented
with this approach. The diagnostic approaches for PCOS have progressively enhanced with
advancements in genetics. Functional data reported by different epigenetic and GWAS have
positively increased our knowledge and understanding of PCOS pathogenesis. The genetic
markers have improved diagnosis, which can also distinguish between patients in specific
disease phenotypes. An early diagnosis of PCOS with associated comorbidities helps to
identify specific treatment for individual patient phenotype, which requires continuous
progression in genetic and pathophysiological research.

13. Future Remarks

PCOS is a collection of metabolic and reproductive gene variants associated with
different biochemical, clinical, and biological features, specifically due to increased andro-
gen production. Females may develop infertility in their reproductive ages; hence, early
detection and treatment are required for a better prognosis. Key gene polymorphisms are
helpful in the timely diagnosis and screening of PCOS subtype.

An increased number of identified loci for PCOS genetic phenotype indicates the
incorporation of genetic testing in disease prediction and diagnosis. PCOS gene mapping
provides significant assurance in the identification of susceptible loci, which can further
contribute to finding the novel disease pathway and drug targets. Precision medicine is an
exciting prospect in which identified genetic risk markers work as a diagnostic tool.

Presently, oral contraceptive pills are the first line treatment for PCOS. These medicines
are involved in the correction of menstrual irregularities. A variety other medicines are
also included, which may increase the chances of conception. These medicines are associ-
ated with different adverse effects related to other pathologies such as cardiac pathology,
psychological pathogenesis (poor self-esteem and depression), and diabetes mellitus. To
increase the chances of conception, PCOS females are involved in the utilization of more
artificial approaches, including IVF, IUI, and laparoscopic drilling.

The advancement in the early diagnostic approaches with genetic variance also poten-
tiates a better prognosis of the PCOS. The early detection of the disease provides a better
treatment approach to patients
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