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Abstract: Among the radicals (hydroxyl radical (•OH), hydrogen atom (H•), and solvated electron
(esol

−)) that are generated via water radiolysis, •OH has been shown to be the main transient
species responsible for radiation damage to DNA via the indirect effect. Reactions of these
radicals with DNA-model systems (bases, nucleosides, nucleotides, polynucleotides of defined
sequences, single stranded (ss) and double stranded (ds) highly polymeric DNA, nucleohistones)
were extensively investigated. The timescale of the reactions of these radicals with DNA-models
range from nanoseconds (ns) to microseconds (µs) at ambient temperature and are controlled by
diffusion or activation. However, those studies carried out in dilute solutions that model radiation
damage to DNA via indirect action do not turn out to be valid in dense biological medium, where
solute and water molecules are in close contact (e.g., in cellular environment). In that case, the initial
species formed from water radiolysis are two radicals that are ultrashort-lived and charged: the
water cation radical (H2O•+) and prethermalized electron. These species are captured by target
biomolecules (e.g., DNA, proteins, etc.) in competition with their inherent pathways of proton
transfer and relaxation occurring in less than 1 picosecond. In addition, the direct-type effects
of radiation, i.e., ionization of macromolecule plus excitations proximate to ionizations, become
important. The holes (i.e., unpaired spin or cation radical sites) created by ionization undergo fast
spin transfer across DNA subunits. The exploration of the above-mentioned ultrafast processes is
crucial to elucidate our understanding of the mechanisms that are involved in causing DNA damage
via direct-type effects of radiation. Only recently, investigations of these ultrafast processes have been
attempted by studying concentrated solutions of nucleosides/tides under ambient conditions. Recent
advancements of laser-driven picosecond electron accelerators have provided an opportunity to
address some long-term puzzling questions in the context of direct-type and indirect effects of DNA
damage. In this review, we have presented key findings that are important to elucidate mechanisms
of complex processes including excess electron-mediated bond breakage and hole transfer, occurring
at the single nucleoside/tide level.

Keywords: picosecond pulse radiolysis; water cation radical; hole transfer; quasi-free electron;
prehydrated electron; solvated electron; transient negative ion; dissociative electron attachment

1. Introduction

This review begins with a summary on the earliest processes of water radiolysis highlighting that
in dilute solutions only the indirect effect of radiation is predominant and neither direct ionization
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(direct effect) nor the reactions of the water cation radical (H2O•+) and presolvated electron are
important (Section 1.1). Recently, a comprehensive picosecond (ps) pulse radiolysis measurements
in highly concentrated aqueous solutions of inorganic acids and of salts showed the importance of
the direct ionization of the solute in addition to the primary charge transfer from H2O•+ and the
presolvated electron (Section 1.2). To study the physico–chemical processes that are involved in
the radiation damage to the biologically important macromolecules, time-resolved studies using ps
pulse radiolysis were employed in concentrated solutions of monomeric DNA/RNA model systems
(Section 1.3). Studies on ultrafast hole (backbone-to-base, base-to-backbone, and phosphate-to-sugar)
transfer were reviewed (Section 2.1). Additionally, studies including time-resolved investigations
(e.g., femtosecond pump-probe laser spectroscopy, ps pulse radiolysis) on electron transfer processes
(Section 2.2 to Section 2.2.4) including radiation-produced electron-mediated bond dissociation in
nucleosides were reviewed. This review summarizes the results of these ps pulse radiolysis experiments
and their implications to understand the mechanisms involved in radiation damage to DNA and to
radiotherapy (see conclusion).

1.1. Ultrafast Processes in Water Radiolysis

The primary species formed due to ionization of water molecule by highly energetic photons or
charged particles is the water cation radical, H2O•+. Via subsequent ultrafast proton transfer, H2O•+

produces H3O+ and •OH (Reaction R1) [1–3]. On the other hand, the ejected secondary electrons (SEs)
with an estimated quantity of ~4 × 104 electrons per 1 MeV energy deposited, can cause cascades
of additional ionizations and excitations by inelastic scattering through coulombic interactions with
solvent molecules [4–6]. As a result, low-energy electrons (LEEs) are generated with an excess kinetic
energy of 0–20 eV, named quasi-free electron (eqf

−) [1–8], and successively lose their kinetic energy to
become thermalized (eth

−) with a time constant of less than tens of femtoseconds (fs) in water under
ambient conditions [4,9]. Further, these electrons can either recombine with H2O•+ (Reaction R2) or
undergo multistep solvation prior to their complete localization as the solvated electron, esol

− (Reaction
R3) [4,7–9]. The multistep solvation of eqf

− is completed within 1 ps in water and extended to tens of
picoseconds in alcohols [4,7,9–21]. The characteristic timescale of proton transfer along the hydrogen
bond from H2O•+ to the H2O molecule in liquid water is 30–200 fs [9,15]. In addition, dissociation of the
excited state of water (H2O*) leads to •OH and H-atom (G = 0.5 mol J−1) via molecular fragmentation
(Reaction R4) at electronic transition timescale. The reactions (R1–R4) proceed faster than the diffusion
rate of radicals along the track and these are often thought to be the earliest physicochemical events in
water radiolysis [22–26].

H2O•+ + H2O→ •OH + H3O+ (R1)

H2O•+ + e− → H2O∗ (R2)

e−qf (Ec < 20 eV) → e−th (Ec = 0.025 eV) → e−pre → e−sol (R3)

H2O∗ → •OH + H• (R4)

Knowledge of the initial and primary radiolytic yields of each water-derived radical at room
temperature is the key issue in fundamental and applied radiation chemistry. Note that the “initial”
yields are the yields of the species at the physicochemical stage of radiation events (~1 ps) and the
“primary” yields are yields of the species at the chemical stage (at 200 ns) [22,24–26]. Now, thanks to
the development of ps pulse radiolysis, radiolytic yields of the species, such as the hydrated electron
(esol

−) and •OH at a few picoseconds, have been reported recently [27,28].
In dilute solutions (i.e., at concentrations, ca. 10−3 M or lower), the direct ionization of the

solute itself is negligible because most of the radiation energy is absorbed by the solvent [1–3,29].
The charge transfer processes that involve radiation-produced excess electron transfer due to the
ionization of the solvent to the solute molecule as well as hole (i.e., unpaired spin) transfer from
H2O•+ to the solute molecule is not likely to take place at a long distance [29–31]. As a result,
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the ultrafast processes in dilute solution are identical with those in neat water (Reactions R1 to R4) and
the dominant reaction pattern was established by the quasi-diffusion controlled reactivity of secondary
water-derived radicals •OH, H•, and esol

− [29–32]. On the other hand, at concentrations ca. 0.1 M or
higher, the processes due to direct ionization of the solute (direct effect) along with the charge transfer
processes from the surrounding solvent-derived radicals (e.g., H2O•+ from H2O) to the solute become
non-negligible [29–31].

1.2. Effect of Radiation in Concentrated Solutions

Many applications of ionizing radiation deal with concentrated solutions. For example, the spent
nuclear fuel reprocessing technology utilizes highly concentrated nitric acid solutions [33]. Recent
wastewater treatment via electron-beam techniques requires extensive studies in concentrated aqueous
solutions. To elucidate these processes, it is necessary to know the mechanisms involved in the
radiation-mediated formation of radicals, and their yields in highly concentrated nitric acid solutions,
(e.g., nitrate radical (NO3

•), nitrite radical (NO2
•) [33–35]) as well as some elementary reactions

between organics and water radicals in complex systems.
The concentrated solutions could also be employed as model systems to investigate radical

reactions that are observed in the interfacial and biological systems [29–31]. Note that such reactions are
not easy to study directly by the pulse radiolysis technique. The global concentration of macromolecules
(DNA, RNA, proteins, etc.) in the cell nucleus are in the range of 65–220 mg/mL; therefore, the cell
nucleus is not a homogeneous dilute aqueous solution [36]. Furthermore, dsDNA in a cell is densely
packaged in nucleosomes, with the DNA wrapped around the histone protein core that forms the basic
unit of the chromatin structure [36,37]. When ionizing radiation is applied, a part of the radiation
energy is absorbed directly by biomolecules (direct effect), but a part is also absorbed by the water
layer adjacent to biomolecules [31]. Therefore, the extent of contributions of the ultrafast effect and the
indirect effect on the damage are complex and very difficult to understand if only observations in dilute
solution are employed as the reference for such systems [29–31]. For instance, one-electron oxidants
(SO4

−•, Cl2−•, etc.) in dilute solutions or electron spin resonance (ESR) spectroscopy of irradiated
samples in homogeneous frozen aqueous glassy solutions have been generally used to model the
pathways involved in direct-type effects of radiation; however, these experiments do not exactly model
the cellular environment at ambient temperature [30,31,38,39].

While studying concentrated solutions of halides, a possible reactivity of the excess electron and
H2O•+ has been evoked by Hamill et al. [40]. This hypothesis remained under debate for several
decades due to the limitation of the time resolution and to not having adequate knowledge of the
yield of esol

− and •OH in the picosecond range. In the past decade, as represented in Figure 1,
the electron transfer from solutes to the primary positive holes from the solvent in aqueous systems as
an ultrafast pathway has been demonstrated quantitatively in solutions containing a large amount of
halide salts and in acidic solutions (HNO3, H2SO4, H3PO4, etc.) [1–3,34,41]. The recently developed
laser-driven picosecond pulse radiolysis technique has been established as an exciting new capability
that provides > 5 ps time resolution for probing the dynamics of transient species and extends the
capability to investigate chemical reactions covering a broader time range [42]. Even though the direct
time resolution of our technique is limited to > 5 ps that cannot probe the dynamics exactly in real time,
measurement of secondary radical formation yields allows us to address quasi-directly the reactivity
of H2O•+ and presolvated electrons by altering the solute concentration (Figure 1).
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Figure 1. Ultrafast charge transfer from the water cation radical, H2O•+, and excess electron 
attachment to the solute occurring in less than 1 ps in concentrated solutions; these processes do not 
occur in dilute solutions and reactions due to indirect effect of radiation are predominant in dilute 
solutions. 

Applying this above-mentioned technique, we have shown that three distinct processes are 
involved in the formation of secondary radicals such as phosphate and nitrate radicals [35,41]: (i) 
reaction of •OH with phosphate anions and undissociated H3PO4 and HNO3 (indirect effect), (ii) direct 
ionization of phosphoric acid (direct effect of ionizing radiation on solutes), and (iii) reaction of 
H2PO4−and NO3− with H2O•+. On the other hand, by observing a decreasing initial yield of esol− as a 
function of H3O+ concentration at a similar timescale, we showed that the radiation-produced excess 
electrons reacted rapidly with H3O+ [41]. Our results further established that the rate of this reaction 
is faster than the corresponding reaction of esol− by two orders of magnitude [41]. Thus, our results 
highlight the difference of the decay of a variety of water-derived radicals in the dilute and 
concentrated medium, and this is schematically represented in Figure 1. 

1.3. Studies of Biomolecule Model Systems 

Radiolytic studies of biomolecules (e.g., DNA) are more challenging compared to inorganic systems 
because of their structural complexities. This can be illustrated as follows: at first, the estimation of the 
extent of direct ionization of the solute and H2O•+ mediated oxidation of the same solute in bulk solutions 
is not well-established. For instance, in aqueous solutions of 5′-uridine monophosphate (UMP or URP 
(Uracil base (U), Ribose(R), and Phosphate (P))), correlation of the electron fraction (fs, Section 2.1.1) of 
UMP with UMP concentration indicates the probability of the direct effect (or, direct ionization) on the 
nucleotide occurring in the bulk phase, while a few of their corresponding cation or anion radicals were 
quantitatively measured at ambient conditions (Figure 2). 

 

Figure 1. Ultrafast charge transfer from the water cation radical, H2O•+, and excess electron attachment
to the solute occurring in less than 1 ps in concentrated solutions; these processes do not occur in dilute
solutions and reactions due to indirect effect of radiation are predominant in dilute solutions.

Applying this above-mentioned technique, we have shown that three distinct processes are
involved in the formation of secondary radicals such as phosphate and nitrate radicals [35,41]:
(i) reaction of •OH with phosphate anions and undissociated H3PO4 and HNO3 (indirect effect),
(ii) direct ionization of phosphoric acid (direct effect of ionizing radiation on solutes), and (iii) reaction
of H2PO4

−and NO3
− with H2O•+. On the other hand, by observing a decreasing initial yield of esol

−

as a function of H3O+ concentration at a similar timescale, we showed that the radiation-produced
excess electrons reacted rapidly with H3O+ [41]. Our results further established that the rate of this
reaction is faster than the corresponding reaction of esol

− by two orders of magnitude [41]. Thus,
our results highlight the difference of the decay of a variety of water-derived radicals in the dilute and
concentrated medium, and this is schematically represented in Figure 1.

1.3. Studies of Biomolecule Model Systems

Radiolytic studies of biomolecules (e.g., DNA) are more challenging compared to inorganic systems
because of their structural complexities. This can be illustrated as follows: at first, the estimation of
the extent of direct ionization of the solute and H2O•+ mediated oxidation of the same solute in bulk
solutions is not well-established. For instance, in aqueous solutions of 5′-uridine monophosphate
(UMP or URP (Uracil base (U), Ribose(R), and Phosphate (P))), correlation of the electron fraction
(fs, Section 2.1.1) of UMP with UMP concentration indicates the probability of the direct effect (or, direct
ionization) on the nucleotide occurring in the bulk phase, while a few of their corresponding cation or
anion radicals were quantitatively measured at ambient conditions (Figure 2).
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Figure 2. Left axis (blue filled circle): molecular number ratio between water and UMP plotted as a
function of UMP concentration in an aqueous environment. Right axis (open box): correlation of the
electron fraction (fs) with the UMP concentration to indicate the probability of direct-type radiation
effect on the nucleotide occurring in the bulk phase. Reprinted with permission from [43]. Copyright,
2018, American Chemical Society.
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Secondly, in contrast to the small inorganic cation radicals, ultrafast formation of a DNA-hole
i.e., a DNA cation radical ((DNA)•+) occurs upon ionization, resulting in the formation of holes with
unpaired spins on the bases and on the sugar–phosphate [30,31,38,39,44–46]. A substantial volume
of work has been focused on radiation-induced hole-mediated damage in DNA via the oxidation
pathway, as this pathway may lead to cellular death [29–31,38,39,43–68]. A fast base-to-base hole
transfer process [29–31,38,39,43–72] and backbone-to-base hole transfer process [30,31,38,39,43–46]
leads to the localization of these holes at a nearby guanine base. It has been well-established that
the stacks of guanine, for example, GG, GGG, etc. are the most stable hole localization sites after
long range hole transfer [29–31,38,39,43–72]. Previous laser spectroscopic measurements or the use
of one-electron oxidants (SO4

•−), which had often been used to model the pathways involved in
DNA damage via the direct effect, were not able to probe these dynamics immediately following the
ionizing radiation [29–31,38,39,43–72]. Another important point is that the dynamics of transfer and
the localization of the radiation-produced excess electrons in DNA in the liquid phase are not fully
understood [4,8,29–31,38,39,56–62,73–75]. When excess electron attachment occurs on a nucleoside
target, it leads to a variety of excited states of the anion radicals, which can either undergo bond
dissociation or relaxation to their ground states [4,73–75]. Therefore, the extent and pathway of the
radiation-produced excess electron-mediated reactions in bulk solutions are important and certainly
play a key role in radiation therapy and radiation protection.

2. Ultrafast Hole and Electron Transfer under Irradiation

2.1. Elucidation of Pathways of Hole Transfer Processes Employing Concentrated Nucleotide Solutions

2.1.1. Backbone-to-Base Hole Transfer

In irradiated DNA, holes localize on the most electropositive base, guanine,
through direct ionization and base-to-base and backbone-to-base hole transfer processes
(Scheme 1) [30,31,38,39,44–46,66,76,77]. The best overall estimate of the probability of direct ionization
at a given site in DNA, such as the sugar, phosphate, or DNA base is provided by the number of
valence electrons at that site (electron fraction (fs = no. of valence electrons at that site/total no. of
electrons at that site) (Figure 2)) [30,31,38,39,44–46]. For DNA, ca. 43% of the ionizations should
initially occur at the bases and the remainder at the sugar-phosphate moiety [30,31,38,39,44–46]. These
are valence electron ionization events. However, electron spin resonance (ESR) studies of trapped
DNA-radicals at 77 K [30,31,38,39,44–46] and damaged base release studies of irradiated hydrated
DNA at room temperature [78] show that backbone-to-base hole transfer process increases the extent
of trapped holes on the bases to ca. 77% (Scheme 1) mainly on the guanine base. Based upon the
electron density/fraction of the phosphate group, it is expected that phosphate radicals formed via
ionization events in the DNA-backbone must play an important role in the backbone-to-base hole
transfer process [30,31,38,39,43–46]. However, earlier ESR studies at 77 K on gamma-irradiated
(77 K) hydrated (Γ = number of water molecules/nucleotide = 12 ± 2) DNA [30,31,38,39,45],
on X-irradiated (77 K) DNA-models in frozen aqueous solution [30,31,45], on X-irradiated single
crystals of alkyl phosphates, organic phosphates, and sugar–phosphates [30,31,45,79–82], and on
gamma-irradiated (77 K) dimethyl phosphate in both frozen aqueous solution and neat [45], showed
the formation of carbon-centered radicals and not of phosphate radicals. We also note here that
ESR spectra of phosphate radicals were reported from an X-ray irradiated (77 K) single crystal of
1,2-o-isopropylidene-3,5-o-phenoxyphosphoryl-α-D-xylofuranose [83]. The oxyl radicals, such as the
phosphate radicals (PO3

•2− (E0/V (standard electrode potential, PO3
•2− + H+ + e− = HPO3

2−) = 1.54),
H2PO4

• (E0/V = 2.75 [84]) have been shown to be strong one-electron oxidants. In addition, laser flash
photolysis studies of a ribose-5-phosphate solution at room temperature have provided evidence of
fast (5 × 107 s−1) intramolecular H-atom abstraction by phosphate radical (O3PO•) [85].
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Scheme 1. This scheme represents the important reactions involved in direct-type and in indirect 
effects of radiation leading to DNA damage. After formation of the “hole” (i.e., the unpaired spin) via 
direct-type effect, the hole is localized on the guanine base via base-to-base and backbone-to-base hole 
transfer processes [30,31,38,39,43–46,66]. Reactions of the localized hole on the guanine base in DNA 
are schematically shown as well [29–31,43,47–66,69]. For successful formation of a neutral sugar 
radical, a rapid deprotonation must occur from the one-electron oxidized sugar–phosphate backbone 
before a competitive backbone-to-base hole transfer takes place [30,31,43,45,46]. Sugar radicals are 
precursors of DNA-strand breaks [29–31]. The competition between the solvation of radiation-
produced electrons and their reactions with DNA leading to formation of strand break via DNA•−* 
[4,8,29-31,45,73-75] are mentioned. In addition, formation of superoxide anion radical (O2•−) and its 
reactions [29] are also shown. 

It is evident that the backbone-to-base hole transfer process should occur by very short-lived 
phosphate radical-mediated oxidation of the bases followed by a base-to-base hole transfer process 
(Scheme 1). Consequently, to provide evidence of the phosphate radical mediated oxidation of bases, 
which is the key step to model the backbone-to-base hole transfer process (Scheme 1), picosecond 
pulse radiolysis studies of the reactions between H2PO4 and the DNA bases- G, A, T, and C in 6 M 
H3PO4 at room temperature were performed [44]. 

The phosphate radical, H2PO4• , was generated by direct ionization and via H2O•+ mediated oxidation 
of H2PO4– followed by deprotonation in 6 M H3PO4 [44]. Analyses of the UV-visible pulse radiolysis 
spectra provided evidence for formation of DNA-base radicals via direct one-electron oxidation of 
individual DNA bases (G, A, and T) by H2PO4• in 6 M H3PO4 (Figure 3 and Table 1). However, the rate of 
oxidation of protonated cytosine by H2PO4• appeared to be too slow to detect. This work showed that 
H2PO4• oxidizes nucleobases bimolecularly. These results led to the conclusion that H2PO4• formed via 
direct ionization events in the sugar-phosphate backbone would oxidize the DNA bases; thus, these 
results could be treated as benchmarks of the backbone-to-base hole transfer process (Scheme 1). These 

Scheme 1. This scheme represents the important reactions involved in direct-type and in indirect
effects of radiation leading to DNA damage. After formation of the “hole” (i.e., the unpaired spin) via
direct-type effect, the hole is localized on the guanine base via base-to-base and backbone-to-base hole
transfer processes [30,31,38,39,43–46,66]. Reactions of the localized hole on the guanine base in DNA
are schematically shown as well [29–31,43,47–66,69]. For successful formation of a neutral sugar radical,
a rapid deprotonation must occur from the one-electron oxidized sugar–phosphate backbone before a
competitive backbone-to-base hole transfer takes place [30,31,43,45,46]. Sugar radicals are precursors
of DNA-strand breaks [29–31]. The competition between the solvation of radiation-produced electrons
and their reactions with DNA leading to formation of strand break via DNA•−* [4,8,29–31,45,73–75]
are mentioned. In addition, formation of superoxide anion radical (O2

•−) and its reactions [29] are
also shown.

It is evident that the backbone-to-base hole transfer process should occur by very short-lived
phosphate radical-mediated oxidation of the bases followed by a base-to-base hole transfer process
(Scheme 1). Consequently, to provide evidence of the phosphate radical mediated oxidation of bases,
which is the key step to model the backbone-to-base hole transfer process (Scheme 1), picosecond pulse
radiolysis studies of the reactions between H2PO4 and the DNA bases- G, A, T, and C in 6 M H3PO4 at
room temperature were performed [44].

The phosphate radical, H2PO4
•, was generated by direct ionization and via H2O•+ mediated

oxidation of H2PO4
− followed by deprotonation in 6 M H3PO4 [44]. Analyses of the UV-visible

pulse radiolysis spectra provided evidence for formation of DNA-base radicals via direct one-electron
oxidation of individual DNA bases (G, A, and T) by H2PO4

• in 6 M H3PO4 (Figure 3 and Table 1).
However, the rate of oxidation of protonated cytosine by H2PO4

• appeared to be too slow to detect.
This work showed that H2PO4

• oxidizes nucleobases bimolecularly. These results led to the conclusion
that H2PO4

• formed via direct ionization events in the sugar-phosphate backbone would oxidize the
DNA bases; thus, these results could be treated as benchmarks of the backbone-to-base hole transfer
process (Scheme 1). These results point out that the formation of the doubly charged DNA base
cation radical (e.g., G2+•) from the activated complex (e.g., G(N7H+)—H2PO4

•) is much faster than the
diffusion of reactants (i.e., G(N7H+) and H2PO4

•) and is mediated by single electron transfer [44].
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1s–1 E0/V (dB˙+/dB) 
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A 2.4 × 108 1.94 
T 1.1 × 109 2.09 
C < 5 × 107 2.12 
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intramolecular) should be different. Nevertheless, this ps pulse radiolysis work demonstrated the direct 
observation of oxidation of the weakly protonated base, thymine by H2PO4•, and can be treated as a model 
of backbone-to-base hole transfer [44]. 

 
Figure 3. The intermolecular hole transfer reaction between protonated guanine and H2PO4˙ formed 
by direct ionization and H2O•+ mediated oxidation in 6 M H3PO4 [44]. Reprinted with permission from 
[44]. Copyright, 2018, Royal Society of Chemistry. 
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Figure 3. The intermolecular hole transfer reaction between protonated guanine and H2PO4• formed
by direct ionization and H2O•+ mediated oxidation in 6 M H3PO4 [44]. Reprinted with permission
from [44]. Copyright, 2018, Royal Society of Chemistry.

Table 1. Rate constants of the bimolecular reactions of DNA bases with H2PO4
• in 6 M H3PO4 along

with standard redox potentials of nucleotide base cation radicals [44].

DNA Bases k (H2PO4•) L mol−1s−1 E0/V (dB•+/dB)

G 6.9 × 108 1.47

A 2.4 × 108 1.94

T 1.1 × 109 2.09

C <5 × 107 2.12

Of course, this particular pulse radiolysis study is limited to the fundamental model that represents
only the reactions between phosphate radicals and DNA bases in a highly concentrated medium
(6 M H3PO4). However, by taking into account a 3-dimensional model of charge transfer processes
in DNA [86] and the proximity of the phosphate group to the base, the corresponding reaction in
DNA could occur either by intramolecular through-bond electron transfer, or via intermolecular
through-space electron transfer [44]. Therefore, the parameters that govern these two reactions
(i.e., intermolecular and intramolecular) should be different. Nevertheless, this ps pulse radiolysis
work demonstrated the direct observation of oxidation of the weakly protonated base, thymine by
H2PO4

•, and can be treated as a model of backbone-to-base hole transfer [44].

2.1.2. Base-to-Backbone and Phosphate-to-Sugar Hole Transfer Process

ESR studies of irradiated DNA and irradiated model systems at 77 K showed that for
successful formation of a sugar radical, a rapid deprotonation must occur from the one-electron
oxidized sugar-phosphate backbone before a competitive backbone-to-base hole transfer take
place [30,31,43,45,46]. As a result, the picosecond pulse radiolysis measurements were extended to study
the reactions of phosphate radicals with various concentrations of monomeric DNA or RNA-models,
i.e., uridine 5′-monophosphate (UMP), uridine (Urd), uracil (U), ribose (Rib), and phosphate (P), that
are biologically relevant [43]. Uracil derivatives were preferred to other nucleotides/sides because
of their unique solubility in water. The radiation-mediated direct ionization of the sugar-phosphate
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moiety in UMP as well as the interaction of the sugar–phosphate moiety in UMP with H2O•+ become
experimentally observable at ambient temperature and in solutions having high concentrations of
UMP, which is associated with higher electron fraction.

In highly concentrated UMP aqueous solutions [43] (> 0.2 M) and just after the electron pulse,
an absorption band was found to develop with a maximum at 520 nm. This band was attributed to
the phosphate radical (H2PO4

•) that was formed either by direct ionization or by electron transfer to
H2O•+. This assignment was based on the fact that the radical intermediate at 520 nm was found to be
present only in UMP and was not detected either in the nucleoside (Urd) or in the base (U). The shape
of this band was found to be nearly identical to that of the phosphate radical (H2PO4

•) previously
found in the pulse radiolysis of concentrated phosphoric acid [1–3,41,44]. Additionally, the cation
radical of ribose absorbs in the UV range below 300 nm, and the uracil base cation radical (U•+) from
U has a different spectral shape. Thus, the possibilities that the location of the observed cation radical
was either at the sugar or at the base were ruled out [43].

Due to the lower redox potential of the uracil base moiety relative to those of sugar and phosphate
moieties [29], the holes are initially trapped on the uracil base in UMP, i.e., formation of U•+MP
occurs at first [43]. However, a facile and subsequent base-to-sugar hole-transfer process happens in
a conformation of UMP•+ in which the sugar–phosphate moiety is proximate to U•+MP (Scheme 2).
This ultrafast process of hole transfer to ribose occurs at a shorter time than the ≤ 7 ps time resolution
of our pulse radiolysis measurements and was not observed. At a higher concentration of Urd (1.5 M)
no transient signal of U•+rd was detected either [43]. The absence of signals due to U•+MP and (Urd)•+

absorptions led to the conclusion that an intramolecular charge transfer process from base-to-sugar
occurred within a picosecond time window in U•+MP and [Urd]•+. This base-to-sugar hole transfer
might occur via tunneling and is similar to those found in one-electron oxidized gemcitabine [87,88] or
migrate as was found for a phosphate system in water (Scheme 2) [43]. The directly formed UR•+P
(Scheme 2) was not detected due to the high concentration issues (the transient species could not be
observed due to the high absorption of the unreacted solute in the UV region) [43,44]. Moreover, pulse
radiolysis experiments with ribose-5-phosphate (RP) did not succeed because RP was found to rapidly
degrade under radiation [43].
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The hole localized on the phosphate subunit of UMP (UMP•+), at very short time, was shown to
undergo a nearly first-order decay with a time constant of ca. 2.5 ns (Figure 4). This was assigned
to a phosphate-to-sugar hole transfer process. We note here that the hole transfer process is likely to
be either intramolecular or intermolecular [89]. Based on a model study of the bimolecular reaction
between H2PO4

• and ribose under highly acidic conditions in H3PO4 solutions at longer time scale
presenting evidence of a similar reaction (H2PO4

• + Ribose→ Ribose•+ + H3PO4), the intermolecular
hole transfer pathway was ruled out [66]. These results clearly showed that the Rib unit of UMP repairs
P•+ intramolecularly in a few ns (Scheme 2) [43].
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This phosphate-to-sugar hole transfer process is not temperature-activated as no noticeable impact
on the lifetime and decay rate of UMP•+ (URP•+) was observed up to 60 ◦C. This experimental result
showed that the activation barrier of this hole-transfer process was negligible [43]. These results
clearly establish that the mechanism of formation of neutral sugar radicals is dominated by the fast
deprotonation of sugar cation radicals, which form through a very rapid base-to-sugar hole transfer or
phosphate-to-sugar hole transfer in the ground state (Scheme 2) [30,31,38,39,43–46,66]. In addition,
sugar radical formation has been observed via a rapid charge and spin transfer process from base to the
sugar in the excited state of purine and pyrimidine base cation radicals (Scheme 1) [30,31,38,39,45,90–95].
Hence, the decay of UMP•+ observed in UMP as well as the decay of H2PO4

• in H3PO4/ribose solutions
provides evidence for a rapid phosphate-to-sugar hole-transfer process and subsequent deprotonation
of the sugar cation radical thus formed. Accounting for the phosphate-to-sugar hole-transfer process,
we consider that once formed, UR•+P remains stable for tens of nanoseconds in H3PO4/ribose solutions.
It is well-established in the literature that carbon-centered neutral radicals formed in the 2′-deoxyribose
moiety of the sugar–phosphate backbone are precursors of DNA-strand breaks [29–31,91,92]. Therefore,
tracking the sugar radical formation in DNA is of crucial importance to elucidating the biological
consequences of radiation [91,92].

2.2. Excess Electron-Mediated Bond Dissociation in Bulk Solutions

Although works from the late 70′s to date have established that radiation-produced electrons in
their various stages exhibit different reactivity towards DNA subunits-bases and the sugar-phosphate
backbone—this field is hence under active debate [4,8,29–31,38,39,45,56–64,70–75,88,96–113].
The consensus that emerged from extensive studies by various groups are the following:

a. The radiation-produced excess electrons are trapped on the DNA-bases upon thermalization.
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b. Similar to the base-to-base hole transfer processes (Scheme 1 and Section 2.1), via tunneling,
the radiation-produced excess electrons that are attached to all bases and the backbone, are trapped
by the most electron-affinic bases (T and C) resulting in the formation of thymine and cytosine anion
radicals (T•− and C•−, Scheme 1) so that guanine and adenine anion radicals (G•− and A•−) are not
observed even at 4 K by ESR spectroscopy [29–31,38,39,45,56–59,88].

c. The base anion radicals, being stronger Brönsted bases than their parent compounds, have been
shown to undergo both reversible and irreversible protonation reactions [29–31,38,39,45,56–59,88].
Four K ESR/ENDOR studies of X-ray irradiated single crystals of cytosine monohydrate have
provided evidence of reversible protonation of C•− at N3 [29–31,56–59,88] leading to C(N3H)•.
In addition, C(N3H)• formation in DNA (Scheme 3) via reversible protonation at N3 of C•− from
N1 of the complementary guanine base has been reported [29–31,38,39,45,56–62,64,88,114]. Due to
the above-mentioned reversible protonation of C•− at N3 in G:C base pairs, the efficiency (rate and
extent) of excess electron transfer through base-to-base in dsDNA is decreased but not completely
stopped [29–31,55–59]. However, T•− in dsDNA does not undergo similar reversible protonation and
the efficiency of excess electron transfer is not affected in A:T base pairs [29–31,57–59]. ESR studies
employing gamma-irradiated (irradiation was carried out at 77 K) hydrated (Γ = 12 ± 2 water
molecules per nucleotide) DNA showed that the T•− population decreased from ca. 50% to 25% with a
simultaneous increase in C(N3H)• population as the temperature increased from 77 K to 130 K. After
progressive increases of temperature at and above ca. 160 to 170 K, T•− has been shown to undergo
irreversible protonation from the surrounding solvent (H2O) to form the C6-hydrogen adduct radical,
TH•, the earliest characterized and the most well-researched radical employing ESR spectroscopic
studies of irradiated DNA [30,115].
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d. The various stages of radiation-produced electrons leading to its complete
solvation (Reaction R3 and Scheme 1) have been extensively studied using various
techniques, e.g., pump-probe femtosecond laser spectroscopy, picosecond pulse radiolysis, ESR,
and theory [7–9,15,22–26,28,30,31,70–75,88,111–113,116–118]. esol

- do not cause cleavage at the
sugar-phosphate backbone leading to strand breaks [29–31,88,111–113]. Rather, these electrons
either reside on biomolecules as anion radicals that undergo subsequent electron transfer, or they
undergo irreversible protonation from the surrounding solvent leading to hydrogen-adduct
radicals [29,119]. However, in 1984, Loman and his group were the first to report that “dry electrons”
formed in gamma-irradiated frozen anoxic solutions of DNA caused strand breaks [110]. This
study remained obscure until 2000 and onwards, at which time well-defined electron beam
experiments carried out by Sanche and various other groups discovered that LEEs caused single and
double strand breaks (SSBs and DSBs), both in DNA-model systems in gas and in condensed
phases through dissociative electron attachment (DEA); these studies have been extensively
reviewed [4,8,29–31,38,39,43,45,57–59,73–75,96–109,120,121].

The Sanche group showed that LEEs below ca. 4 eV can induce SSBs in plasmid DNA via
DEA. Recently, the Sanche group has provided evidence that LEEs (0.5 to 30 eV) can lead to
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clustered lesions [102]. Extensive experimental and theoretical studies have established that the
initial step involves electron capture into the unoccupied molecular orbitals that are above the
lowest unoccupied molecular orbitals (LUMOs) of the parent nucleobase. This is termed a “shape
resonance”, thereby creating excited transient negative ion (TNIs*). Note that these “shape resonances”
are well-characterized in the gas phase, but they collapse in condensed phases [4,8,98]. The TNIs*,
after being formed, could rapidly lead to direct (or, frank) strand breaks through sugar-phosphate
(C3′–O3′ or C5′–O5′) σ bond cleavage or result in unaltered base release via N1–C1′ glycosidic
bond breakage (Scheme 4) [4,8,29–31,38,39,43,45,57–59,73–75,96–109,120,121]. These experiments were
carried out either in vacuum or in microhydrated molecular targets that cannot account for the
conditions in living cells. In addition, experimental studies on cross sections of samples irradiated by
LEEs including product analyses of these samples coupled with theoretical studies have shown that
DEA channels are influenced by N-atoms of the base [122,123].
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In irradiated homogeneous aqueous LiCl glasses, radiation-produced electrons exist in shallow
traps of ca. −0.5 eV and hence, these electrons are considered to be epre

- [30,120–129]. Some 77 K ESR
studies of reactions of epre

− with N-acetylalanylalanine methyl ester, N-acetylproline, and glycine
methyl ester along with theoretical calculations employing density functional theory (DFT) provide
evidence of bond breakage via DEA [124,125]. For example, addition of radiation-produced epre

-

to N-acetylalanylalanine methyl ester produces the TNI* that leads to subsequent cleavage of the
carboxylic ester group to produce methyl radical. ESR studies in the 1980s showed that the TNI*
formed via addition of epre

- to esters undergoes O–C bond cleavage [126]. However, ESR spectral
studies have shown that epre

- adds to methyl acetoacetate at 77 K in homogeneous aqueous LiCl
glass to form a TNI* that undergoes protonation from the surrounding solvent [127]. Thus, it can be
expected that epre

- can cause bond scission via DEA of the TNI*, as shown in Scheme 4. However, ESR
studies indicated that the TNI* formed at 77 K, for example, via radiation-produced epre

- addition to
thymidine (Thd) or to the nucleotide, 5′-TMP, in homogeneous aqueous LiCl glass, did not lead to
bond breakage [30,31,38,39,57,58].

Employing femtosecond pump–probe laser spectroscopy at room temperature in dilute aqueous
solution, Lu and co-workers proposed that the TNI* produced via addition of epre

- to selected
nucleotides could lead to the cleavage of the sugar-phosphate bond (Scheme 4) [4,101]. However,
contrary to this proposal, recent works [43,74,75] employing picosecond pulse radiolysis have clearly
and unambiguously established that TNI* formed via addition of epre

- to nucleotides do not cause
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bond cleavage in the sugar-phosphate backbone in water at room temperature, supporting the
above-mentioned ESR spectral results. We summarize our motivation, approach, and important results
to resolve this very important controversy in the following section.

As was shown above, LEEs (eqf
−) successively lose energy to become thermalized electrons

(eth
−) in a polar medium (e.g., water); in this process, LEEs undergo multistep solvation prior to their

complete localization as esol
− (Reaction R3, Scheme 1). The transition from eqf

- to esol
- is accompanied

with the appearance of a strong optical absorption as the electron acquires a stable quantum state. This
was established by time-resolved techniques, typically using a short pulse of high-energy electrons or
a laser beam [43,74,75]. From the viewpoint of the action of LEEs, it is appropriate to suggest that a
thorough understanding of the role played by short-lived non-equilibrated electrons would lead to a
clearer picture of the basic mechanisms underlying the biological consequences of radiation. Therefore,
a detailed knowledge of electron attachment to DNA/RNA in solution leading to the formation
of the TNI* and the subsequent pathways of reactions that the TNI* undergoes (Scheme 4) is of
fundamental importance [4,8,29–31,38,39,43,45,57–59,73–75,96–109,120,121]. However, these studies,
even at a monomeric DNA-subunit (nucleosides, nucleotides) level, were lacking [43,74,75]. This may
be due to challenges encountered in femtosecond laser spectroscopic investigations on the formation
of TNI* and its reaction channels. In contrast, the accelerator technique delivers a high-energy electron
pulse to the solvent, and hence generates LEEs in accord with those in radiation biology and allows us
to investigate the chemistry induced by radiation-produced electrons in liquids.

2.2.2. Picosecond Pulse Radiolysis Measurement of the Initial Yield of Formation of esol
- in a Solution

Leads to Study the Reaction of epre
- with Solute

The rationale of this approach is that the interaction of epre
- with nucleobases can be investigated

by measuring the initial yield of formation of esol
-. esol

- displays a broad absorption band showing a
maximum at 715 nm with a relatively high extinction coefficient under ambient conditions and thus
can be detected with precision [43,74,75].

2.2.3. Reactivity of epre
- with Nucleobases (X), Nucleosides, and 5′-Nucleotides (XMP) in Water

To test the above-mentioned approach, picosecond (≤ 7 ps) electron pulse (7 MeV) radiolysis
coupled with UV-visible (UV-Vis) transient absorption spectroscopy was initially employed to explore
the reactivity of epre

- with nucleobases (X), nucleosides, and 5′-nucleotides (XMP) in aqueous solution.
It is evident from Scheme 5 that when the precursor of esol

- reacts with nucleobase molecules in
competition to its solvation, the yield of formation of esol

- in solutions of nucleobases/nucleotides will
decrease in comparison to that of esol

- in water. The laser-triggered continuous probe light of the
pulse radiolysis system has the advantage that it covers a broad spectral range from 380 to 1500 nm.
This leads to the determination of yields and transient spectra of the resulting intermediates using the
electron pulse [43,74,75].

Neither epre
- nor esol

- can induce direct dissociation of the DNA nucleobases via the DEA pathway
in aqueous solution: Results obtained employing the≤ 7 ps pulse radiolysis technique have established

that e- scavenging by DNA nucleobases is not very efficient at moderate DNA nucleobase concentrations
(≤ 50 mM) [74], especially, capture of e- by the purine nucleobases, G and A, does not occur. As a
nucleotide has higher intrinsic solubility than its nucleobase, investigation of the trapping of epre

- and
of esol

- by a nucleotide became more effective than trapping of these species by the corresponding
nucleobase [74]. Pyrimidine nucleobases are found to be more effective electron scavengers, with
a decreasing reactivity order of T > C > A > G [74]; these results agree nicely with theoretically
calculated values of adiabatic electron affinities of fully hydrated (solvated) nucleobases employing
various theoretical methods including density functional theory (DFT) [8,73,121,130,131].
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Figure 5. Reactivity of eqf
− and/or epre

- toward nucleobases and nucleotides in aqueous solution.
Right: Yield of the solvated electron versus time and the absorption spectra obtained in addition to
that of the esol

- just after the electron pulse. Left: The kinetics of electron and various nucleotides in
solution at ambient temperature. Upper part: Mechanism of electron scavenging in solution by various
nucleotides also at ambient temperature [74]. Reprinted with permission from [74]. Copyright 2017
American Association for the Advancement of Science.
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Thus, these time-resolved studies indicate that neither epre
- nor esol

- can induce direct dissociation
of the DNA nucleobases via the DEA pathway (Figure 5). These studies provided the estimated
values of rate constants of the reactions of epre

- with nucleotides as: ~5 × 1012 M−1s−1 for thymidine
5′-monophosphate (TMP), 4 × 1012 M−1s−1 for cytidine 5′-monophosphate (CMP), 3 × 1012 M−1 s−1

for adenosine 5′-monophosphate (AMP), and 0.6 × 1012 M−1s−1 for guanosine-5′-monophosphate,
GMP. These rate constant values are very important quantities for theoretical calculations to model the
reactions of epre

- and esol
- with DNA/RNA [74].

2.2.4. The Reactivity of Quasi-Free Electrons Towards Nucleoside in DEG

In water, trapping and solvation of LEEs (eqf
−) is fast (<100 fs) under ambient conditions

(Sections 1 and 2.2.1–Section 2.2.3). Therefore, investigation of the complete time resolution of the e-

solvation versus its attachment processes is prevented due to the pulse width (5–7 ps) of the current
high-energy electron pulse radiolysis system [43,74,75]. Relaxation of the electron (from eqf

- to epre
-

and ultimately to esol
- (Reaction R3, Scheme 1)) can be viewed as a multistep transition from the

delocalized conduction band with p-like excited states to s-like ground states [4,9,75,130]. Nevertheless,
the experimental characterization of the specific state of the electron that is required for the DEA
processes remained elusive [75]. Furthermore, formation of the excited states of DNA anion radicals
via electron attachment has been suggested [4,8,29–31,38,39,43,45,57–59,73–75,96–109,120,121], but has
never been observed [74,75]. In order to achieve these goals, ps pulse radiolysis studies were carried
out in diethylene glycol (DEG) for the following reasons: (a) ps Pulse radiolysis in the 1970s and 1980s
established that the time of solvation of electrons in alcohols is of the order of several ps [75,132,133].
(b) Electron solvation events have been found to be relatively slow in diethylene glycol (DEG); these
multistep events occur in approximately tens of picoseconds. In contrast to water, time resolution
of ps pulse radiolysis in DEG provides the opportunity to follow the kinetics of both of epre

− and
esol
− as well as to distinguish between the reactivity of eqf

− and epre
−. (c) DEG’s dielectric constant

value (εr = 31.69) has been found to be closer to that of a biological cell than that of water. (d) The
native double-stranded structure of DNA and its biological activity can be retained in DEG [75,134],
and (e) ribothymidine (rT), a DNA/RNA model, can be sufficiently dissolved (up to 0.5 M) in DEG to
scavenge radiation-produced electrons within several ps. Thus, ps pulse radiolysis studies of various
concentrations (0 to 5 M) of rT solutions led to the direct observation of the key transient species (epre

-,
esol

-, and TNI* of rT•-*). Furthermore, these studies concluded that within the timescale of the electron
pulse < 7 ps, eqf

- led to two distinctly localized electron-solvent configuration states-one in the infrared
region (as a p-like state) and the other in the visible region, which is assigned to a vibrational hot
ground state that gradually relaxes to form a solvated electron, esol

- [75]. These results showed that
presence of rT does not affect significantly the electron solvation process in DEG; also, rT does not react
with epre

- on the time scale of hundreds of ps. Instead, a substantial decrease of the initial near-infrared
absorbance was observed that correlated exponentially with increasing rT concentrations, showing an
effective reaction was taking place between eqf

- and rT.
The spectrum of rT•-* observed in the ps timescale has been fully characterized [75] (Figure 6),

and this spectrum is found to be different from the spectrum of the stable anion radical, rT•-, observed on
the microsecond timescale in dilute DEG solutions at room temperature (Figure 6). These time-resolved
results presented in Figure 6 in combination with DFT calculations established that (a) rT•-* can be
attributed to the excited state πσ*-MO of the anion radical, and (b) dissociation of rT•−* can occur via
gradual relaxation of the structure by bond elongation leading to a barrier-free N1–C1′ glycosidic bond
cleavage through DEA (Scheme 4). These results further imply the generation of biomolecular damage
does not necessarily require electrons carrying kinetic energy, i.e., damage to the TNI* (i.e., excited rT
anion radical, rT•−*) occurs via dissociative electron transfer only by eqf

− [75].
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different sites by direct-type effects. The phosphate-sugar hole relaxation dynamics are characterized 
at a single nucleotide level, and it is clearly observed that the phosphate radical is repaired by sugar 
via charge and spin transfer. In parallel experiments, 6 M H3PO4 solutions containing DNA-bases 
were used to model the phosphate-to-base hole transfer in the absence of a sugar moiety. The excess 
electron attachment to nucleosides/tides has also been investigated. By observing the decrease of the 
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Figure 6. Observation of dissociative eqf
- attachment to nucleoside via excited anion radical in solution.

(a) Absorption spectra of the anion radical at ground (blue) and excited state (red). Inset: decay of the
excited state observed at different concentration. (b) Kinetics of the different species showing the fast
decay of rT•-* and the formation of rT•- by solvated electron. Inset: Scheme showing the reaction of
quasi-free electron forming rT•-* in competition to the electron solvation process [75]. Reprinted with
permission from [75]. Copyright 2019 Nature Springer.

3. Conclusions

The results presented in this review point out that pulse radiolysis is an effective tool to characterize
the species (e.g., H2O•+, TNI*, eqf

-, epre
-, etc.) and to investigate their reactions that are involved in the

relevant physicochemical stage of radiation-mediated biomolecular damage by ionizing radiation in
solution under ambient conditions.

Two types of processes were investigated in the bulk phase: H2O•+ mediated hole transfer and
excess electron mediated dissociative electron attachment. In the experiments that were carried out
using highly concentrated UMP solutions, the UMP•+ is generated with a hole distributed over different
sites by direct-type effects. The phosphate-sugar hole relaxation dynamics are characterized at a single
nucleotide level, and it is clearly observed that the phosphate radical is repaired by sugar via charge and
spin transfer. In parallel experiments, 6 M H3PO4 solutions containing DNA-bases were used to model
the phosphate-to-base hole transfer in the absence of a sugar moiety. The excess electron attachment to
nucleosides/tides has also been investigated. By observing the decrease of the initial yield of the esol

-,
the reactivity of epre

- towards DNA has been observed to follow the order of T > C > G >A, and the TNI*
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does not lead to bond breakage via DEA in liquid water. However, in similar experiments employing
DEG solutions instead of water in which the electron relaxation can be resolved, the ps pulse radiolysis
results along with DFT calculations showed unequivocally that only eqf

- and neither epre
- nor esol

- is
able to dissociate the N1–C1′ glycosidic bond in nucleosides via an excited state of the anion radical or
TNI*. Recent molecular dynamics studies of the solvation of radiation-produced electrons showed
that once LEEs are fully solvated (Reaction R3, Scheme 1), their reactivity is governed and limited
by diffusion and hence the eventual damage due to radiation-produced electrons will be confined
within the size of a cell [135]. Thus, if radiation sensitizers can be targeted only to the hypoxic tumor
cells, better therapeutic efficacy will be achieved. Thus, the ps pulse radiolysis results are not only
benchmarks for future theoretical calculations and experimental studies to elucidate radiation-mediated
biomolecular damage, but they can also be employed to study hypoxic cell radiosensitizers.
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